1 (број) — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
#1Lib1Ref
.
ознака: везе до вишезначних одредница
Ред 18: Ред 18:
|мертенс = 1
|мертенс = 1
}}
}}
'''1 (један)''' је [[број]], [[нумерал]] и име [[глиф]]а који представља тај број.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=1|url=https://mathworld.wolfram.com/1.html|access-date=2020-08-10|website=mathworld.wolfram.com|language=en}}</ref><ref>{{cite web |url=http://www.etymonline.com/index.php?term=one |title=Online Etymology Dictionary |website=etymonline.com |publisher=Douglas Harper}}</ref> То је природни број који се јавља после броја [[0 (број)|0]], а претходи броју [[2 (број)|2]].
'''1 (један)''' је [[број]], [[нумерал]] и име [[глиф]]а који представља тај број.<ref name=":0">{{Cite web|last=Weisstein|first=Eric W.|title=1|url=https://mathworld.wolfram.com/1.html|access-date=2020-08-10|website=mathworld.wolfram.com|language=en}}</ref><ref>{{cite web |url=http://www.etymonline.com/index.php?term=one |title=Online Etymology Dictionary |website=etymonline.com |publisher=Douglas Harper}}</ref> То је природни број који се јавља после броја [[0 (број)|0]], а претходи броју [[2 (број)|2]].


Стари Хелени један нису сматрали бројем. То је за њих била монада, једнота, нераздељива целина. Сматрали су да се јединица не може раздељивати без губљења својства једне целине, једноте. Тек је два било мноштво, те је представљало број.
Стари Хелени један нису сматрали бројем. То је за њих била монада, једнота, нераздељива целина. Сматрали су да се јединица не може раздељивати без губљења својства једне целине, једноте. Тек је два било мноштво, те је представљало број.
Ред 25: Ред 25:


Број 1 не може бити основа позиционог бројног система јер су сви степени броја 1 и даље 1.
Број 1 не може бити основа позиционог бројног система јер су сви степени броја 1 и даље 1.

== Као број ==
{{rut}}
One, sometimes referred to as '''unity''',<ref>Skoog, Douglas. ''Principles of Instrumental Analysis''. Brooks/Cole, 2007, p. 758.</ref><ref name=":0" /> is the first non-zero [[natural number]]. It is thus the [[integer]] after [[zero]].

Any number multiplied by one remains that number, as one is the [[Identity element|identity]] for [[multiplication]]. As a result, 1 is its own [[factorial]], its own [[Square (algebra)|square]] and [[square root]], its own [[Cube (algebra)|cube]] and [[cube root]], and so on. One is also the result of the [[empty product]], as any number multiplied by one is itself. It is also the only natural number that is neither [[composite number|composite]] nor [[prime number|prime]] with respect to [[Division (mathematics)|division]], but is instead considered a [[unit (ring theory)|unit]] (meaning of [[ring theory]]).


== Еволуција развоја графичког исписа знака ==
== Еволуција развоја графичког исписа знака ==
[[Датотека:Evolution1glyph.png]]
[[Датотека:Evolution1glyph.png]]


Графички облик који се данас користи за испис бројке 1, усправна линија, често са малим серифом на врху и понекад са кратком линијом у подножју, вуче корене од Брахмана у Индији који су писали 1 са једном положеном линијом. У кинеском језику и данас се тако пише број 1. [[Гупте]] су исписивали ту црту закривљено, а Нагари су понекад додавали мали кружић са леве стране. Овај знак, који мало личи на положену бројку 9 се данас може наћи у Гуџарати и Пенџаби писму. У непалском писмо је црта заокренута надесно али са истим кружићем на врху. Овај кружић је постао цртица на врху усправне линије, а доња линија која се понекад исписује је потекла од исписа римске бројке -{I}-. У неким језицима (немачки) се мала коса црта претвара у велику хоризонталну, што понекад може довести до замене са бројком 7 код других народа. Тамо где се 1 пише са великом хоризонталном цртом 7 се пише са још једном хоризонталном линијом преко вертикалне.
Графички облик који се данас користи за испис бројке 1, усправна линија, често са малим серифом на врху и понекад са кратком линијом у подножју, вуче корене од Брахмана у Индији који су писали 1 са једном положеном линијом. У кинеском језику и данас се тако пише број 1.<ref>{{Cite web |url=http://www.scit.wlv.ac.uk/university/scit/modules/mm2217/han.htm |title=Hindu–Arabic Numerals |access-date=2005-12-13 |archive-url=https://web.archive.org/web/20051227042328/http://www.scit.wlv.ac.uk/university/scit/modules/mm2217/han.htm |archive-date=2005-12-27 |url-status=dead }}</ref><ref name=":1">{{cite web |url=http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Al-Kindi.html |title=Abu Yusuf Yaqub ibn Ishaq al-Sabbah Al-Kindi |access-date=2007-01-12 |url-status=dead |archive-url=https://web.archive.org/web/20071026091801/http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Al-Kindi.html |archive-date=2007-10-26 }}</ref> [[Гупте]] су исписивали ту црту закривљено, а Нагари су понекад додавали мали кружић са леве стране. Овај знак, који мало личи на положену бројку 9 се данас може наћи у Гуџарати и Пенџаби писму. У непалском писмо је црта заокренута надесно али са истим кружићем на врху. Овај кружић је постао цртица на врху усправне линије, а доња линија која се понекад исписује је потекла од исписа римске бројке -{I}-. У неким језицима (немачки) се мала коса црта претвара у велику хоризонталну, што понекад може довести до замене са бројком 7 код других народа. Тамо где се 1 пише са великом хоризонталном цртом 7 се пише са још једном хоризонталном линијом преко вертикалне.


