Centripetalna sila

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу
Na telo koje se kreće po kružnici deluje centripetalna sila koja je usmerena duž poluprečnika kruga tački na kružnici u kojoj se telo u tom trenutku nalazi ka centru kružnice.

Centripetalna sila (od latinskih reči centrum, „centar” i petere, „tražiti”[1]) je sila koja uzrokuje da telo sledi zakrivljenu putanju. Njen pravac je uvek ortogonalan na vektor brzine tela u datoj tački i usmeren je prema centru zakrivljenosti putanje.

Najjednostavniji slučaj delovanja centripetalne sile je kružno kretanje u kojem se telo kreće konstantnom brzinom po kružnici. Centripetalna sila je u ovom slučaju usmerena duž poluprečnika kruga od tačke u kojoj se telo u datom trenutku nalazi ka centru kruga.[2][3]

Matematički opis kretanja tela po kružnoj putanji izveo je holandski fizičar Kristijan Hajgens 1659. godine.[4] Isak Njutn je centripetalnu silu opisao kao „silu kojom se tela povlače ili prisiljavaju, ili na bilo koji način teže ka tački kao centru”.[5] U Njutnovoj mehanici, sila gravitacija je centripetalna sila koja je odgovorna za orbitalna kretanja planeta, satelita, itd.

Snop elektrona zakrivljen magnetnim poljem koje u ovom slučaju ima ulogu centripetalne sile. Elektroni se nalaze u posudi ispunjenoj gasom i u sudaru sa molekulima gasa emituje se svetlost ljubičaste boje, tako da ona ocrtava trajektoriju kretanja elektrona.

Pojam centrifugalne sile se objašnjava preko centripetalne sile. Centripetalna sila je realna sila koja deluje na telo pri kružnom kretanju gledano iz stacionarnog inercijalnog sistema referencije. U pokretnom neinercijalnom sistemu referencije vezanom za telo koje rotira, ne vidi se centripetalna sila, ali da bi se objasnilo kretanje tela uvodi se centrifugalna sila koja ima isti intenzitet i pravac kao centripetalna sila, ali je suprotnog smera u odnosu na centripetalnu silu i usmerena je od centra zakrivljene putanje ka telu.

Formula[уреди]

Centripetalna sila koja deluje na objekt mase m koji se kreće po kružnici je zadata Drugim Njutnovim zakonom:

gde je centripetalno ubrzanje koje se za telo koje se kreće tangencijalnom brzinom v duž puta radijusa zakrivljenosti r može izračunati kao:[6]

tako da za centripetalnu silu važi:

Centripetalna sila izražena preko ugaonih veličina[уреди]

Centripetalna sila se ponekad izražava preko ugaone brzine objekta ω koji rotira oko centra kruga. Ugaona brzina je vezana za tangencijalnu brzinu formulom

tako da je centripetalna sila preko ugaone brzine izražena kao:

Centripetalna sila se za periodična kretanja može izraziti i preko perioda T , odnosno vremena potrebnom da telo napravi pun obrt oko centra kruga. Kako je veza između ugaone brzine i perioda , jednačina za centripetalnu silu postaje:

[7]

Centripetalna sila kod relativističkog kretanja[уреди]

U akceleratorima čestica, brzina čestica može biti veoma visoka (uporediva sa brzinom svetlosti u vakuumu). Za kretanje kod tako velikih relativističkih brzina ne važi klasična mehanika, već se mora koristiti fizika specijalne relativnosti.

Izraz za centripetalnu silu pri relativističkom kretanju je:

gde je

Lorencov faktor.

Primeri[уреди]

Za telo koje pomoću užeta rotira u horizontalnoj ravni, u ulozi centripetalne sile koja izaziva kružno kretanje tela je sila zatezanja užeta. U ovom slučaju centripetalna sila je sila povlačenja. Centripetalna sila može biti pružena i kao sira guranja, kao u slučaju kada normalna reakcija zida pruža centripetalnu silu vozaču na zidu smrti.

Kada naelektrisana čestica uđe u uniformno magnetno polje pod pravim uglom u odnosu na pravac polja, magnetna sila će biti centripetalna sila za naelektrisanu česticu i u odsustvu drugih spoljašnjih sila, čestica će se kretati po spirali oko magnetnog polja. Kada naelektrisana čestica izgubi svoju brzinu, kretaće se po kružnici oko ose magnetnog polja.

Vidi još[уреди]

Reference[уреди]

  1. ^ Craig, John (1849). A new universal etymological, technological and pronouncing dictionary of the English language: embracing all terms used in art, science, and literature, Volume 1. Harvard University. стр. 291.  Extract of page 291
  2. ^ Russelkl C Hibbeler (2009). „Equations of Motion: Normal and tangential coordinates”. Engineering Mechanics: Dynamics (12 изд.). Prentice Hall. стр. 131. ISBN 978-0-13-607791-6. 
  3. ^ Paul Allen Tipler; Gene Mosca (2003). Physics for scientists and engineers (5th изд.). Macmillan. стр. 129. ISBN 978-0-7167-8339-8. 
  4. ^ P. Germain; M. Piau; D. Caillerie, ур. (2012). Theoretical and Applied Mechanics. Elsevier. ISBN 9780444600202. 
  5. ^ Newton, Isaac (2010). The principia : mathematical principles of natural philosophy. [S.l.]: Snowball Pub. стр. 10. ISBN 978-1-60796-240-3. 
  6. ^ Chris Carter (2001). Facts and Practice for A-Level: Physics. S.2.: Oxford University Press. стр. 30. ISBN 978-0-19-914768-7. 
  7. ^ Colwell, Catharine H. „A Derivation of the Formulas for Centripetal Acceleration”. PhysicsLAB. Приступљено 31. 7. 2011. 

Literatura[уреди]

  • Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th изд.). Brooks/Cole. ISBN 978-0-534-40842-8. 
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th изд.). W. H. Freeman. ISBN 978-0-7167-0809-4. 
  • Centripetal force vs. Centrifugal force, from an online Regents Exam physics tutorial by the Oswego City School District

Spoljašnje veze[уреди]