RAM (меморија)

Из Википедије, слободне енциклопедије
Пример RAM модула.

Меморија са случајним приступом (енгл. Random-access memory, RAM) или оперативна меморија, означава врсту меморије која је директно адресибилна и њеном садржају се може приступити по произвољној локацији, а не само редом (секвенцијално, као код трака). RAM дозвољава да се подаци узимају директно у насумичном редоследу. Други медијуми попут тврдих дискова, ЦД-ова, DVD-ова и магнетних трака, као и примитивних типова меморија попут добош меморије, подаци се записују у предодређеном реду, узастопно, због ограничења механичког дизајна. Због тога, време присутпања датој локацији варира зависно од физичке локације.

Најчешће се користи у рачунарима као примарна или главна меморија, мада то није неопходно.

Данас је RAM у облику интегрисаних кола. Стриктно говорећи, модерни типови DRAM-а немају насумичан приступ, пошто се подаци читају у рафалима, иако је име DRAM остало. Ипак многи типови SRAM-а, ROM-а, ОТП-а и НОР флеша и даље имају случајан приступ и у стриктном смислу. RAM се повезује са непостојаним типом меморије (као што су DRAM меморијски модули), где се информације губе ако нестане струје. Многи други типови постојане меморије су RAM такође, укључујући већину ROM и један тип Флеш меморије зван НОР-Флеш. Први RAM модули на тржишту су направљени 1951. и продавани су до краја 1960их.

Под термином „RAM“ се често сматрају меморије које губе садржај по престанку напајања (нпр. насупрот ROM меморијама), али то није неопходно јер скраћеница „RAM“ једино означава слободу у редоследу приступа.

Историја[уреди]

Мегабајтни чип

Рани рачунари су користили релеје за главне функције меморије. Ултразвучне линије на кашњење су могли да испоруче податке само онако како су написани. Добош меморија је могла јефтино да се прошири али враћање несеквенцијалне меморије је захтевало познавање добош меморије. Резе направљене од триода из вакумских цеви и дискретних транзистора су коришћене за мање и брже меморије као што су регистри са насумичним приступом. Такви регистри су били велики, неефикасни и скупи за чување великих података. Генерално се могло користити само стотину или хиљаду бајтова.

Прва практична RAM меморија је била Вилијамсова туба, направљена 1947. Чувала је податке као електрично набијене тачке на екрану ЦРТ. Пошто је електронски зрак могао да пише и чита тачке на туби у било ком редоследу, ово је била RAM. Капацитет је порастао са неколико стотина на хиљаду битова, али је била много мања, ефикаснија и бржа. Развијена је н Универзитету Манчестер у Енглеској.

Меморија са магнетним језгром је направљена 1947. и развијана је до 1970их. Постала је широко коришћена врста RAM-а. Мењањем магнетизације сваког прстена, подаци би могли бити чувани са једним битом по прстену. Пошто је сваки прстен имао комбинацију адресних жица за бирање и читање или писање, приступ било којој меморијској локацији је био могућ.

Меморија са магнетним језгром је била стандардна меморија док је није заменила меморија чврстог стања, са почетком 1970их. Роберт Денард је изумео DRAM 1968. Ово је омогућило експериментисање са 4 или 6 транисторним колом са резом од једног транзистора за сваки меморијски бит, што је значајно повећало густину меморије. Оидацу сз постављани у мали капацитет у сваком транзистору и морао је бити периодично освежен сваких пар милисекунди пре него што меморија исцури. Пре развоја интегрисаних ROM кола, трајни RAM је често прављен користећи матрице диода које су покретали декодери адреса.

Типови RAM-а[уреди]

Три главна типа модерног RAM-а су статички RAM (SRAM), динамички RAM (DRAM) и меморија са променом фазе (PRAM). У SRAM-у, део података је чуван коришћењем стања флип флопова. Ова врста RAM-а је скупља за производњу, али је бржа и захтева мање струје од DRAM-а и у модерним рачунарима се чешће користи као кеш меморија за ЦПЈ.

DRAM чува део података коришћењем транзистора и кондензатора, који заједно чине меморијску ћелију. Кондензатор држи високо или ниско стање (1 или 0), а транзистор се понаша као прекидач који допушта контроли на чипу да чита стање кондензатора и да га мења. Пошто је овај тип меморије јефтинији од SRAM-а, доминантан је у рачунарској меморији у данашњим рачунарима.

И статички и динамички RAM су непостојани, јер се њихово стање губи ако нестане струје. RAM који не губи садржај по нестанку напајања (NVRAM - Non-Volatile RAM). ROM са друге стране заувек чува податке тако што трајно укључује или искључује изабране транзисторе тако да меморија не може да се мења. Варијанте ROM-а на које може да се пише као што су EEPROM и Флеш меморија деле особине и са ROM-ом и са RAM-ом, што омогућава подацима да истрају без струје и да се ажурирају без посеебне опреме. Ове истрајне форме полупроводничког ROM-а корсите USB флешеви, меморијске картице и тако даље. ЕЦЦ меморија има специјална кола за детектовање и поправљање сличајних (меморијских) грешака у сачуваним подацима.