У фонтовима са словима и цифрама, 1 је типично исте висине као мало слово X, на пример, [[Датотека:TextFigs148.svg|62п]].
У фонтовима са словима и цифрама, 1 је типично исте висине као мало слово X, на пример, [[Датотека:TextFigs148.svg|62п]].
Ред 44: Ред 50:
:<math>1=0.999\dots=0.\dot{9}</math>
:<math>1=0.999\dots=0.\dot{9}</math>
где тачка изнад 9 означава да се 9 понавља бесконачан број пута.
где тачка изнад 9 означава да се 9 понавља бесконачан број пута.

===Definitions===
Mathematically, 1 is:
*in [[arithmetic]] ([[algebra]]) and [[calculus]], the [[natural number]] that follows [[0 (number)|0]] and the multiplicative [[identity element]] of the [[integer]]s, [[real number]]s and [[complex number]]s;
*more generally, in [[algebra]], the '''multiplicative identity''' (also called ''unity''), usually of a [[group (mathematics)|group]] or a [[ring (mathematics)|ring]].

Formalizations of the natural numbers have their own representations of 1. In the [[Peano axioms]], 1 is the [[Successor function|successor]] of 0. In ''[[Principia Mathematica]]'', it is defined as the set of all [[singleton (mathematics)|singletons]] (sets with one element), and in the [[Von Neumann cardinal assignment]] of natural numbers, it is defined as the [[Set (mathematics)|set]] {0}.

In a multiplicative [[group (mathematics)|group]] or [[monoid]], the [[identity element]] is sometimes denoted 1, but ''e'' (from the German ''Einheit'', "unity") is also traditional. However, 1 is especially common for the multiplicative identity of a ring, i.e., when an addition and 0 are also present. When such a ring has [[Characteristic (algebra)|characteristic]] ''n'' not equal to 0, the element called 1 has the property that {{nowrap|''n''1 {{=}} 1''n'' {{=}} 0}} (where this 0 is the additive identity of the ring). Important examples are [[finite field]]s.

By definition, 1 is the [[magnitude (mathematics)|magnitude]], [[absolute value]], or [[Norm (mathematics)|norm]] of a [[unit complex number]], [[unit vector]], and a [[identity matrix|unit matrix]] (more usually called an identity matrix). Note that the term ''unit matrix'' is sometimes used to mean something [[Matrix of ones|quite different]].

By definition, 1 is the [[probability]] of an event that is absolutely or [[almost certain]] to occur.

In [[category theory]], 1 is sometimes used to denote the [[terminal object]] of a [[category (mathematics)|category]].

In [[number theory]], 1 is the value of [[Legendre's constant]], which was introduced in 1808 by [[Adrien-Marie Legendre]] in expressing the [[Asymptotic analysis|asymptotic behavior]] of the [[prime-counting function]]. Legendre's constant was originally conjectured to be approximately 1.08366, but was proven to equal exactly 1 in 1899.

===Properties===
[[Tally mark|Tallying]] is often referred to as "base 1", since only one mark&nbsp;– the tally itself&nbsp;– is needed. This is more formally referred to as a [[unary numeral system]]. Unlike [[base&nbsp;2]] or [[base&nbsp;10]], this is not a [[positional notation]].

Since the base 1 exponential function (1<sup>''x''</sup>) always equals 1, its [[inverse function|inverse]] does not exist (which would be called the [[logarithm]] base&nbsp;1 if it did exist).

There are two ways to write the real number 1 as a [[recurring decimal]]: as 1.000..., and as [[0.999...]]. 1 is the first [[figurate number]] of every kind, such as [[triangular number]], [[pentagonal number]] and [[centered hexagonal number]], to name just a few.

In many mathematical and engineering problems, numeric values are typically ''normalized'' to fall within the [[unit interval]] from 0 to 1, where 1 usually represents the maximum possible value in the range of parameters. Likewise, [[vector space|vectors]] are often normalized into [[unit vector]]s (i.e., vectors of magnitude one), because these often have more desirable properties. Functions, too, are often normalized by the condition that they have [[integral]] one, maximum value one, or [[square integrable|square integral]] one, depending on the application.

Because of the multiplicative identity, if ''f''(''x'') is a [[multiplicative function]], then ''f''(1) must be equal to 1.

It is also the first and second number in the [[Fibonacci number|Fibonacci]] sequence (0 being the zeroth) and is the first number in many other [[Sequence|mathematical sequences]].

The definition of a [[field (mathematics)|field]] requires that 1 must not be equal to [[zero|0]]. Thus, there are no fields of characteristic 1. Nevertheless, abstract algebra can consider the [[field with one element]], which is not a singleton and is not a set at all.

