Пређи на садржај

Паралелограм — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: ручно враћање
.
Ред 1: Ред 1:
{{Short description|Четвороугао са два пара паралелних страница}}
{{Инфокутија многоугао
{{Инфокутија многоугао
| име = Паралелограм
| име = Паралелограм
Ред 9: Ред 10:
| својства = конвексан
| својства = конвексан
}}
}}

У [[Еуклидова геометрија|Еуклидовој геометрији]], '''паралелограм''' је једноставан (не-самосекући) [[четвороугао]] са два пара [[Паралелност (геометрија)|паралелних]] страница. Наспрамне странице паралелограма су једнаке дужине, а наспрамни [[Угао|углови]] су једнаке мере.
У [[Еуклидова геометрија|Еуклидовој геометрији]], '''паралелограм''' је једноставан (не-самосекући) [[четвороугао]] са два пара [[Паралелност (геометрија)|паралелних]] страница. Наспрамне странице паралелограма су једнаке дужине, а наспрамни [[Угао|углови]] су једнаке мере.


Ред 17: Ред 19:
Тродимензионални еквивалент паралелограма је [[паралелепипед]].
Тродимензионални еквивалент паралелограма је [[паралелепипед]].


Етимологија (на грчком {{Јез-грч|παραλληλ-όγραμμον}} — „облик од паралелних линија”) одражава дефиницију.
Етимологија (на грчком {{Јез-грч|παραλληλ-όγραμμον}} — „облик од паралелних линија”) одражава дефиницију.


== Посебни случајеви ==
== Посебни случајеви ==
[[Датотека:Symmetries of square.svg|thumb|Четвороуглови по симетрији]]
[[Датотека:Symmetries of square.svg|thumb|Четвороуглови по симетрији]]
* Ромбоид — четвороугао чије су наспрамне странице паралелне, суседне странице неједнаке и чији углови нису прави.<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|title=CIMT - Page no longer available at Plymouth University servers|website=www.cimt.plymouth.ac.uk|archiveurl=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|archive-date=14. 5. 2014.|url-status=dead}}</ref>
* Ромбоид — четвороугао чије су наспрамне странице паралелне, суседне странице неједнаке и чији углови нису прави.<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|title=CIMT - Page no longer available at Plymouth University servers|website=www.cimt.plymouth.ac.uk|archiveurl=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|archive-date=14. 5. 2014.|url-status=dead}}</ref>
* [[Правоугаоник]] — паралелограм са четири угла једнаке величине.
* [[Правоугаоник]] — паралелограм са четири угла једнаке величине.
* [[Rhombus|Ромб]] — паралелограм са четири страница једнаке дужине.
* [[Rhombus|Ромб]] — паралелограм са четири страница једнаке дужине.
* [[Квадрат]] — паралелограм са четири страница једнаке дужине и углова једнаке величине (прави углови).
* [[Квадрат]] — паралелограм са четири страница једнаке дужине и углова једнаке величине (прави углови).


== Карактеризација ==
== Карактеризација ==
Ред 59: Ред 61:
|<math>e^2+f^2 = 2\left(a^2+b^2\right)</math>
|<math>e^2+f^2 = 2\left(a^2+b^2\right)</math>
|-
|-
|}

== Формула површине ==
{{rut}}
[[File:ParallelogramArea.svg|thumb|180px|alt=A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle|A parallelogram can be rearranged into a rectangle with the same area.]]
[[File:Parallelogram area animated.gif|thumb|180px|Animation for the area formula <math>K = bh</math>.]]
All of the [[Quadrilateral#Area of a convex quadrilateral|area formulas for general convex quadrilaterals]] apply to parallelograms. Further formulas are specific to parallelograms:

A parallelogram with base ''b'' and height ''h'' can be divided into a [[trapezoid]] and a [[right triangle]], and rearranged into a [[rectangle]], as shown in the figure to the left. This means that the [[area]] of a parallelogram is the same as that of a rectangle with the same base and height:

:<math>K = bh.</math>

[[File:Parallelogram area.svg|thumb|The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram]]
The base × height area formula can also be derived using the figure to the right. The area ''K'' of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is

:<math>K_\text{rect} = (B+A) \times H\,</math>

and the area of a single orange triangle is

:<math>K_\text{tri} = \frac{A}{2} \times H. \,</math>

Therefore, the area of the parallelogram is

:<math>K = K_\text{rect} - 2 \times K_\text{tri} = ( (B+A) \times H) - ( A \times H) = B \times H.</math>

