Пређи на садржај

Веома велики телескоп — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{Short description|Телескоп у пустињи Атакама, Чиле}}{{rut}}
{{Телескоп
{{Телескоп
| име = Веома велики телескоп (VLT)
| име = Веома велики телескоп (VLT)
Ред 24: Ред 25:
}}
}}


'''Веома велики телескоп''' ({{јез-енг|Very Large Telescope}}), или скраћено '''-{VLT}-''', је [[телескоп]] [[европска јужна опсерваторија|европске јужне опсерваторије]] који се налази у пустињи [[Атакама]] у [[Чиле]]у. -{VLT}- се састоји од четири примарна телескопа, чије је примарно огледало пречника 8,2 -{m}-, који се углавном користе засебно али се могу користити [[Интерферометрија|интерферометријски]] при посматрању да би се постигла веома висока [[угаона резолуција]]. Ова четири телескопа су добила називе ''Анту'', ''Куејен'', ''Малипал'' и ''Јепун'', а све су то називи за [[Небеско тело|астрономске објекте]] на [[Араукански језик|арауканском језику]].<ref name="urlVery Large Telescope">{{cite web |url=http://www.eso.org/public/teles-instr/vlt.html |title=Very Large Telescope |author= |authorlink= |coauthors= |date= |format= |work= |publisher=[[Европска јужна опсерваторија|ЕСО]] |pages= |language={{ен}} |archiveurl= |archivedate= |quote=Веома велики телескоп. |accessdate=12. 01. 2013}}</ref> Телескопи заједно формирају мрежу која је употпуњена коришћењем четири помоћна телескопа пречника 1,8 -{m}-.
'''Веома велики телескоп''' ({{јез-енг|Very Large Telescope}}), или скраћено '''-{VLT}-''', је [[телескоп]] [[европска јужна опсерваторија|европске јужне опсерваторије]] који се налази у пустињи [[Атакама]] у [[Чиле]]у. -{VLT}- се састоји од четири примарна телескопа, чије је примарно огледало пречника 8,2 -{m}-, који се углавном користе засебно али се могу користити [[Интерферометрија|интерферометријски]] при посматрању да би се постигла веома висока [[угаона резолуција]]. Ова четири телескопа су добила називе ''Анту'', ''Куејен'', ''Малипал'' и ''Јепун'', а све су то називи за [[Небеско тело|астрономске објекте]] на [[Араукански језик|арауканском језику]].<ref name="esovlt">{{cite web |url=http://www.eso.org/public/teles-instr/vlt.html |title=Very Large Telescope |author= |authorlink= |coauthors= |date= |format= |work= |publisher=[[Европска јужна опсерваторија|ЕСО]] |pages= |language={{ен}} |archiveurl= |archivedate= |quote=Веома велики телескоп. |accessdate=12. 01. 2013}}</ref> Телескопи заједно формирају мрежу која је употпуњена коришћењем четири помоћна телескопа пречника 1,8 -{m}-.

The VLT operates at [[visible light|visible]] and [[infrared]] [[wavelength]]s. Each individual telescope can detect objects roughly four billion times fainter than can be detected with the [[naked eye]], and when all the telescopes are combined, the facility can achieve an [[angular resolution]] of about 0.002 arc-second. In single telescope mode of operation angular resolution is about 0.05 arc-second.<ref>{{Cite web|url=https://www.eso.org/public/about-eso/faq/faq-vlt-paranal/|title=FAQ VLT/Paranal|website=www.eso.org}}</ref>

The VLT is the most productive ground-based facility for astronomy, with only the [[Hubble Space Telescope]] generating more scientific papers among facilities operating at visible wavelengths.<ref>{{Cite journal | bibcode = 2010AN....331..338T | title = Productivity and impact of astronomical facilities: A recent sample | last1 = Trimble | first1 = V. | last2 = Ceja | first2 = J. A. | volume = 331 | date = 2010 | page = 338 | journal = Astronomische Nachrichten | doi = 10.1002/asna.200911339 | issue = 3| url = https://cloudfront.escholarship.org/dist/prd/content/qt8kj8693b/qt8kj8693b.pdf }}</ref> Among the pioneering observations carried out using the VLT are the first direct image of an [[exoplanet]], the tracking of individual stars moving around the [[supermassive black hole]] at the centre of the [[Milky Way]], and observations of the afterglow of the [[GRB 090423|furthest known gamma-ray burst]].<ref name="vlthandout">{{cite web |url=http://www.eso.org/public/products/brochures/vlt_handout/ |title=The Very Large Telescope — The World's Most Advanced Visible-light Astronomical Observatory handout |publisher=ESO |access-date=2011-08-05}}</ref>