1 is the most common leading digit in many sets of data, a consequence of [[Benford's law]].<ref name=BergerHill2011>Arno Berger and Theodore P Hill, [http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1074&context=rgp_rsr Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem, 2011]</ref><ref>{{cite web | url=http://mathworld.wolfram.com/BenfordsLaw.html|author = Weisstein, Eric W.| title=Benford's Law | website = MathWorld, A Wolfram web resource |access-date = 7 June 2015}}</ref>

1 is the only known [[Tamagawa number]] for a simply connected algebraic group over a number field.<ref>{{Springer|id=T/t092060|title=Tamagawa number}}</ref><ref>{{citation|last= Kottwitz|first= Robert E. |title=Tamagawa numbers |journal= Ann. of Math. |series= 2 |volume= 127 |year=1988|issue= 3|pages=629–646|doi=10.2307/2007007|jstor=2007007|publisher=Annals of Mathematics|mr= 0942522}}</ref>

The [[generating function]] that has all coefficients 1 is given by

<math> \frac{1}{1-x} = 1+x+x^2+x^3+ \ldots </math>

This power series converges and has finite value [[if and only if]] <math> |x| < 1 </math>.<!--Probably not needed, really should look at convergence theorem as there are other series that converge iff <math> |x| < 1 </math> -->

=== Table of basic calculations ===
{|class="wikitable" style="text-align: center; background: white"
|-
! style="width:105px;"|[[Multiplication]]
!1
!2
!3
!4
!5
!6
!7
!8
!9
!10
! style="width:5px;"|
!11

!12
!13
!14
!15
!16
!17
!18
!19
!20
! style="width:5px;"|
!21
!22
!23
!24
!25
! style="width:5px;"|
!50
!100
!1000
|-
|'''1 × ''x'''''
|'''1'''
|[[2 (number)|2]]
|[[3 (number)|3]]
|[[4 (number)|4]]
|[[5 (number)|5]]
|[[6 (number)|6]]
|[[7 (number)|7]]
|[[8 (number)|8]]
|[[9 (number)|9]]
|[[10 (number)|10]]
!
|[[11 (number)|11]]
|[[12 (number)|12]]
|[[13 (number)|13]]
|[[14 (number)|14]]
|[[15 (number)|15]]
|[[16 (number)|16]]
|[[17 (number)|17]]
|[[18 (number)|18]]
|[[19 (number)|19]]
|[[20 (number)|20]]
!
|[[21 (number)|21]]
|[[22 (number)|22]]
|[[23 (number)|23]]
|[[24 (number)|24]]
|[[25 (number)|25]]
!
|[[50 (number)|50]]
|[[100 (number)|100]]
|[[1000 (number)|1000]]
|}

{|class="wikitable" style="text-align: center; background: white"
|-
! style="width:105px;"|[[Division (mathematics)|Division]]
!1
!2
!3
!4
!5
!6
!7
!8
!9
!10
! style="width:5px;"|
!11
!12
!13
!14
!15
|-
|'''1 ÷ ''x'''''
|'''1'''
|0.5
|0.{{overline|3}}
|0.25
|0.2
|0.1{{overline|6}}
|0.{{overline|142857}}
|0.125
|0.{{overline|1}}
|0.1
!
|0.{{overline|09}}
|0.08{{overline|3}}
|0.{{overline|076923}}
|0.0{{overline|714285}}
|0.0{{overline|6}}
|-
|'''''x'' ÷ 1'''
|'''1'''
|2
|3
|4
|5
|6
|7
|8
|9
|10
!
|11
|12
|13
|14
|15
|}

{|class="wikitable" style="text-align: center; background: white"
|-
! style="width:105px;"|[[Exponentiation]]
!1
!2
!3
!4
!5
!6
!7
!8
!9
!10
! style="width:5px;"|
!11
!12
!13
!14
!15
!16
!17
!18
!19
!20
|-
|'''1{{sup|''x''}}'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
!
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|'''1'''
|-
|'''''x''{{sup|1}}'''
|'''1'''
|2
|3
|4
|5
|6
|7
|8
|9
|10
!
|11
|12
|13
|14
|15
|16
|17
|18
|19
|20
|}

== In technology ==
[[File:U+2673 DejaVu Sans.svg|50px|right|alt=Chasing-arrow triangle with numeral one within|1 as a resin identification code, used in recycling]]
* The [[resin identification code]] used in recycling to identify [[polyethylene terephthalate]].<ref>{{cite web |url=http://www.americanchemistry.com/s_plastics/bin.asp?CID=1102&DID=4645&DOC=FILE.PDF |title=Plastic Packaging Resins |publisher=American Chemistry Council |url-status=dead |archive-url=https://web.archive.org/web/20110721103005/http://www.americanchemistry.com/s_plastics/bin.asp?CID=1102&DID=4645&DOC=FILE.PDF |archive-date=2011-07-21 }}</ref>
*The [[International Telecommunication Union|ITU]] country code for the [[North American Numbering Plan]] area, which includes the United States, Canada, and parts of the Caribbean.
*A [[binary code]] is a sequence of 1 and [[0 (number)|0]] that is used in [[computer]]s for representing any kind of [[data]].
*In many physical devices, 1 represents the value for "on", which means that electricity is flowing.<ref name=Woodford>{{citation |first=Chris |last=Woodford |url=https://books.google.com/books?id=My7Zr0aP2L8C&pg=PA9 |title=Digital Technology |date=2006 |publisher=Evans Brothers |isbn=978-0-237-52725-9 |page=9}}</ref><ref name=Godbole>{{citation |first=Achyut S. |last=Godbole |url=https://books.google.com/books?id=SN_46YHs27MC&pg=PA34 |title=Data Comms & Networks |date=1 September 2002 |publisher=Tata McGraw-Hill Education |isbn=978-1-259-08223-8 |page=34}}</ref>
*The numerical value of [[Boolean data type|true]] in many programming languages.
*1 is the [[ASCII]] code of "[[Start-of-Header|Start of Header]]".


