Homološka algebra — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Спашавам 1 извора и означавам 0 мртвим.) #IABot (v2.0.8.6
.
Ред 1: Ред 1:
[[File:Snake lemma origin.svg|thumb|350px|Dijagram koji se koristi u [[snake lemma|lemi zmije]], osnovnom rezultatu u homološkoj algebri.]]
[[File:Snake lemma origin.svg|thumb|350px|Dijagram koji se koristi u [[snake lemma|lemi zmije]], osnovnom rezultatu u homološkoj algebri.]]


'''Homološka algebra''' je grana [[mathematics|matematike]] koja izučava [[homology (mathematics)|homologiju]] u opštem algebarskom okruženju. To je relativno mlada disciplina, čije poreklo se može pratiti do istraživanja [[combinatorial topology|kombinatorne topologije]] (preteče [[algebraic topology|algebarske topologije]]) i [[abstract algebra|apstraktne algebre]] (teorije [[module (mathematics)|modula]] i [[Linear relation|linearnih relacija]]) s kraja 19. veka, uglavnom zaslugom [[Анри Поенкаре|Anrija Poenkarea]] i [[Давид Хилберт|Dejvida Hilberta]].
'''Homološka algebra''' je grana [[mathematics|matematike]] koja izučava [[homology (mathematics)|homologiju]] u opštem algebarskom okruženju.<ref>{{cite book |author-link=Henri Cartan |author2-link=Samuel Eilenberg |last1=Cartan |first1=Henri Paul |last2=Eilenberg |first2=Samuel |title=Homological Algebra |publisher=Princeton University Press |year=1956 |isbn=9780674079779 |series=Princeton mathematical series |volume=19 |oclc=529171}}</ref><ref>{{cite book |last1=Eilenberg |first1=Samuel |last2=Moore |first2=J.C. |title=Foundations of relative homological algebra |publisher=American Mathematical Society |year=1965 |isbn=9780821812556 |series=Memoirs of the American Mathematical Society number |volume=55 |oclc=1361982}}</ref><ref name=Pellikka2013>{{cite journal|last=Pellikka|first=M|author2=S. Suuriniemi |author3=L. Kettunen |author4=C. Geuzaine |title=Homology and Cohomology Computation in Finite Element Modeling|journal=SIAM J. Sci. Comput.|date=2013|volume=35|issue=5|pages=B1195–B1214|doi=10.1137/130906556|citeseerx=10.1.1.716.3210|url=http://geuz.org/gmsh/doc/preprints/gmsh_homology_preprint.pdf}}</ref><ref name=Arnold2006>{{cite journal|last=Arnold|first=Douglas N. |author2=Richard S. Falk |author3=Ragnar Winther|title=Finite element exterior calculus, homological techniques, and applications|journal=Acta Numerica|date=16 May 2006|volume=15|pages=1–155|doi=10.1017/S0962492906210018|bibcode=2006AcNum..15....1A |s2cid=122763537 |url=http://purl.umn.edu/4216 }}</ref> To je relativno mlada disciplina, čije poreklo se može pratiti do istraživanja [[combinatorial topology|kombinatorne topologije]]<ref>{{Cite journal|title=Digital topological method for computing genus and the Betti numbers| last1=Chen| first1=Li| last2=Rong| first2=Yongwu|journal=[[Topology and Its Applications]]|volume= 157 |year=2010|issue= 12|pages= 1931–1936| doi=10.1016/j.topol.2010.04.006|mr=2646425|doi-access=free}}</ref><ref>{{cite conference |arxiv=0804.1982|title=Linear Time Recognition Algorithms for Topological Invariants in 3D| last1=Chen|first1=Li| last2=Rong|first2=Yongwu|conference=19th International Conference on Pattern Recognition (ICPR 2008)|pages=3254–7 |doi=10.1109/ICPR.2008.4761192 |citeseerx=10.1.1.312.6573 |isbn=978-1-4244-2174-9}}</ref> (preteče [[algebraic topology|algebarske topologije]]) i [[abstract algebra|apstraktne algebre]] (teorije [[module (mathematics)|modula]] i [[Linear relation|linearnih relacija]]) s kraja 19. veka, uglavnom zaslugom [[Анри Поенкаре|Anrija Poenkarea]] i [[Давид Хилберт|Dejvida Hilberta]].