== Опште информације ==
[[File:Paranal Platform After Sunset (ESO).jpg|thumb|VLT's four Unit Telescopes]]

The VLT consists of an arrangement of four large (8.2 metre diameter) telescopes (called Unit Telescopes or UTs) with optical elements that can combine them into an [[astronomical interferometer]] (VLTI), which is used to resolve small objects. The interferometer also includes a set of four 1.8 meter diameter movable telescopes dedicated to interferometric observations. The first of the UTs started operating in May 1998 and was offered to the astronomical community on 1 April 1999. The other telescopes became operational in 1999 and 2000, enabling multi-telescope VLT capability. Four 1.8-metre Auxiliary Telescopes (ATs) have been added to the VLTI to make it available when the UTs are being used for other projects. These ATs were installed and became operational between 2004 and 2007.<ref name="esovlt" />

The VLT's 8.2-meter telescopes were originally designed to operate in three modes:<ref>{{cite web |url=http://www.eso.org/sci/publications/messenger/archive/no.130-dec07/messenger-no130-48.pdf |title=Science with the VLT in the ELT Era |access-date=2013-06-17 |url-status=dead |archive-url=https://web.archive.org/web/20120309233722/http://www.eso.org/sci/publications/messenger/archive/no.130-dec07/messenger-no130-48.pdf |archive-date=2012-03-09 }}</ref>
* as a set of four independent telescopes (this is the primary mode of operation).
* as a single large [[Coherence (physics)|coherent]] [[astronomical interferometer|interferometric instrument]] (the VLT Interferometer or VLTI), for extra resolution. This mode is used for observations of relatively bright sources with small angular extent.
* as a single large incoherent instrument, for extra light-gathering capacity. The instrumentation required to obtain a combined incoherent focus was not originally built. In 2009, new instrumentation proposals were put forward to potentially make that observing mode available.<ref>{{Cite book |doi = 10.1007/978-1-4020-9190-2_68 |chapter = ESPRESSO: A High Resolution Spectrograph for the Combined Coudé Focus of the VLT |url=http://www.eso.org/~jliske/pub/espresso_garching.pdf |title = Science with the VLT in the ELT Era|volume = 9 |pages = 395–399|series = Astrophysics and Space Science Proceedings|year = 2009|last1 = Pasquini |first1 = Luca |display-authors = etal |isbn = 978-1-4020-9189-6 |citeseerx = 10.1.1.218.6892 |archive-url=https://web.archive.org/web/20150609085211/http://www.eso.org/~jliske/pub/espresso_garching.pdf |archive-date=June 9, 2015 |url-status=dead |df=mdy-all|bibcode = 2009ASSP....9..395P }}</ref> Multiple telescopes are sometimes independently pointed at the same object, either to increase the total light-gathering power or to provide simultaneous observations with complementary instruments.

== Научни резултати ==
[[File:Orion Watches over Paranal - potw2009a.jpg|thumb|left|The soft glow of the Milky Way can be seen behind the VLT Survey Telescope (VST) at ESO's Paranal Observatory.<ref>{{cite web|title=Orion Watches over Paranal|url=https://www.eso.org/public/images/potw2009a/|access-date=2 March 2020}}</ref>]]