== У хемији ==
== У хемији ==
Један је редни број и [[атомски број]] хемијског елемента [[водоник]]а.
Један је редни број и [[атомски број]] хемијског елемента [[водоник]]а.

== In philosophy ==
In the philosophy of [[Plotinus]] (and that of other [[neoplatonist]]s), [[Plotinus#The One|The One]] is the ultimate reality and source of all existence.<ref>{{Cite book|title=The Essentials of Christian Thought: Seeing Reality through the Biblical Story|last=Olson|first=Roger|year=2017|isbn=9780310521563|location=Zondervan Academic}}</ref> [[Philo#Numbers|Philo of Alexandria]] (20&nbsp;BC&nbsp;– AD&nbsp;50) regarded the number one as God's number, and the basis for all numbers ("De Allegoriis Legum," ii.12 [i.66]).

The Neopythagorean philosopher [[Nicomachus|Nicomachus of Gerasa]] affirmed that one is not a number, but the source of number. He also believed the [[2 (number)|number two]] is the embodiment of the origin of [[Other (philosophy)|otherness]]. His [[number theory]] was recovered by [[Boethius]] in his Latin translation of Nicomachus's treatise ''[[Introduction to Arithmetic]]''.<ref>{{cite journal|url=https://www.cambridge.org/core/journals/british-journal-for-the-history-of-science/article/abs/from-abacus-to-algorism-theory-and-practice-in-medieval-arithmetic/7DFF144C90C127E715CA40083254E601#access-block|title=From Abacus to Algorism: Theory and Practice in Medieval Arithmetic|journal=The British Journal for the History of Science|volume =10 |issue= 2 |date=July 1, 1977 |page=Abstract|doi=10.1017/S0007087400015375|publisher=Cambridge University PRess|author= British Society for the History of Science|s2cid=145065082|access-date=May 16, 2021}}</ref>


== Види још ==
== Види још ==
Ред 54: Ред 316:
== Референце ==
== Референце ==
{{reflist}}
{{reflist}}