Another area formula, for two sides ''B'' and ''C'' and angle θ, is

:<math>K = B \cdot C \cdot \sin \theta.\,</math>

The area of a parallelogram with sides ''B'' and ''C'' (''B'' ≠ ''C'') and angle <math>\gamma</math> at the intersection of the diagonals is given by<ref>Mitchell, Douglas W., "The area of a quadrilateral", ''Mathematical Gazette'', July 2009.</ref>

:<math>K = \frac{|\tan \gamma|}{2} \cdot \left| B^2 - C^2 \right|.</math>

When the parallelogram is specified from the lengths ''B'' and ''C'' of two adjacent sides together with the length ''D''<sub>1</sub> of either diagonal, then the area can be found from [[Heron's formula]]. Specifically it is

:<math>K=2\sqrt{S(S-B)(S-C)(S-D_1)}</math>

where <math>S=(B+C+D_1)/2</math> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into ''two'' congruent triangles.

===Area in terms of Cartesian coordinates of vertices===
Let vectors <math>\mathbf{a},\mathbf{b}\in\R^2</math> and let <math>V = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \in\R^{2 \times 2}</math> denote the matrix with elements of '''a''' and '''b'''. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>|\det(V)| = |a_1b_2 - a_2b_1|\,</math>.

Let vectors <math>\mathbf{a},\mathbf{b}\in\R^n</math> and let <math>V = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \in\R^{2 \times n}</math>. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>\sqrt{\det(V V^\mathrm{T})}</math>.

Let points <math>a,b,c\in\R^2</math>. Then the area of the parallelogram with vertices at ''a'', ''b'' and ''c'' is equivalent to the absolute value of the determinant of a matrix built using ''a'', ''b'' and ''c'' as rows with the last column padded using ones as follows:
:<math>K = \left| \,\det \begin{bmatrix}
a_1 & a_2 & 1 \\
b_1 & b_2 & 1 \\
c_1 & c_2 & 1
\end{bmatrix} \right|. </math>

== Доказ да се дијагонале деле једна на другу ==
[[File:Parallelogram1.svg|right|Parallelogram ABCD]]
To prove that the diagonals of a parallelogram bisect each other, we will use [[congruence (geometry)|congruent]] [[Triangle#Basic facts|triangle]]s:
:<math>\angle ABE \cong \angle CDE</math> ''(alternate interior angles are equal in measure)''
:<math>\angle BAE \cong \angle DCE</math> ''(alternate interior angles are equal in measure)''.

(since these are angles that a transversal makes with [[Parallel (geometry)|parallel lines]] ''AB'' and ''DC'').

Also, side ''AB'' is equal in length to side ''DC'', since opposite sides of a parallelogram are equal in length.

Therefore, triangles ''ABE'' and ''CDE'' are congruent (ASA postulate, ''two corresponding angles and the included side'').

Therefore,
:<math>AE = CE</math>
:<math>BE = DE.</math>

Since the diagonals ''AC'' and ''BD'' divide each other into segments of equal length, the diagonals bisect each other.

Separately, since the diagonals ''AC'' and ''BD'' bisect each other at point ''E'', point ''E'' is the midpoint of each diagonal.

== Решетка паралелограма ==
Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four [[Bravais_lattice#In_2_dimensions|Bravais lattices in 2 dimensions]].
{| class=wikitable
|+ Lattices
|-
!Form||Square||Rectangle||Rhombus||Parallelogram
|-
!System
!Square<BR>(tetragonal)
!Rectangular<BR>(orthorhombic)
!Centered rectangular<BR>(orthorhombic)
!Oblique<BR>(monoclinic)
|- align=center
!Constraints
|&alpha;=90°, a=b
|&alpha;=90°
|a=b
|None
|- align=center
![[List_of_planar_symmetry_groups#Wallpaper_groups|Symmetry]]
|p4m, [4,4], order 8''n''||colspan=2|pmm, [&infin;,2,&infin;], order 4''n''||p1, [&infin;<sup>+</sup>,2,&infin;<sup>+</sup>], order 2''n''
|- align=center
!Form
|[[File:Isohedral tiling p4-56.png|160px]]
|[[File:Isohedral tiling p4-54.png|160px]]
|[[File:Isohedral tiling p4-55.png|160px]]
|[[File:Isohedral tiling p4-50.png|160px]]
|}
|}