Results from the VLT have led to the publication of an average of more than one peer-reviewed scientific paper per day. For instance in 2017, over 600 refereed scientific papers were published based on VLT data.<ref>{{cite web|url=http://www.eso.org/sci/libraries/edocs/ESO/ESOstats.pdf| title = ESO Publication Statistics| access-date = 2018-08-06}}</ref> The telescope's scientific discoveries include direct imaging of [[Beta Pictoris b]], the first extrasolar planet so imaged,<ref>{{cite news |date=21 November 2008 |title=Beta Pictoris planet finally imaged? |url=http://www.eso.org/public/news/eso0842/ |publisher=ESO | access-date=2011-05-04}}</ref> tracking individual stars moving around the [[supermassive black hole]] at the centre of the Milky Way,<ref>{{cite news |date=10 December 2008 |title=Unprecedented 16-Year Long Study Tracks Stars Orbiting Milky Way Black Hole |url=http://www.eso.org/public/news/eso0846/ |publisher=ESO | access-date=2011-05-04}}</ref> and observing the afterglow of the furthest known [[gamma-ray burst]].<ref>{{cite news |date=19 September 2008 |title=NASA's Swift Catches Farthest Ever Gamma-Ray Burst |url=http://www.nasa.gov/mission_pages/swift/bursts/farthest_grb.html |publisher=NASA | access-date=2011-05-04}}</ref>

In 2018, the VLT helped to perform the first successful test of [[Albert Einstein|Einstein]]'s [[General relativity|General Relativity]] on the motion of a star passing through the extreme gravitational field near the supermassive black hole, that is the [[gravitational redshift]].<ref>{{Cite web|url=http://www.eso.org/public/news/eso1825/|title=First Successful Test of Einstein's General Relativity Near Supermassive Black Hole - Culmination of 26 years of ESO observations of the heart of the Milky Way|last=|website=www.eso.org|language=en-GB|access-date=2018-07-28}}</ref> In fact, the observation has been conducted for over 26 years with the SINFONI and NACO adaptive optics instruments in the VLT while the new approach in 2018 also used the beam-combiner instrument GRAVITY.<ref>{{Cite journal|last1=GRAVITY Collaboration|last2=Abuter|first2=R.|last3=Amorim|first3=A.|last4=Anugu|first4=N.|last5=Bauböck|first5=M.|last6=Benisty|first6=M.|last7=Berger|first7=J. P.|last8=Blind|first8=N.|last9=Bonnet|first9=H.|date=2018-07-24|title=Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole|journal=Astronomy & Astrophysics|volume=615|issue=15|pages=L15|arxiv=1807.09409|doi=10.1051/0004-6361/201833718|bibcode=2018A&A...615L..15G|s2cid=118891445}}</ref> The Galactic Centre team at the [[Max Planck Institute for Extraterrestrial Physics]] (MPE) had use the observation revealed the effects for the first time.<ref>{{Cite web|url=http://www.mpe.mpg.de/6930756/news20180726|title=First Successful Test of Einstein's General Relativity Near Supermassive Black Hole|website=www.mpe.mpg.de|access-date=2018-07-28}}</ref>

Other discoveries with VLT's signature include the detection of carbon monoxide molecules in a galaxy located almost 11 billion light-years away for the first time, a feat that had remained elusive for 25 years. This has allowed astronomers to obtain the most precise measurement of the cosmic temperature at such a remote epoch.<ref>{{cite news |date=13 May 2008 |title=A Molecular Thermometer for the Distant Universe |url=http://www.eso.org/public/news/eso0813/ |publisher=ESO | access-date=2011-04-05}}</ref> Another important study was that of the violent flares from the supermassive black hole at the centre of the Milky Way. The VLT and APEX teamed up to reveal material being stretched out as it orbits in the intense gravity close to the central black hole.<ref>{{cite news |date=18 October 2008 |title=Astronomers detect matter torn apart by black hole |url=http://www.eso.org/public/news/eso0841/ |publisher=ESO | access-date=2011-04-05}}</ref>