== Литература ==
{{refbegin|30em}}
* {{cite web |title = Indian numerals |author = John J O'Connor and Edmund F Robertson |publisher = The MacTutor History of Mathematics archive |url = http://www-gap.dcs.st-and.ac.uk/%7Ehistory/HistTopics/Indian_numerals.html |date = November 2000 |access-date = 2007-07-24 |url-status = dead |archive-url = https://web.archive.org/web/20150706140353/http://www-gap.dcs.st-and.ac.uk/%7Ehistory/HistTopics/Indian_numerals.html |archive-date = 2015-07-06 }}
* {{citation |last=Ifrah |first=Georges |title=The Universal History of Numbers: From Prehistory to the Invention of the Computer |url=https://books.google.com/books?id=CBUqngEACAAJ |year=1998 |publisher=Harvill |orig-year=first published in French in 1981 |isbn=978-1-860-46324-2}}
* {{citation |last=Menninger |first=Karl |title=Number Words and Number Symbols: A Cultural History of Numbers |url=https://books.google.com/books?id=RXbCAgAAQBAJ |year=2013 |publisher=Courier Corporation |orig-year=first published by MIT Press in 1969 |translator=Paul Broneer |isbn=978-0-486-31977-3}}
* {{citation |last=Plofker |first=Kim |author-link=Kim Plofker |title=Mathematics in India |title-link= Mathematics in India (book) |publisher=Princeton University Press |year=2009 |isbn=978-0-691-12067-6}}
* {{citation |last1=Sarasvati |first1=Svami Satya Prakash |last2=Jyotishmati |first2=Usha |title=The Bakhshali Manuscript: An Ancient Treatise of Indian Arithmetic |publisher=Dr. Ratna Kumari Svadhyaya Sansthan |location=Allahabad |year=1979 |url=http://cincinnatitemple.com/articles/Bakhshali-Manuscript.pdf |access-date=2016-01-19 |archive-url=https://web.archive.org/web/20140620160848/http://www.cincinnatitemple.com/articles/Bakhshali-Manuscript.pdf |archive-date=2014-06-20 |url-status=dead }}
* {{citation |last1=Smith |first1=D. E. |author-link1=D. E. Smith |author-link2=Louis Charles Karpinski |first2=L. C. |last2=Karpinski |title=The Hindu–Arabic Numerals |publisher=Dover |year= 2013 |orig-year=first published in Boston, 1911 |isbn=978-0486155111 |url=http://www.gutenberg.org/ebooks/22599#download}}
* [https://web.archive.org/web/20120321111930/http://sciences.aum.edu/~sbrown/Hindu%20Arabic%20and%20Chinese.pdf "The Development of Hindu–Arabic and Traditional Chinese Arithmetic" by Professor Lam Lay Yong, member of the International Academy of the History of Science]
* [https://web.archive.org/web/20150706140353/http://www-gap.dcs.st-and.ac.uk/%7Ehistory/HistTopics/Indian_numerals.html Indian numerals by J J O'Connor and E F Robertson]
* [https://web.archive.org/web/20160429163458/http://www-gap.dcs.st-and.ac.uk/%7Ehistory/HistTopics/Arabic_numerals.html Arabic numerals by J J O'Connor and E F Robertson]
* [https://web.archive.org/web/20051227042328/http://www.scit.wlv.ac.uk/university/scit/modules/mm2217/han.htm Hindu–Arabic numerals]
* [http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Arabic_numerals.html The Arabic numeral system by: J J O'Connor and E F Robertson]
* {{Citation
| last1=Filliozat
| first1=Pierre-Sylvain
| year=2004
| chapter=Ancient Sanskrit Mathematics: An Oral Tradition and a Written Literature
| editor1-last=Chemla
| editor1-first=Karine | editor1-link = Karine Chemla
| editor2-last=Cohen
| editor2-first=Robert S.
| editor3-last=Renn
| editor3-first=Jürgen
|display-editors = 3 | editor4-last=Gavroglu
| editor4-first=Kostas
| title=History of Science, History of Text (Boston Series in the Philosophy of Science)
| publisher=Dordrecht: Springer Netherlands, 254 pages
| pages=137–157
| doi=10.1007/1-4020-2321-9_7
| isbn=978-1-4020-2320-0
| postscript = .
}}
* {{cite book|last=Kumar|first=Raj|title=Essays on Ancient India|url=https://books.google.com/books?id=qvnjXOCjv7EC&pg=PA196|year=2003|publisher=Discovery Publishing House|isbn=978-81-7141-682-0|pages=196–}}
* {{Cite book|last=Ifrah|first=Georges|url=https://www.worldcat.org/oclc/42291138|title=The universal history of numbers : from prehistory to the invention of the computer|date=2000 |publisher=Wiley|others=David Bellos|isbn=0-471-37568-3|location=New York|oclc=42291138}}
* {{cite book|title=The Mathematical Olympiad Handbook: An Introduction to Problem Solving Based on the First 32 British Mathematical Olympiads 1965–1996|first=Anthony|last=Gardiner|author-link=Tony Gardiner|publisher=Oxford University Press|year=1997|isbn=978-0-19-850105-3|page=[https://archive.org/details/mathematicalolym1997gard/page/26 26]|url=https://archive.org/details/mathematicalolym1997gard|url-access=registration}}
* {{cite book|title=Dyslexia, Dyscalculia and Mathematics: A practical guide|first=Anne|last=Henderson|edition=2nd|publisher=Routledge|year=2014|isbn=978-1-136-63662-2|page=62|url=https://books.google.com/books?id=uy-yGVRUilMC&pg=PA62}}
* {{cite book|title=The Giant Golden Book of Mathematics: Exploring the World of Numbers and Space|url=https://archive.org/details/giantgoldenbooko00adle|url-access=registration|first=Irving|last=Adler|author-link=Irving Adler|publisher=Golden Press|year=1960|page=[https://archive.org/details/giantgoldenbooko00adle/page/16 16]|oclc=6975809}}
* {{cite book | url = https://archive.org/details/barronsmathworkb00leff_0 | url-access = registration | page = [https://archive.org/details/barronsmathworkb00leff_0/page/360 360] | title = Math Workbook for the SAT I | first = Lawrence S. | last = Leff | publisher = Barron's Educational Series | year = 2000 | isbn = 978-0-7641-0768-9}}
* {{cite book | last1=Dudley | first1=Underwood | author-link=Underwood Dudley | title=Elementary number theory | publisher=W.H. Freeman and Co. | edition=2nd | isbn=978-0-7167-0076-0 | year=1978 | contribution=Section 2: Unique factorization | page=[https://archive.org/details/elementarynumber00dudl_0/page/10 10] | contribution-url=https://books.google.com/books?id=tr7SzBTsk1UC&pg=PA10 | url=https://archive.org/details/elementarynumber00dudl_0/page/10 }}