Razvoj homološke algebre bio je usko isprepleten s nastankom [[category theory|teorije kategorija]]. Uopšte, homološka algebra je proučavanje homoloških [[functor|funktora]] i zamršenih algebričnih struktura koje oni uključuju. Jedan prilično koristan i sveprisutan koncept u matematici su ''[[chain complex|lančani kompleksi]]'', koji se mogu proučavati putem njihove homologije i [[cohomology|kohomologije]]. Homološka algebra pruža sredstva za izdvajanje informacija sadržanih u ovim kompleksima i njihovo predstavljanje u obliku homoloških [[Invariant (mathematics)|invarijanati]] [[Алгебарски прстен|prstenova]], modula, [[topological space|topoloških prostora]] i drugih 'opipljivih' matematičkih objekata. Moćan alat za ovo pružaju [[spectral sequence|spektralne sekvence]].
Razvoj homološke algebre bio je usko isprepleten s nastankom [[category theory|teorije kategorija]]. Uopšte, homološka algebra je proučavanje homoloških [[functor|funktora]] i zamršenih algebričnih struktura koje oni uključuju. Jedan prilično koristan i sveprisutan koncept u matematici su ''[[chain complex|lančani kompleksi]]'', koji se mogu proučavati putem njihove homologije i [[cohomology|kohomologije]].<ref>{{Citation | author1-first=Jean | author1-last=Dieudonné | author1-link=Jean Dieudonné | title=History of Algebraic and Differential Topology | publisher=[[Birkhäuser]] | year=1989 | mr=0995842 | isbn=0-8176-3388-X | url-access=registration | url=https://archive.org/details/historyofalgebra0000dieu_g9a3 }}</ref><ref>{{Citation | author1-first=Albrecht | author1-last=Dold | author1-link=Albrecht Dold | title=Lectures on Algebraic Topology | publisher=[[Springer-Verlag]] | year=1972 | mr=0415602 | isbn=978-3-540-58660-9}}</ref><ref>{{Citation | author1-first=Samuel | author1-last=Eilenberg | author1-link=Samuel Eilenberg | author2-first=Norman | author2-last=Steenrod | author2-link=Norman Steenrod | title=Foundations of Algebraic Topology | publisher=[[Princeton University Press]] | year=1952 | mr=0050886 | isbn=9780691627236}}</ref> Homološka algebra pruža sredstva za izdvajanje informacija sadržanih u ovim kompleksima i njihovo predstavljanje u obliku homoloških [[Invariant (mathematics)|invarijanati]] [[Алгебарски прстен|prstenova]], modula, [[topological space|topoloških prostora]] i drugih 'opipljivih' matematičkih objekata. Moćan alat za ovo pružaju [[spectral sequence|spektralne sekvence]].


Homološka algebra je od samog nastanka igrala ogromnu ulogu u algebarskoj topologiji. Njen uticaj se postepeno proširio i trenutno uključuje [[Комутативна алгебра|komutativnu algebru]], [[algebraic geometry|algebarsku geometriju]], [[algebraic number theory|teoriju algebarskih brojeva]], [[representation theory|teoriju reprezentacije]], [[Математичка физика|matematičku fiziku]], [[operator algebra|operatorske algebre]], [[complex analysis|kompleksnu analizu]] i teoriju [[partial differential equation|parcijalnih diferencijalnih jednačina]]. [[K-theory|K-teorija]] je nezavisna disciplina koja se zasniva na metodama homološke algebre, kao i [[noncommutative geometry|nekomutativna geometrija]] [[Alain Connes|Alena Kona]].
Homološka algebra je od samog nastanka igrala ogromnu ulogu u algebarskoj topologiji. Njen uticaj se postepeno proširio i trenutno uključuje [[Комутативна алгебра|komutativnu algebru]], [[algebraic geometry|algebarsku geometriju]], [[algebraic number theory|teoriju algebarskih brojeva]], [[representation theory|teoriju reprezentacije]], [[Математичка физика|matematičku fiziku]], [[operator algebra|operatorske algebre]], [[complex analysis|kompleksnu analizu]] i teoriju [[partial differential equation|parcijalnih diferencijalnih jednačina]]. [[K-theory|K-teorija]] je nezavisna disciplina koja se zasniva na metodama homološke algebre, kao i [[noncommutative geometry|nekomutativna geometrija]] [[Alain Connes|Alena Kona]].
Ред 10: Ред 10:


Proučavanje homološke algebre je započeto u njenom najosnovnijem obliku tokom 1800-ih kao grane [[Topologija|topologije]]. Tek je tokom 1940-ih godina ona postala samostalni predmet proučavanja, sa izučavanjem tema kao što su: [[ext functor|ext funktor]] i [[tor functor|tor funktor]], između ostalog.<ref name="Weber">{{cite book|doi=10.1016/b978-044482375-5/50029-8|chapter=History of Homological Algebra|title=History of Topology|pages=797–836|year=1999|last1=Weibel|first1=Charles A.|isbn=9780444823755}}</ref>
Proučavanje homološke algebre je započeto u njenom najosnovnijem obliku tokom 1800-ih kao grane [[Topologija|topologije]]. Tek je tokom 1940-ih godina ona postala samostalni predmet proučavanja, sa izučavanjem tema kao što su: [[ext functor|ext funktor]] i [[tor functor|tor funktor]], između ostalog.<ref name="Weber">{{cite book|doi=10.1016/b978-044482375-5/50029-8|chapter=History of Homological Algebra|title=History of Topology|pages=797–836|year=1999|last1=Weibel|first1=Charles A.|isbn=9780444823755}}</ref>

== Lančani kompleksi i homologija ==
{{rut}}
The notion of [[chain complex]] is central in homological algebra. An abstract '''chain complex''' is a sequence <math> (C_\bullet, d_\bullet)</math> of [[abelian group]]s<ref>{{cite book |last=Fuchs |first=László |date=1973 |title=Infinite Abelian Groups |series=Pure and Applied Mathematics |volume=36-II |publisher=[[Academic Press]] |mr=0349869 }}</ref><ref>{{cite book |first=Phillip A. |last=Griffith |date=1970 |title=Infinite Abelian group theory |series=Chicago Lectures in Mathematics |publisher=[[University of Chicago Press]] |isbn=0-226-30870-7}}</ref> and [[group homomorphism]]s,<ref>{{MathWorld|title=Group Homomorphism|urlname=GroupHomomorphism|author=Rowland, Todd|author2=Weisstein, Eric W.|name-list-style=amp}}</ref><ref>{{cite book | last1 = Dummit | first1 = D. S. | last2 = Foote | first2 = R. | title = Abstract Algebra | publisher = Wiley | pages = 71–72 | year = 2004 | edition = 3rd | isbn = 978-0-471-43334-7 }}</ref> with the property that the composition of any two consecutive [[map (mathematics)|map]]s is zero:

: <math> C_\bullet: \cdots \longrightarrow
C_{n+1} \stackrel{d_{n+1}}{\longrightarrow}
C_n \stackrel{d_n}{\longrightarrow}
C_{n-1} \stackrel{d_{n-1}}{\longrightarrow}
\cdots, \quad d_n \circ d_{n+1}=0.</math>