Using the VLT, astronomers have also estimated the age of extremely old stars in the [[NGC 6397]] cluster. Based on [[stellar evolution]] models, two stars were found to be 13.4 ±&nbsp;0.8 billion years old, that is, they are [[Chronology of the universe#Earliest structures and stars emerge|from the earliest era of star formation]] in the Universe.<ref>{{cite news |date=17 August 2004 |title=How Old is the Milky Way? |url=http://www.eso.org/public/news/eso0425/ |publisher=ESO | access-date=2011-04-05}}</ref> They have also analysed the atmosphere around a super-Earth exoplanet for the first time using the VLT. The planet, which is known as [[Gliese 1214 b|GJ 1214b]], was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere.<ref>{{cite news |date=13 January 2010 |title=VLT Captures First Direct Spectrum of an Exoplanet |url=http://www.eso.org/public/news/eso1002/ |publisher=ESO | access-date=2011-04-05}}</ref>

In all, of the top 10 discoveries done at ESO's observatories, seven made use of the VLT.<ref name="esotopdisc">{{cite web |url=http://www.eso.org/public/science/top10.html |title=ESO Top 10 Astronomical Discoveries
|publisher=ESO |access-date=2011-08-05}}</ref>

<gallery class="center" mode="packed" heights="140px">
File:Potw1239a.jpg
</gallery>

== Технички детаљи ==

=== Телескопи ===

Each Unit Telescope is a [[Ritchey-Chretien]] [[Cassegrain telescope]] with a 22-tonne 8.2 metre [[Zerodur]] primary mirror of 14.4 m focal length, and a 1.1 metre lightweight beryllium secondary mirror. A flat tertiary mirror diverts the light to one of two instruments at the f/15 [[Nasmyth telescope|Nasmyth]] foci on either side, with a system focal length of 120 m,<ref>{{cite web|url=https://www.eso.org/sci/facilities/develop/documents/VLT-SPE-ESO-10000-2723_is1.pdf | title = Requirements for Scientific Instruments of the VLT Unit Telescopes | publisher = ESO | access-date = 2018-01-18}}</ref> or the tertiary tilts aside to allow light through the primary mirror central hole to a third instrument at the Cassegrain focus. This allows switching between any of the three instruments within 5 minutes, to match observing conditions. Additional mirrors can send the light via tunnels to the central VLTI beam-combiners. The maximum field-of-view (at Nasmyth foci) is around 27 arcminutes diameter, slightly smaller than the full moon, though most instruments view a narrower field.

Each telescope has an [[Altazimuth mount|alt-azimuth]] mount with total mass around 350 tonnes, and uses [[active optics]] with 150 supports on the back of the primary mirror to control the shape of the thin (177mm thick) mirror by computers.<ref>{{cite web |url=https://www.eso.org/sci/facilities/paranal/telescopes/ut/m1unit.html |title=The VLT primary mirrors: mirror production and measured performance
|first1=P. |last1=Dierickx |first2=D. |last2=Enard |first3=R. |last3=Geyl |first4=J. |last4=Paseri |first5=M. |last5=Cayrel |first6=P. |last6=Béraud |publisher=ESO}}</ref>


== Види још ==
== Види још ==
{{Commonscat|Very Large Telescope}}
* [[Европски изузетно велики телескоп]]
* [[Европски изузетно велики телескоп]]


Ред 34: Ред 75:


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Very Large Telescope}}
{{портал|Астрономија}}
{{refbegin|30em}}
* [http://www.eso.org/public/about-eso/visitors/paranal/index.html Посета Паранал опсерваторији]
* [http://www.eso.org/public/about-eso/visitors/paranal/index.html Посета Паранал опсерваторији]
* [http://www.eso.org/projects/vlt/ Вебсајт ЕСО о VLT]
* [http://www.eso.org/projects/vlt/ Вебсајт ЕСО о VLT]
* [http://www.eso.org/sci/facilities/paranal/telescopes/vlti/index.html ESO VLTI]
* [https://web.archive.org/web/20181019205912/http://gallery.hd.org/_virtual/ByCategory/natural-science/vlt/ Фотографије које је снимио VLT]
* [https://web.archive.org/web/20181019205912/http://gallery.hd.org/_virtual/ByCategory/natural-science/vlt/ Фотографије које је снимио VLT]
* [https://web.archive.org/web/20110805010626/http://www.eso.org/public/outreach/bond/BondatParanal.html Бонд на Паранал опсерваторији]
* [https://web.archive.org/web/20110805010626/http://www.eso.org/public/outreach/bond/BondatParanal.html Бонд на Паранал опсерваторији]
* [https://www.eso.org/public/teles-instr/paranal-observatory/vlt/ ESO VLT] official site for the 8 m and 1.8 m telescopes.
** [http://www.eso.org/sci/facilities/paranal/telescopes/vlti.html ESO VLTI] official site for the interferometer (combining the telescopes)
** [https://www.eso.org/public/teles-instr/paranal-observatory/vlt/auxiliarytelescopes/ Auxiliary Telescopes] - Very Large Telescope Interferometer
** Full list of the [http://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/ VLT instruments] including those of VLTI
* [http://www.worldwidetelescope.org/webclient/ WorldWide Telescope Web Client] including archives from the VLT
* [https://www.eso.org/public/images/archive/search/?ranking=0&fov=0&release_id=&minimum_size=0&description=&facility=31&published_until_month=0&title=&subject_name=&credit=&published_until_day=0&published_since_day=0&published_since_month=0&published_until_year=0&id=&published_since_year=0 VLT images]
* [http://www.eso.org/public/teles-instr/technology/interferometry/ ESO Interferometry]
* [http://www.dutchspace.nl/pages/business/content.asp?id=176&P=1_3_17 Delay Lines for the Very Large Telescopes] @Dutch Space
* [http://volker.umpfenbach.de/en/reisen/2003suedamerika/2003suedamerika09d.htm Travelogue VLT Visit]
* [http://channel.nationalgeographic.com/series/worlds-toughest-fixes/3563/Photos#tab-Overview#ixzz1U9uYa96s World's Toughest Fixes]
{{refend}}


{{нормативна контрола}}
{{нормативна контрола}}
{{портал бар|Астрономија}}


[[Категорија:Телескопи]]
[[Категорија:Телескопи]]
[[Категорија:Европска јужна опсерваторија]]
[[Категорија:Европска јужна опсерваторија]]
[[Категорија:Европска свемирска агенција]]
[[Категорија:Европска свемирска агенција]]

[[de:Paranal-Observatorium#Very Large Telescope]]

Верзија на датум 16. април 2022. у 11:49

Веома велики телескоп (VLT)
Image Credit: ESO
Image Credit: ESO
Четири примарна телескопа, заједно са четири помоћна, формирају VLT.
ОрганизацијаЕСО
ЛокацијаПаранал опсерваторија, Атакама у Чилеу
Висина2.635 m
Време>300 ведрих ноћи годишње
Таласна дужина300 nm – 20 μm видљива, инфрацрвена
Прва светлост1998.г. (први примарни телескоп)
Врста телескопа Ричи-Кретјан
Пречник4 x 8,2 m Примарни
+ 4 x 1,8 m Помоћни
МонтажаАлт-азимутална монтажа
ВебсајтВеома велики телескоп

Веома велики телескоп (енгл. Very Large Telescope), или скраћено VLT, је телескоп европске јужне опсерваторије који се налази у пустињи Атакама у Чилеу. VLT се састоји од четири примарна телескопа, чије је примарно огледало пречника 8,2 m, који се углавном користе засебно али се могу користити интерферометријски при посматрању да би се постигла веома висока угаона резолуција. Ова четири телескопа су добила називе Анту, Куејен, Малипал и Јепун, а све су то називи за астрономске објекте на арауканском језику.[1] Телескопи заједно формирају мрежу која је употпуњена коришћењем четири помоћна телескопа пречника 1,8 m.

The VLT operates at visible and infrared wavelengths. Each individual telescope can detect objects roughly four billion times fainter than can be detected with the naked eye, and when all the telescopes are combined, the facility can achieve an angular resolution of about 0.002 arc-second. In single telescope mode of operation angular resolution is about 0.05 arc-second.[2]

The VLT is the most productive ground-based facility for astronomy, with only the Hubble Space Telescope generating more scientific papers among facilities operating at visible wavelengths.[3] Among the pioneering observations carried out using the VLT are the first direct image of an exoplanet, the tracking of individual stars moving around the supermassive black hole at the centre of the Milky Way, and observations of the afterglow of the furthest known gamma-ray burst.[4]