* {{cite book | last = Sierpiński | first = Wacław | author-link = Wacław Sierpiński | title = Elementary Theory of Numbers | edition = 2nd | volume = 31 | series = North-Holland Mathematical Library | publisher = Elsevier | year = 1988 | isbn = 978-0-08-096019-7 | page = 113 | url = https://books.google.com/books?id=ktCZ2MvgN3MC&pg=PA113 }}
* {{Citation | last1=Ono | first1=Takashi | author-link=Takashi Ono (mathematician) | title=On the Tamagawa number of algebraic tori | jstor=1970502 |mr=0156851 | year=1963 | journal=[[Annals of Mathematics]] |series=Second Series | issn=0003-486X | volume=78 | issue=1 | pages=47–73 | doi=10.2307/1970502}}
*{{Citation | last1=Ono | first1=Takashi | title=On the relative theory of Tamagawa numbers | jstor=1970563 |mr=0177991 | year=1965 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=82 | issue=1 | pages=88–111 | doi=10.2307/1970563}}
* {{Citation | last1=Tamagawa | first1=Tsuneo | title=Algebraic Groups and Discontinuous Subgroups | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=Proc. Sympos. Pure Math. |mr=0212025 | year=1966 | volume=IX | chapter=Adèles | pages=113–121}}
* {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Exp. No. 186, Adèles et groupes algébriques | url=http://www.numdam.org/item?id=SB_1958-1960__5__249_0 | series=Séminaire Bourbaki | year=1959 | volume=5 | pages=249–257}}
* {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Adeles and algebraic groups | orig-year=1961 | url=https://books.google.com/books?id=vQvvAAAAMAAJ | publisher=Birkhäuser Boston | location=Boston, MA | series=Progress in Mathematics | isbn=978-3-7643-3092-7 |mr=670072 | year=1982 | volume=23}}
* {{Citation | last=Lurie | first=Jacob | author-link=Jacob Lurie | title=Tamagawa Numbers via Nonabelian Poincaré Duality | year=2014 | url=http://www.math.harvard.edu/~lurie/282y.html }}
* Aravind Asok, Brent Doran and Frances Kirwan, [https://arxiv.org/abs/0801.4733 "Yang-Mills theory and Tamagawa Numbers: the fascination of unexpected links in mathematics"], February 22, 2013
* J. Lurie, [https://www.cornell.edu/video/jacob-lurie-the-siegel-mass-formula The Siegel Mass Formula, Tamagawa Numbers, and Nonabelian Poincaré Duality] posted June 8, 2012.
* {{Cite journal
|author1=Raul Isea
| title =How valid are the reported cases of people infected with Covid-19 in the worlds? (an example of Benford's Law)
| journal = International Journal of Coronavirus
| volume = 1
| issue = 2
| year = 2020
| pages = 53 | doi =10.14302/issn.2692-1537.ijcv-20-3376
| url = https://openaccesspub.org/ijcv/article/1366
| doi-access = free
}}
* {{Cite journal
|author1=Arno Berger |author2=Theodore P. Hill
| title =What is...Benford's law?
| journal = Notices of the AMS
| volume = 64
| issue = 2
| year = 2017
| pages = 132–134
| url = https://www.ams.org/publications/journals/notices/201702/rnoti-p132.pdf
| doi=10.1090/noti1477
| doi-access = free
}}
* {{Cite book
|author1=Arno Berger |author2=Theodore P. Hill
| title = An Introduction to Benford's Law
| publisher = Princeton University Press
| year = 2015
| isbn = 978-0-691-16306-2
}}
* Alex Ely Kossovsky. ''[http://www.worldscientific.com/worldscibooks/10.1142/9089 Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications]'', 2014, World Scientific Publishing. {{ISBN|978-981-4583-68-8}}.
* {{cite web|url=http://mathworld.wolfram.com/BenfordsLaw.html |title=Benford's Law – Wolfram MathWorld |publisher=Mathworld.wolfram.com |date=14 June 2012 |access-date=2012-06-26}}
* {{Cite journal
| author = Alessandro Gambini
| title = Probability of digits by dividing random numbers: A ψ and ζ functions approach
| journal = Expositiones Mathematicae
| volume = 30
| year = 2012
| pages = 223–238
| doi = 10.1016/j.exmath.2012.03.001
| last2 = Hoelzl
| first2 = E
| last3 = Kirchler
| first3 = E
| display-authors = 1
| issue = 4
| url = http://amsacta.unibo.it/3517/1/postprint_ExMath.pdf
| doi-access = free
}}
* {{Cite journal
| author = Sehity
| title = Price developments after a nominal shock: Benford's law and psychological pricing after the euro introduction
| journal = International Journal of Research in Marketing
| volume = 22
| year = 2005
| pages = 471–480
| doi = 10.1016/j.ijresmar.2005.09.002
| last2 = Hoelzl
| first2 = Erik
| last3 = Kirchler
| first3 = Erich
| author3-link=Erich Kirchler
| issue = 4
}}
* {{Cite book
| year = 2011
| title = Scatter and regularity implies Benford's law...and more
| journal = Zenil: Randomness Through Computation: Some Answers, More Questions
| isbn=978-9814327756
| pages = 58–69
| doi = 10.1142/9789814327756_0004
|author1 = Nicolas Gauvrit|author-link1 = Nicolas Gauvrit|author2 = Jean-Paul Delahaye| s2cid = 88518074
| author-link2 = Jean-Paul Delahaye
| bibcode = 2009arXiv0910.1359G
| arxiv = 0910.1359
}}
* {{Cite journal
| author = Bernhard Rauch
| author2 = Max Göttsche
| author3 = Gernot Brähler
| author4 = Stefan Engel
| s2cid = 155072460
|date=August 2011
| title = Fact and Fiction in EU-Governmental Economic Data
| journal = [[German Economic Review]]
| volume = 12
| issue = 3
| pages = 243–255
| doi = 10.1111/j.1468-0475.2011.00542.x
}}
* {{Cite journal
|author1=Wendy Cho |author2=Brian Gaines
|s2cid=7938920
|date=August 2007
| title = Breaking the (Benford) Law: statistical fraud detection in campaign finance
| journal = [[The American Statistician]]
| volume = 61
| issue = 3
| pages = 218–223
| doi = 10.1198/000313007X223496
}}
* {{cite journal | title = The Law of Harmony in Statistics: An Investigation of the Metrical Interdependence of Social Phenomena. by L. V. Furlan | last1 = Geiringer | first1 = Hilda | journal = Journal of the American Statistical Association | year = 1948 | volume = 43 | pages = 325–328 | jstor = 2280379 | doi = 10.2307/2280379 | last2 = Furlan | first2 = L. V. | issue = 242 | author-link1 = Hilda Geiringer}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|1 (number)}}
{{Commonscat|1 (number)}}
* [https://web.archive.org/web/20140201161542/http://numdic.com/1 The Number 1]

