Kupa (geometrija)

Iz Vikipedije, slobodne enciklopedije
Idi na: navigaciju, pretragu
Prava (levo) i kosa kružna kupa (desno)

Kupa (ili konus) je geometrijsko telo. Može se definisati kao geometrijsko mesto tačaka koje čini sve duži između elipse, koja se nalazi u jednoj ravni, i tačke, koja se nalazi izvan te ravni. Ova elipsa se još naziva baza kupe, a tačka njeno teme.

Prava koja prolazi kroz teme i centar baze kupe se naziva njenom osom. Ukoliko je ova prava i normalna na bazu kupe, kupa se naziva pravom. U suprotnom se radi o kosoj kupi.

Rastojanje između temena kupe, i njegove projekcije na ravan baze kupe se naziva visinom kupe.

Svaka duž koja spaja teme i neku od ivičnih tačaka baze se naziva izvodnicom kupe. Kod prave kupe sve izvodnice imaju jednaku dužinu dok kod kose kupe postoje najviše dve izvodnice sa istom dužinom.

Površina kupe[uredi]

Površina kupe se uvek računa kao zbir površina njenog omotača i njene baze. Omotač kupe je skup svih duži koje spajaju teme kupe sa ivicom osnovice kupe. U slučaju da je baza krug, njegova ivica bi bila kružnica.

Površina prave kružne kupe[uredi]

Razmotavanjem omotača prave kupe se može ustanoviti da se radi o odsečku kruga, koji za poluprečnik ima dužinu s izvodnice kupe. Pokriveni ugao se prema punom krugu (tj. ) odnosi kao obim baze kupe prema obimu kruga sa poluprečnikom s, što bi dalo sledeći izraz:

kružni isječak

Isti rezultat možemo dobiti i na sljedeći način.

Razmotavanjem omotača prave kupe dobija se isječak kruga poluprečnika s sa centralnim uglom θ. Kada je centralni ugao u radijanima, površina i dužina luka kružnog isječka su

Smotan u kupu, luk isječka postaje kružnica obima 2, pa imamo

što uvrštavanjem u izraz za površinu kružnog isječka daje

Površina baze je površina kruga poluprečnika r, što iznosi Pb = r²π. Zbir ove dve vrednosti daje površinu kupe:

Primjer. Visina prave kupe je h. Naći površinu kupe, ako je njen omotač u razvijenom obliku kružni isječak sa centralnim uglom θ = 120°.

Rješenje: Dati centralni ugao izražen u radijanima je

Dužina luka isječka i obim baze kupe su jednaki, tj.

Pitagorina teorema dalje daje

te je

Inače, površina kružnog isječka poluprečnika s, ovdje omotača (Po) kupe, i površina baze (Pb) kupe su

Pa je površina kupe u ovom primeru:

Zapremina kupe[uredi]

Zapremina kupe se uvek može predstaviti kao trećina proizvoda površine njene baze sa rastojanjem temena od ravni u kome se nalazi baza. Ovo rastojanje se još zove i visina kupe.

Primer može biti kružna kupa kod koje je Pb = r²π. Iz prethodnog izraza sledi da je zapremina ove kupe:

Zapremina kose i prave eliptične kupe se razlikuje samo u bazi:

Primjer. Površina prave kupe je P. Izvodnica je nagnuta prema ravni osnove pod uglom φ. Izračunati zapreminu kupe.

Rješenje: Poluprečnik baze kupe i visina kupe izraženi pomoću izvodnice i ugla nagiba su

Površina i zapremina kupe, izražene na isti način su

Iz prve jednakosti izrazimo s i uvrstimo u drugu

Spoljašnje veze[uredi]