== Референце ==
== Референце ==
{{reflist}}
{{reflist}}

== Литература ==
{{Refbegin|30em}}
* {{citation|title=Generalizations of Kempe's Universality Theorem|type=Master's thesis|url=http://web.mit.edu/tabbott/www/papers/mthesis.pdf|publisher=[[Massachusetts Institute of Technology]]|year=2008|first=Timothy Good|last=Abbott|contribution=3.1.2 Contraparallelograms|pages=34–36}}
* {{citation
| last1 = Coxeter | first1 = H. S. M. | author1-link = Harold Scott MacDonald Coxeter
| last2 = Longuet-Higgins | first2 = M. S. | author2-link = Michael S. Longuet-Higgins
| last3 = Miller | first3 = J. C. P. | author3-link = J. C. P. Miller
| bibcode = 1954RSPTA.246..401C
| doi = 10.1098/rsta.1954.0003
| journal = Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
| jstor = 91532
| mr = 0062446
| pages = 401–450
| title = Uniform polyhedra
| volume = 246
| year = 1954| issue = 916 | s2cid = 202575183 }}
* {{citation
| last1 = Alsina | first1 = Claudi
| last2 = Nelsen | first2 = Roger B.
| isbn = 978-1-4704-5312-1
| location = Providence, Rhode Island
| mr = 4286138
| page = 212
| publisher = MAA Press and American Mathematical Society
| series = The Dolciani Mathematical Expositions
| title = A Cornucopia of Quadrilaterals
| url = https://books.google.com/books?id=CGDSDwAAQBAJ&pg=PA212
| volume = 55
| year = 2020}}
* {{citation
| last = Cundy | first = H. Martyn | author-link = Martyn Cundy
| date = March 2005
| doi = 10.1017/s0025557200176855
| issue = 514
| journal = [[The Mathematical Gazette]]
| pages = 89–93
| title = 89.23 The lemniscate of Bernoulli
| volume = 89| s2cid = 125521872 }}
* {{citation
| last1 = Begalla | first1 = Engjëll
| last2 = Perucca | first2 = Antonella
| hdl = 10993/43232
| publisher = University of Luxembourg
| title = The ABCD of cyclic quadrilaterals
| journal = Uitwiskeling
| year = 2020}}
* {{citation
| last = Dijksman | first = E. A.
| isbn = 9780521208413
| page = 203
| publisher = Cambridge University Press
| title = Motion Geometry of Mechanisms
| url = https://books.google.com/books?id=wwY9AAAAIAAJ&pg=PA203
| year = 1976}}
* {{citation
| last1 = Demaine | first1 = Erik | author1-link = Erik Demaine
| last2 = O'Rourke | first2 = Joseph | author2-link = Joseph O'Rourke (professor)
| doi = 10.1017/CBO9780511735172
| isbn = 978-0-521-85757-4
| mr = 2354878 | pages = 32–33
| publisher = Cambridge University Press
| title = Geometric Folding Algorithms
| year = 2007}}
* {{citation
| last1 = Grebenikov | first1 = Evgenii A.
| last2 = Ikhsanov | first2 = Ersain V.
| last3 = Prokopenya | first3 = Alexander N.
| contribution = Numeric-symbolic computations in the study of central configurations in the planar Newtonian four-body problem
| doi = 10.1007/11870814_16
| location = Berlin
| mr = 2279793
| pages = 192–204
| publisher = Springer
| series = Lecture Notes in Comput. Sci.
| title = Computer algebra in scientific computing
| volume = 4194
| year = 2006}}
* {{citation
| last = Glaeser | first = Georg
| contribution = Antiparallelograms; It does not always have to be a uniform rotation ...
| doi = 10.1007/978-3-030-61398-3
| pages = 428–429
| publisher = Springer International Publishing
| title = Geometry and its Applications in Arts, Nature and Technology
| year = 2020| isbn = 978-3-030-61397-6
| s2cid = 241160811
}}
* {{citation
| last = De Villiers | first = Michael
| hdl = 10520/EJC175721
| issue = 18
| journal = Learning and Teaching Mathematics
| pages = 23–28
| title = Slaying a geometrical 'monster': finding the area of a crossed quadrilateral
| volume = 2015
| year = 2015}}
* {{citation
| last = Muirhead | first = R. F. | author-link = Robert Franklin Muirhead
| date = February 1901
| doi = 10.1017/s0013091500032892
| journal = Proceedings of the Edinburgh Mathematical Society
| pages = 70–72
| title = Geometry of the isosceles trapezium and the contra-parallelogram, with applications to the geometry of the ellipse
| volume = 20| doi-access = free
}}
* {{citation
| last = Norton | first = Robert L.
| isbn = 978-0-07-121496-4
| page = 51
| publisher = McGraw-Hill Professional
| title = Design of Machinery
| year = 2003}}
* {{citation
| last1 = Bryant | first1 = John
| last2 = Sangwin | first2 = Christopher J.
| contribution = 3.3 The Crossed Parallelogram
| contribution-url = https://books.google.com/books?id=iIN_2WjBH1cC&pg=PA54
| isbn = 978-0-691-13118-4
| pages = 54–56
| publisher = Princeton University Press
| title = How Round Is Your Circle? Where Engineering and Mathematics Meet
| title-link = How Round Is Your Circle
| year = 2008}}
* {{citation
| last = Sossinsky | first = Alexey
| contribution = Configuration spaces of planar linkages
| location = Zürich
| mr = 3618193
| pages = 335–373
| publisher = European Mathematical Society
| series = IRMA Lectures in Mathematics and Theoretical Physics
| title = Handbook of Teichmüller theory, Vol. VI
| volume = 27
| year = 2016}}