The elements of ''C''<sub>''n''</sub> are called ''n''-'''chains''' and the homomorphisms ''d''<sub>''n''</sub> are called the '''boundary maps''' or '''differentials'''. The '''chain groups''' ''C''<sub>''n''</sub> may be endowed with extra structure; for example, they may be [[vector space]]s or [[module (mathematics)|modules]] over a fixed [[ring (mathematics)|ring]] ''R''. The differentials must preserve the extra structure if it exists; for example, they must be [[linear map]]s or homomorphisms of ''R''-modules. For notational convenience, restrict attention to abelian groups (more correctly, to the [[category (mathematics)|category]] '''Ab''' of abelian groups); a celebrated [[Mitchell's embedding theorem|theorem by Barry Mitchell]] implies the results will generalize to any [[abelian category]]. Every chain complex defines two further sequences of abelian groups, the '''cycles''' ''Z''<sub>''n''</sub>&nbsp;=&nbsp;Ker ''d''<sub>''n''</sub> and the '''boundaries''' ''B''<sub>''n''</sub>&nbsp;=&nbsp;Im ''d''<sub>''n''+1</sub>, where Ker&nbsp;''d'' and Im&nbsp;''d'' denote the [[kernel (algebra)|kernel]] and the [[image (mathematics)|image]] of ''d''.<ref>{{cite journal |last=Szmielew |first=Wanda|author-link= Wanda Szmielew |date=1955 |title=Elementary Properties of Abelian Groups |journal=[[Fundamenta Mathematicae]] |volume=41 |issue=2|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm41/fm41122.pdf|pages= 203–271|doi=10.4064/fm-41-2-203-271|mr=0072131|zbl=0248.02049|doi-access=free}}</ref><ref>{{cite journal |last1=Robinson |first1=Abraham|author-link1= Abraham Robinson |last2=Zakon |first2=Elias|date=1960 |title=Elementary Properties of Ordered Abelian Groups |journal=[[Transactions of the American Mathematical Society]] |volume=96 |issue=2|url=https://www.ams.org/journals/tran/1960-096-02/S0002-9947-1960-0114855-0/S0002-9947-1960-0114855-0.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.ams.org/journals/tran/1960-096-02/S0002-9947-1960-0114855-0/S0002-9947-1960-0114855-0.pdf |archive-date=2022-10-09 |url-status=live|pages= 222–236|doi=10.2307/1993461|jstor=1993461 |doi-access=free}}</ref> Since the composition of two consecutive boundary maps is zero, these groups are embedded into each other as

: <math> B_n \subseteq Z_n \subseteq C_n. </math>

[[Subgroup]]s of abelian groups are automatically [[normal subgroup|normal]]; therefore we can define the ''n''th '''homology group''' ''H''<sub>''n''</sub>(''C'') as the [[factor group]] of the ''n''-cycles by the ''n''-boundaries,

: <math> H_n(C) = Z_n/B_n = \operatorname{Ker}\, d_n/ \operatorname{Im}\, d_{n+1}. </math>

A chain complex is called '''acyclic''' or an '''[[exact sequence]]''' if all its homology groups are zero.


== Reference ==
== Reference ==
Ред 38: Ред 58:
* {{Citation | last1=Bott | first1=Raoul | author1-link=Raoul Bott | last2=Tu | first2=Loring W. | title=Differential Forms in Algebraic Topology | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90613-3 | year=1982}}
* {{Citation | last1=Bott | first1=Raoul | author1-link=Raoul Bott | last2=Tu | first2=Loring W. | title=Differential Forms in Algebraic Topology | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90613-3 | year=1982}}
* {{cite book | last=Hatcher | first=Allen | author-link=Allen Hatcher | date=2002 | title=Algebraic Topology | url=https://www.math.cornell.edu/~hatcher/AT/ATpage.html | location=Cambridge | publisher=[[Cambridge University Press]] | isbn=0-521-79540-0}}
* {{cite book | last=Hatcher | first=Allen | author-link=Allen Hatcher | date=2002 | title=Algebraic Topology | url=https://www.math.cornell.edu/~hatcher/AT/ATpage.html | location=Cambridge | publisher=[[Cambridge University Press]] | isbn=0-521-79540-0}}
* {{cite book |last=Cox |first=David |author-link=David A. Cox|url=https://books.google.com/books?id=96P8lsAF7fcC |date=2004 |title=Galois Theory |publisher=[[Wiley-Interscience]] |isbn=9781118031339 |mr=2119052 }}
* {{Cite book| last=Jacobson| first=Nathan|author-link= Nathan Jacobson | date=2009| title=Basic Algebra I |url=https://books.google.com/books?id=JHFpv0tKiBAC| edition=2nd | publisher=[[Dover Publications]] | isbn = 978-0-486-47189-1}}
* {{cite book |last=Rose |first=John S. |date=2012 |title=A Course on Group Theory |url=https://books.google.com/books?id=pYk6AAAAIAAJ|publisher=Dover Publications |isbn=978-0-486-68194-8}} Unabridged and unaltered republication of a work first published by the Cambridge University Press, Cambridge, England, in 1978.
* {{Citation | author1-last=Hartshorne | author1-first=Robin | author1-link=Robin Hartshorne | title=Algebraic Geometry | publisher=[[Springer-Verlag]] | location=New York, Heidelberg | series=Graduate Texts in Mathematics | isbn=0-387-90244-9 | mr=0463157 | year=1977 | volume=52}}
* {{Citation | author1-first=J. Peter | author1-last=May | author1-link=J. Peter May | title=A Concise Course in Algebraic Topology | publisher=[[University of Chicago Press]] | year=1999 | url=http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf | mr=1702278 | isbn=0-226-51182-0}}
* {{Citation | author1-first=Robert | author1-last=Switzer | title=Algebraic Topology — Homology and Homotopy | publisher=[[Springer-Verlag]] | year=1975 | mr=0385836 | isbn=3-540-42750-3}}
* {{Citation|author1-first=René | author1-last=Thom | author1-link=René Thom | mr=0061823| title=Quelques propriétés globales des variétés différentiables|journal=[[Commentarii Mathematici Helvetici]] |volume=28|year=1954|pages= 17–86 |url=http://retro.seals.ch/digbib/view2?pid=com-001:1954:28::48 | doi=10.1007/BF02566923| s2cid=120243638 }}