Неке RAM меморије имају више приступних магистрала, за више независних корисника. По томе се деле на:

  • Двопортни RAM - RAM са два комплетна независна порта, приступна пута.
  • Видео RAM - двопортни RAM у које је једна магистрала нуди само секвенцијални приступ.

Генерално термин RAM се односи на уређаје са меморијом чврстог стања и специфично главну меморију у већини рачунара. У оптичким медијумима, термин DVD-RAM је погрешан јер не мора да се брише пре поновног коришћења. Он се понаша као тврди диск или спорије.

Савремени оперативни системи омогућавају симулацију RAM меморије на тврдим дисковима у виду виртуелне меморије.

Хијерархија меморије[уреди]

Многи рачунарски системи имају ову хијерархију која се састоји од регистара централне процесроске јединице, SRAM кеша на чипу, екстерни кеш, DRAM и виртуелну меморију на тврдом диску. Сву ову меморију произвиђачи зову RAM чак иако разни подсистеми могу имати различита времена приступа. Чак у хијерархији са нивоима попут DRAM-а, специфични ред, колона, ранг, канал компоненти чине да ово време варира. Свеобухватни циљ меморијске хијерархије је имати најбоље могуће перформансе и смањење цене целог меморијског система (меморијска хијерархија прати приступна времена са брзим ЦПЈ регистрима на врху и спорим тврдим диском на дну).

У већини модерних рачунара, RAM долази у облику меморијских модула или DRAM модула. Ови модули се могу брзо заменизи ако се покваре или када затреба већи капацитет. Као што је речено, мале количине RAMа (углавном SRAM) је интегрисано на ЦПЈ и на друга места на матичној плочи, као и на тврдим дисковима, ЦД-овима, и осталим деловима рачунарског система.

Виртуелна меморија[уреди]

Главни чланак: Виртуелна меморија

Већина модерних ОС имају метод за ширење капацитета RAM-а, позназије као виртуелна меморија. Део тврдог диска се остави за paging file или scratch partition, и комбинација физичког RAMа и фајла чине целу меморију система. Када систему остане мало физичке меморије, може да замени делове RAMа у фајл и да направи простора за нове податке, као и да врати претходно замењене инфоRAMције назад у RAM. Прекомерно коришћење овога се зове трешинг и генерално умањује системске перформансе, пошто је тврди диск много спорији од RAM-а.

RAM диск[уреди]

Софтвер може да партиционише део рачунарског RAM-а, што му омогућава да ради као много брже тврди диск који се зове RAM диск. RAM диск губи постављене податке када је рачунар угашен, осим ако је укључен стендбај режим.

Сенка RAM[уреди]

Некад, садржаји релативно спорог ROM чипа се копирају на читај/пиши меморију да омогући бржи приступ. ROM се тада гаси, док се иницијализована меморија пали на истом блоку адреса (често заштићена од писања). Овај процес се понекад зове сенчење, и чест је у рачунарима и уграђеним системима.

Као заједнички пример, БИОС у типичном рачунару има опцију “корсити сенка БИОС“ или слично. Када се укључи функције се ослањају на податке из БИОС-овог ROM-а ће уместо тога користи DRAM локације. Зависно од система, ово не мора да побољша перформансе, али може да направи некомпатибилност. На пример неком хардверу ОС не може да приступи ако ова опција није укључена. На неким системима добици су хипотетички јер се БИОС не користи након бутовања у корист директног хардвеског приступа. Слободна меморија је смањена за величину ROM-а у сенци.

Скорашњи развоји[уреди]

Неколико нових постојаних RAM-ова се развијају, који ће чувати податке након гашења. Технологије које се користе укључују угљеничне наноцеви и ефекат магнетног тунела. Међу првом генерацијом МRAM-а 128 кибибајта (128 × 210 бајта) магнетног RAM-а на чипу је направљен са 0.18 µm технологијом у лето 2003. Инфинион Текнолоџис је јуна 2004 открио прототип од 16 мебибајта базиран на истој технологији. Постоје две технике друге генерације у развоју: термално асистирано прекидање (ТАС) кога развија Крокас Текнолоџи, и трансфер обртног момента спина (СТТ) на којем раде Крокас, Хајникс, IBM и неколико осталих компанија. Нантеро је направио функционални прототип базиран на угљеничној наноцеви од 10 гибибајта. Видеће се да ли ће нека од ових технологија еветнуално узети део колача DRAM-у, SRAM-у и флеш технологији.

Меморијски зид[уреди]

Меморијски зид је растући диспаритет у брзини ЦПЈ и меморији ван ЦПЈ. Битан разлог за ово је ограничени бендвит између граница чипа. Од 1986. до 2000, ЦПЈ брзине су расле на годишњем нивоу од 55% док су меморијске брзине расле за 10%. Због ових трендова, очекује се да латенција меморије постане уско грло рачунарских перформанси.

Побољшања брзина централне процесорске јединице је углавном због физичких баријера и због тога што је садашњи дизајн већ ударио у меморијски зид у одређеном смислу.

Види још[уреди]

Спољашње везе[уреди]