* {{citation
| last = van Schooten | first = Frans | author-link = Frans van Schooten
| pages = 49–50, 69–70
| title = De Organica Conicarum Sectionum In Plano Descriptione, Tractatus. Geometris, Opticis; Præsertim verò Gnomonicis et Mechanicis Utilis. Cui subnexa est Appendix, de Cubicarum Æquationum resolutione
| url = https://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/mpiwg/online/permanent/library/EWN480XH/pageimg&start=61&viewMode=images&mode=imagepath&pn=69
| year = 1646}}

* {{citation
| last = Yates | first = Robert C.
| date = March 1941
| doi = 10.2307/3028413
| issue = 6
| journal = National Mathematics Magazine
| jstor = 3028413
| pages = 278–293
| title = The trisection problem
| volume = 15}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Parallelograms}}
{{Commons category|Parallelograms}}
* [http://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&status=public Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)]
* {{MathWorld |urlname=Parallelogram |title=Parallelogram}}
* [http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php Interactive Parallelogram --sides, angles and slope]
* [http://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml Area of Parallelogram] at [[cut-the-knot]]
* [http://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml Equilateral Triangles On Sides of a Parallelogram] at [[cut-the-knot]]
* [http://www.mathopenref.com/parallelogram.html Definition and properties of a parallelogram] with animated applet
* [http://www.mathopenref.com/parallelogramarea.html Interactive applet showing parallelogram area calculation] interactive applet


[[Категорија:Четвороуглови]]
[[Категорија:Четвороуглови]]

Верзија на датум 12. јул 2022. у 06:23

Паралелограм
Овај паралелограм је ромбоид јер нема праве углове и неједнаке странице.
Типчетвороугао
Ивице и темена4
Симетрична групаC2, [2]+, (22)
Површинаb × h (основица × висина);
ab sin θ (производ суседних страница и синус било ког угла темена)
Својстваконвексан

У Еуклидовој геометрији, паралелограм је једноставан (не-самосекући) четвороугао са два пара паралелних страница. Наспрамне странице паралелограма су једнаке дужине, а наспрамни углови су једнаке мере.

Подударност наспрамних страница и наспрамних углова је директна последица Еуклидовог постулата паралелности и ни један услов се не може доказати без примењивања Еуклидовог постулата паралелности или једне од његових еквивалентних формулација.

Поређења ради, четвороугао са само једним паром паралелних страница је трапез.

Тродимензионални еквивалент паралелограма је паралелепипед.

Етимологија (на грчком грч. παραλληλ-όγραμμον — „облик од паралелних линија”) одражава дефиницију.

Посебни случајеви

Четвороуглови по симетрији
  • Ромбоид — четвороугао чије су наспрамне странице паралелне, суседне странице неједнаке и чији углови нису прави.[1]
  • Правоугаоник — паралелограм са четири угла једнаке величине.
  • Ромб — паралелограм са четири страница једнаке дужине.
  • Квадрат — паралелограм са четири страница једнаке дужине и углова једнаке величине (прави углови).