{{refend}}
{{refend}}



Верзија на датум 27. јун 2023. у 19:08

Dijagram koji se koristi u lemi zmije, osnovnom rezultatu u homološkoj algebri.

Homološka algebra je grana matematike koja izučava homologiju u opštem algebarskom okruženju.[1][2][3][4] To je relativno mlada disciplina, čije poreklo se može pratiti do istraživanja kombinatorne topologije[5][6] (preteče algebarske topologije) i apstraktne algebre (teorije modula i linearnih relacija) s kraja 19. veka, uglavnom zaslugom Anrija Poenkarea i Dejvida Hilberta.

Razvoj homološke algebre bio je usko isprepleten s nastankom teorije kategorija. Uopšte, homološka algebra je proučavanje homoloških funktora i zamršenih algebričnih struktura koje oni uključuju. Jedan prilično koristan i sveprisutan koncept u matematici su lančani kompleksi, koji se mogu proučavati putem njihove homologije i kohomologije.[7][8][9] Homološka algebra pruža sredstva za izdvajanje informacija sadržanih u ovim kompleksima i njihovo predstavljanje u obliku homoloških invarijanati prstenova, modula, topoloških prostora i drugih 'opipljivih' matematičkih objekata. Moćan alat za ovo pružaju spektralne sekvence.

Homološka algebra je od samog nastanka igrala ogromnu ulogu u algebarskoj topologiji. Njen uticaj se postepeno proširio i trenutno uključuje komutativnu algebru, algebarsku geometriju, teoriju algebarskih brojeva, teoriju reprezentacije, matematičku fiziku, operatorske algebre, kompleksnu analizu i teoriju parcijalnih diferencijalnih jednačina. K-teorija je nezavisna disciplina koja se zasniva na metodama homološke algebre, kao i nekomutativna geometrija Alena Kona.

Istorija homološke algebre

Proučavanje homološke algebre je započeto u njenom najosnovnijem obliku tokom 1800-ih kao grane topologije. Tek je tokom 1940-ih godina ona postala samostalni predmet proučavanja, sa izučavanjem tema kao što su: ext funktor i tor funktor, između ostalog.[10]

Lančani kompleksi i homologija

The notion of chain complex is central in homological algebra. An abstract chain complex is a sequence of abelian groups[11][12] and group homomorphisms,[13][14] with the property that the composition of any two consecutive maps is zero:

The elements of Cn are called n-chains and the homomorphisms dn are called the boundary maps or differentials. The chain groups Cn may be endowed with extra structure; for example, they may be vector spaces or modules over a fixed ring R. The differentials must preserve the extra structure if it exists; for example, they must be linear maps or homomorphisms of R-modules. For notational convenience, restrict attention to abelian groups (more correctly, to the category Ab of abelian groups); a celebrated theorem by Barry Mitchell implies the results will generalize to any abelian category. Every chain complex defines two further sequences of abelian groups, the cycles Zn = Ker dn and the boundaries Bn = Im dn+1, where Ker d and Im d denote the kernel and the image of d.[15][16] Since the composition of two consecutive boundary maps is zero, these groups are embedded into each other as

Subgroups of abelian groups are automatically normal; therefore we can define the nth homology group Hn(C) as the factor group of the n-cycles by the n-boundaries,

A chain complex is called acyclic or an exact sequence if all its homology groups are zero.