* [http://www.positiveintegers.org/1 The Positive Integer 1]
{{клица-математика}}
* [http://primes.utm.edu/curios/page.php/1.html Prime curiosities: 1]


{{нормативна контрола}}
{{нормативна контрола}}

Верзија на датум 16. јул 2022. у 21:04

1
−2 · −1 · 0 · 1 · 2 · 3 · 4
Кардинални бројједан
Редни бројпрви
Делиоци1
Факторизација/
РимскиI
Бинарно1
Октално1
Дуодецимално1
Хексадецимално1
φ(1)0
σ(1)1
π(1)0
μ(1)1
M(1)1

1 (један) је број, нумерал и име глифа који представља тај број.[1][2] То је природни број који се јавља после броја 0, а претходи броју 2.

Стари Хелени један нису сматрали бројем. То је за њих била монада, једнота, нераздељива целина. Сматрали су да се јединица не може раздељивати без губљења својства једне целине, једноте. Тек је два било мноштво, те је представљало број.

Број један се не сматра ни простим ни сложеним бројем, мада постоје мишљења да би га требало сматрати простим бројем. У 20. веку дефинитивно је уклоњен из тог списка, а последњи математичар који га јесте сматрао простим је Анри Лебеск (1875—1941).

Број 1 не може бити основа позиционог бројног система јер су сви степени броја 1 и даље 1.

Као број

One, sometimes referred to as unity,[3][1] is the first non-zero natural number. It is thus the integer after zero.

Any number multiplied by one remains that number, as one is the identity for multiplication. As a result, 1 is its own factorial, its own square and square root, its own cube and cube root, and so on. One is also the result of the empty product, as any number multiplied by one is itself. It is also the only natural number that is neither composite nor prime with respect to division, but is instead considered a unit (meaning of ring theory).

Еволуција развоја графичког исписа знака

Графички облик који се данас користи за испис бројке 1, усправна линија, често са малим серифом на врху и понекад са кратком линијом у подножју, вуче корене од Брахмана у Индији који су писали 1 са једном положеном линијом. У кинеском језику и данас се тако пише број 1.[4][5] Гупте су исписивали ту црту закривљено, а Нагари су понекад додавали мали кружић са леве стране. Овај знак, који мало личи на положену бројку 9 се данас може наћи у Гуџарати и Пенџаби писму. У непалском писмо је црта заокренута надесно али са истим кружићем на врху. Овај кружић је постао цртица на врху усправне линије, а доња линија која се понекад исписује је потекла од исписа римске бројке I. У неким језицима (немачки) се мала коса црта претвара у велику хоризонталну, што понекад може довести до замене са бројком 7 код других народа. Тамо где се 1 пише са великом хоризонталном цртом 7 се пише са још једном хоризонталном линијом преко вертикалне.

У фонтовима са словима и цифрама, 1 је типично исте висине као мало слово X, на пример, .

У математици

За сваки број x важи:

x·1 = 1·x = x
x/1 = x
x1 = x, 1x = 1
x0 = 1, ако је x различито од 0
x↑↑1 = x и 1↑↑x = 1

У десетичном бројном систему важи следећа тврдња:

где тачка изнад 9 означава да се 9 понавља бесконачан број пута.

Definitions

Mathematically, 1 is:

Formalizations of the natural numbers have their own representations of 1. In the Peano axioms, 1 is the successor of 0. In Principia Mathematica, it is defined as the set of all singletons (sets with one element), and in the Von Neumann cardinal assignment of natural numbers, it is defined as the set {0}.

In a multiplicative group or monoid, the identity element is sometimes denoted 1, but e (from the German Einheit, "unity") is also traditional. However, 1 is especially common for the multiplicative identity of a ring, i.e., when an addition and 0 are also present. When such a ring has characteristic n not equal to 0, the element called 1 has the property that n1 = 1n = 0 (where this 0 is the additive identity of the ring). Important examples are finite fields.

By definition, 1 is the magnitude, absolute value, or norm of a unit complex number, unit vector, and a unit matrix (more usually called an identity matrix). Note that the term unit matrix is sometimes used to mean something quite different.

By definition, 1 is the probability of an event that is absolutely or almost certain to occur.