Опште информације

VLT's four Unit Telescopes

The VLT consists of an arrangement of four large (8.2 metre diameter) telescopes (called Unit Telescopes or UTs) with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer also includes a set of four 1.8 meter diameter movable telescopes dedicated to interferometric observations. The first of the UTs started operating in May 1998 and was offered to the astronomical community on 1 April 1999. The other telescopes became operational in 1999 and 2000, enabling multi-telescope VLT capability. Four 1.8-metre Auxiliary Telescopes (ATs) have been added to the VLTI to make it available when the UTs are being used for other projects. These ATs were installed and became operational between 2004 and 2007.[1]

The VLT's 8.2-meter telescopes were originally designed to operate in three modes:[5]

  • as a set of four independent telescopes (this is the primary mode of operation).
  • as a single large coherent interferometric instrument (the VLT Interferometer or VLTI), for extra resolution. This mode is used for observations of relatively bright sources with small angular extent.
  • as a single large incoherent instrument, for extra light-gathering capacity. The instrumentation required to obtain a combined incoherent focus was not originally built. In 2009, new instrumentation proposals were put forward to potentially make that observing mode available.[6] Multiple telescopes are sometimes independently pointed at the same object, either to increase the total light-gathering power or to provide simultaneous observations with complementary instruments.

Научни резултати

The soft glow of the Milky Way can be seen behind the VLT Survey Telescope (VST) at ESO's Paranal Observatory.[7]

Results from the VLT have led to the publication of an average of more than one peer-reviewed scientific paper per day. For instance in 2017, over 600 refereed scientific papers were published based on VLT data.[8] The telescope's scientific discoveries include direct imaging of Beta Pictoris b, the first extrasolar planet so imaged,[9] tracking individual stars moving around the supermassive black hole at the centre of the Milky Way,[10] and observing the afterglow of the furthest known gamma-ray burst.[11]

In 2018, the VLT helped to perform the first successful test of Einstein's General Relativity on the motion of a star passing through the extreme gravitational field near the supermassive black hole, that is the gravitational redshift.[12] In fact, the observation has been conducted for over 26 years with the SINFONI and NACO adaptive optics instruments in the VLT while the new approach in 2018 also used the beam-combiner instrument GRAVITY.[13] The Galactic Centre team at the Max Planck Institute for Extraterrestrial Physics (MPE) had use the observation revealed the effects for the first time.[14]

Other discoveries with VLT's signature include the detection of carbon monoxide molecules in a galaxy located almost 11 billion light-years away for the first time, a feat that had remained elusive for 25 years. This has allowed astronomers to obtain the most precise measurement of the cosmic temperature at such a remote epoch.[15] Another important study was that of the violent flares from the supermassive black hole at the centre of the Milky Way. The VLT and APEX teamed up to reveal material being stretched out as it orbits in the intense gravity close to the central black hole.[16]

Using the VLT, astronomers have also estimated the age of extremely old stars in the NGC 6397 cluster. Based on stellar evolution models, two stars were found to be 13.4 ± 0.8 billion years old, that is, they are from the earliest era of star formation in the Universe.[17] They have also analysed the atmosphere around a super-Earth exoplanet for the first time using the VLT. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere.[18]

In all, of the top 10 discoveries done at ESO's observatories, seven made use of the VLT.[19]

Технички детаљи

Телескопи

Each Unit Telescope is a Ritchey-Chretien Cassegrain telescope with a 22-tonne 8.2 metre Zerodur primary mirror of 14.4 m focal length, and a 1.1 metre lightweight beryllium secondary mirror. A flat tertiary mirror diverts the light to one of two instruments at the f/15 Nasmyth foci on either side, with a system focal length of 120 m,[20] or the tertiary tilts aside to allow light through the primary mirror central hole to a third instrument at the Cassegrain focus. This allows switching between any of the three instruments within 5 minutes, to match observing conditions. Additional mirrors can send the light via tunnels to the central VLTI beam-combiners. The maximum field-of-view (at Nasmyth foci) is around 27 arcminutes diameter, slightly smaller than the full moon, though most instruments view a narrower field.