Reference

  1. ^ Cartan, Henri Paul; Eilenberg, Samuel (1956). Homological Algebra. Princeton mathematical series. 19. Princeton University Press. ISBN 9780674079779. OCLC 529171. 
  2. ^ Eilenberg, Samuel; Moore, J.C. (1965). Foundations of relative homological algebra. Memoirs of the American Mathematical Society number. 55. American Mathematical Society. ISBN 9780821812556. OCLC 1361982. 
  3. ^ Pellikka, M; S. Suuriniemi; L. Kettunen; C. Geuzaine (2013). „Homology and Cohomology Computation in Finite Element Modeling” (PDF). SIAM J. Sci. Comput. 35 (5): B1195—B1214. CiteSeerX 10.1.1.716.3210Слободан приступ. doi:10.1137/130906556. 
  4. ^ Arnold, Douglas N.; Richard S. Falk; Ragnar Winther (16. 5. 2006). „Finite element exterior calculus, homological techniques, and applications”. Acta Numerica. 15: 1—155. Bibcode:2006AcNum..15....1A. S2CID 122763537. doi:10.1017/S0962492906210018. 
  5. ^ Chen, Li; Rong, Yongwu (2010). „Digital topological method for computing genus and the Betti numbers”. Topology and Its Applications. 157 (12): 1931—1936. MR 2646425. doi:10.1016/j.topol.2010.04.006Слободан приступ. 
  6. ^ Chen, Li; Rong, Yongwu. Linear Time Recognition Algorithms for Topological Invariants in 3D. 19th International Conference on Pattern Recognition (ICPR 2008). стр. 3254—7. CiteSeerX 10.1.1.312.6573Слободан приступ. ISBN 978-1-4244-2174-9. arXiv:0804.1982Слободан приступ. doi:10.1109/ICPR.2008.4761192. 
  7. ^ Dieudonné, Jean (1989), History of Algebraic and Differential TopologyНеопходна слободна регистрација, Birkhäuser, ISBN 0-8176-3388-X, MR 0995842 
  8. ^ Dold, Albrecht (1972), Lectures on Algebraic Topology, Springer-Verlag, ISBN 978-3-540-58660-9, MR 0415602 
  9. ^ Eilenberg, Samuel; Steenrod, Norman (1952), Foundations of Algebraic Topology, Princeton University Press, ISBN 9780691627236, MR 0050886 
  10. ^ Weibel, Charles A. (1999). „History of Homological Algebra”. History of Topology. стр. 797—836. ISBN 9780444823755. doi:10.1016/b978-044482375-5/50029-8. 
  11. ^ Fuchs, László (1973). Infinite Abelian Groups. Pure and Applied Mathematics. 36-II. Academic Press. MR 0349869. 
  12. ^ Griffith, Phillip A. (1970). Infinite Abelian group theory. Chicago Lectures in Mathematics. University of Chicago Press. ISBN 0-226-30870-7. 
  13. ^ Rowland, Todd. „Group Homomorphism”. MathWorld. 
  14. ^ Dummit, D. S.; Foote, R. (2004). Abstract Algebra (3rd изд.). Wiley. стр. 71—72. ISBN 978-0-471-43334-7. 
  15. ^ Szmielew, Wanda (1955). „Elementary Properties of Abelian Groups” (PDF). Fundamenta Mathematicae. 41 (2): 203—271. MR 0072131. Zbl 0248.02049. doi:10.4064/fm-41-2-203-271Слободан приступ. 
  16. ^ Robinson, Abraham; Zakon, Elias (1960). „Elementary Properties of Ordered Abelian Groups” (PDF). Transactions of the American Mathematical Society. 96 (2): 222—236. JSTOR 1993461. doi:10.2307/1993461Слободан приступ. Архивирано (PDF) из оригинала 2022-10-09. г. 

Literatura

Spoljašnje veze