In category theory, 1 is sometimes used to denote the terminal object of a category.

In number theory, 1 is the value of Legendre's constant, which was introduced in 1808 by Adrien-Marie Legendre in expressing the asymptotic behavior of the prime-counting function. Legendre's constant was originally conjectured to be approximately 1.08366, but was proven to equal exactly 1 in 1899.

Properties

Tallying is often referred to as "base 1", since only one mark – the tally itself – is needed. This is more formally referred to as a unary numeral system. Unlike base 2 or base 10, this is not a positional notation.

Since the base 1 exponential function (1x) always equals 1, its inverse does not exist (which would be called the logarithm base 1 if it did exist).

There are two ways to write the real number 1 as a recurring decimal: as 1.000..., and as 0.999.... 1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few.

In many mathematical and engineering problems, numeric values are typically normalized to fall within the unit interval from 0 to 1, where 1 usually represents the maximum possible value in the range of parameters. Likewise, vectors are often normalized into unit vectors (i.e., vectors of magnitude one), because these often have more desirable properties. Functions, too, are often normalized by the condition that they have integral one, maximum value one, or square integral one, depending on the application.

Because of the multiplicative identity, if f(x) is a multiplicative function, then f(1) must be equal to 1.

It is also the first and second number in the Fibonacci sequence (0 being the zeroth) and is the first number in many other mathematical sequences.

The definition of a field requires that 1 must not be equal to 0. Thus, there are no fields of characteristic 1. Nevertheless, abstract algebra can consider the field with one element, which is not a singleton and is not a set at all.

1 is the most common leading digit in many sets of data, a consequence of Benford's law.[6][7]

1 is the only known Tamagawa number for a simply connected algebraic group over a number field.[8][9]

The generating function that has all coefficients 1 is given by

This power series converges and has finite value if and only if .

Table of basic calculations

Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 100 1000
1 × x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 100 1000
Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 ÷ x 1 0.5 0.3 0.25 0.2 0.16 0.142857 0.125 0.1 0.1 0.09 0.083 0.076923 0.0714285 0.06
x ÷ 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Exponentiation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In technology

Chasing-arrow triangle with numeral one within
1 as a resin identification code, used in recycling

У хемији

Један је редни број и атомски број хемијског елемента водоника.

In philosophy

In the philosophy of Plotinus (and that of other neoplatonists), The One is the ultimate reality and source of all existence.[13] Philo of Alexandria (20 BC – AD 50) regarded the number one as God's number, and the basis for all numbers ("De Allegoriis Legum," ii.12 [i.66]).

The Neopythagorean philosopher Nicomachus of Gerasa affirmed that one is not a number, but the source of number. He also believed the number two is the embodiment of the origin of otherness. His number theory was recovered by Boethius in his Latin translation of Nicomachus's treatise Introduction to Arithmetic.[14]

Види још

Референце

  1. ^ а б Weisstein, Eric W. „1”. mathworld.wolfram.com (на језику: енглески). Приступљено 2020-08-10. 
  2. ^ „Online Etymology Dictionary”. etymonline.com. Douglas Harper. 
  3. ^ Skoog, Douglas. Principles of Instrumental Analysis. Brooks/Cole, 2007, p. 758.
  4. ^ „Hindu–Arabic Numerals”. Архивирано из оригинала 2005-12-27. г. Приступљено 2005-12-13. 
  5. ^ „Abu Yusuf Yaqub ibn Ishaq al-Sabbah Al-Kindi”. Архивирано из оригинала 2007-10-26. г. Приступљено 2007-01-12. 
  6. ^ Arno Berger and Theodore P Hill, Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem, 2011
  7. ^ Weisstein, Eric W. „Benford's Law”. MathWorld, A Wolfram web resource. Приступљено 7. 6. 2015. 
  8. ^ Hazewinkel Michiel, ур. (2001). „Tamagawa number”. Encyclopaedia of Mathematics. Springer. ISBN 978-1556080104. 
  9. ^ Kottwitz, Robert E. (1988), „Tamagawa numbers”, Ann. of Math., 2, Annals of Mathematics, 127 (3): 629—646, JSTOR 2007007, MR 0942522, doi:10.2307/2007007 
  10. ^ „Plastic Packaging Resins” (PDF). American Chemistry Council. Архивирано из оригинала (PDF) 2011-07-21. г. 
  11. ^ Woodford, Chris (2006), Digital Technology, Evans Brothers, стр. 9, ISBN 978-0-237-52725-9 
  12. ^ Godbole, Achyut S. (1. 9. 2002), Data Comms & Networks, Tata McGraw-Hill Education, стр. 34, ISBN 978-1-259-08223-8 
  13. ^ Olson, Roger (2017). The Essentials of Christian Thought: Seeing Reality through the Biblical Story. Zondervan Academic. ISBN 9780310521563. 
  14. ^ British Society for the History of Science (1. 7. 1977). „From Abacus to Algorism: Theory and Practice in Medieval Arithmetic”. The British Journal for the History of Science. Cambridge University PRess. 10 (2): Abstract. S2CID 145065082. doi:10.1017/S0007087400015375. Приступљено 16. 5. 2021. 

Литература

Спољашње везе