Each telescope has an alt-azimuth mount with total mass around 350 tonnes, and uses active optics with 150 supports on the back of the primary mirror to control the shape of the thin (177mm thick) mirror by computers.[21]

Види још

Референце

  1. ^ а б „Very Large Telescope” (на језику: (језик: енглески)). ЕСО. Приступљено 12. 01. 2013. „Веома велики телескоп. 
  2. ^ „FAQ VLT/Paranal”. www.eso.org. 
  3. ^ Trimble, V.; Ceja, J. A. (2010). „Productivity and impact of astronomical facilities: A recent sample” (PDF). Astronomische Nachrichten. 331 (3): 338. Bibcode:2010AN....331..338T. doi:10.1002/asna.200911339. 
  4. ^ „The Very Large Telescope — The World's Most Advanced Visible-light Astronomical Observatory handout”. ESO. Приступљено 2011-08-05. 
  5. ^ „Science with the VLT in the ELT Era” (PDF). Архивирано из оригинала (PDF) 2012-03-09. г. Приступљено 2013-06-17. 
  6. ^ Pasquini, Luca; et al. (2009). „ESPRESSO: A High Resolution Spectrograph for the Combined Coudé Focus of the VLT”. Science with the VLT in the ELT Era (PDF). Astrophysics and Space Science Proceedings. 9. стр. 395—399. Bibcode:2009ASSP....9..395P. CiteSeerX 10.1.1.218.6892Слободан приступ. ISBN 978-1-4020-9189-6. doi:10.1007/978-1-4020-9190-2_68. Архивирано из оригинала (PDF) 9. 6. 2015. г. 
  7. ^ „Orion Watches over Paranal”. Приступљено 2. 3. 2020. 
  8. ^ „ESO Publication Statistics” (PDF). Приступљено 2018-08-06. 
  9. ^ „Beta Pictoris planet finally imaged?”. ESO. 21. 11. 2008. Приступљено 2011-05-04. 
  10. ^ „Unprecedented 16-Year Long Study Tracks Stars Orbiting Milky Way Black Hole”. ESO. 10. 12. 2008. Приступљено 2011-05-04. 
  11. ^ „NASA's Swift Catches Farthest Ever Gamma-Ray Burst”. NASA. 19. 9. 2008. Приступљено 2011-05-04. 
  12. ^ „First Successful Test of Einstein's General Relativity Near Supermassive Black Hole - Culmination of 26 years of ESO observations of the heart of the Milky Way”. www.eso.org (на језику: енглески). Приступљено 2018-07-28. 
  13. ^ GRAVITY Collaboration; Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H. (2018-07-24). „Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole”. Astronomy & Astrophysics. 615 (15): L15. Bibcode:2018A&A...615L..15G. S2CID 118891445. arXiv:1807.09409Слободан приступ. doi:10.1051/0004-6361/201833718. 
  14. ^ „First Successful Test of Einstein's General Relativity Near Supermassive Black Hole”. www.mpe.mpg.de. Приступљено 2018-07-28. 
  15. ^ „A Molecular Thermometer for the Distant Universe”. ESO. 13. 5. 2008. Приступљено 2011-04-05. 
  16. ^ „Astronomers detect matter torn apart by black hole”. ESO. 18. 10. 2008. Приступљено 2011-04-05. 
  17. ^ „How Old is the Milky Way?”. ESO. 17. 8. 2004. Приступљено 2011-04-05. 
  18. ^ „VLT Captures First Direct Spectrum of an Exoplanet”. ESO. 13. 1. 2010. Приступљено 2011-04-05. 
  19. ^ „ESO Top 10 Astronomical Discoveries”. ESO. Приступљено 2011-08-05. 
  20. ^ „Requirements for Scientific Instruments of the VLT Unit Telescopes” (PDF). ESO. Приступљено 2018-01-18. 
  21. ^ Dierickx, P.; Enard, D.; Geyl, R.; Paseri, J.; Cayrel, M.; Béraud, P. „The VLT primary mirrors: mirror production and measured performance”. ESO. 

Спољашње везе