Карактеризација

Паралелограм је једноставан (не-самосекући) четвороугао ако и само ако је једна од следећих изјава тачна:[2][3]

  • два пара наспрамних страница су једнаке по дужини;
  • два пара наспрамних углова су једнаки по мери;
  • дијагонале се узајамно полове;
  • један пар наспрамних страница је паралелан и једнак по дужини;
  • суседни углови су суплементни;
  • свака дијагонала дели четвороугао на два подударна троугла;
  • збир квадрата страница једнак је збиру квадрата дијагонала (Ово је паралелограмски закон.);
  • има ротациону симетрију реда 2;
  • збир удаљености од било које унутрашње тачке до страница је независна од локације тачке.[4] (Ово је проширење Вивианијеве теореме.)
  • Постоји тачка X у равни четвороугла са својством да свака права линија кроз X дели четвороугао на два подручја једнаке површине.

Стога, сви паралелограми имају сва горенаведена својства, и обрнуто; ако је само једна од ових изјава тачна у једноставном четвороуглу, онда је то паралелограм.

Формуле

Висине
Дијагонале
Обим
Површина
Закон паралелограма

Формула површине

A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle
A parallelogram can be rearranged into a rectangle with the same area.
Animation for the area formula .

All of the area formulas for general convex quadrilaterals apply to parallelograms. Further formulas are specific to parallelograms:

A parallelogram with base b and height h can be divided into a trapezoid and a right triangle, and rearranged into a rectangle, as shown in the figure to the left. This means that the area of a parallelogram is the same as that of a rectangle with the same base and height:

The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram

The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is

and the area of a single orange triangle is

Therefore, the area of the parallelogram is

Another area formula, for two sides B and C and angle θ, is

The area of a parallelogram with sides B and C (BC) and angle at the intersection of the diagonals is given by[5]

When the parallelogram is specified from the lengths B and C of two adjacent sides together with the length D1 of either diagonal, then the area can be found from Heron's formula. Specifically it is

where and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into two congruent triangles.

Area in terms of Cartesian coordinates of vertices

Let vectors and let denote the matrix with elements of a and b. Then the area of the parallelogram generated by a and b is equal to .

Let vectors and let . Then the area of the parallelogram generated by a and b is equal to .

Let points . Then the area of the parallelogram with vertices at a, b and c is equivalent to the absolute value of the determinant of a matrix built using a, b and c as rows with the last column padded using ones as follows:

Доказ да се дијагонале деле једна на другу

Parallelogram ABCD
Parallelogram ABCD

To prove that the diagonals of a parallelogram bisect each other, we will use congruent triangles:

(alternate interior angles are equal in measure)
(alternate interior angles are equal in measure).

(since these are angles that a transversal makes with parallel lines AB and DC).

Also, side AB is equal in length to side DC, since opposite sides of a parallelogram are equal in length.

Therefore, triangles ABE and CDE are congruent (ASA postulate, two corresponding angles and the included side).

Therefore,

Since the diagonals AC and BD divide each other into segments of equal length, the diagonals bisect each other.

Separately, since the diagonals AC and BD bisect each other at point E, point E is the midpoint of each diagonal.

Решетка паралелограма

Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four Bravais lattices in 2 dimensions.

Lattices
Form Square Rectangle Rhombus Parallelogram
System Square
(tetragonal)
Rectangular
(orthorhombic)
Centered rectangular
(orthorhombic)
Oblique
(monoclinic)
Constraints α=90°, a=b α=90° a=b None
Symmetry p4m, [4,4], order 8n pmm, [∞,2,∞], order 4n p1, [∞+,2,∞+], order 2n
Form

Референце

  1. ^ „CIMT - Page no longer available at Plymouth University servers” (PDF). www.cimt.plymouth.ac.uk. Архивирано из оригинала (PDF) 14. 5. 2014. г. 
  2. ^ Owen Byer, Felix Lazebnik and Deirdre Smeltzer, Methods for Euclidean Geometry, Mathematical Association of America, 2010, pp. 51-52.
  3. ^ Zalman Usiskin and Jennifer Griffin, „The Classification of Quadrilaterals. A Study of Definition”, Information Age Publishing, 2008, p. 22.
  4. ^ Chen, Zhibo, and Liang, Tian. „The converse of Viviani’s theorem”, The College Mathematics Journal 37(5), 2006, pp. 390—391.
  5. ^ Mitchell, Douglas W., "The area of a quadrilateral", Mathematical Gazette, July 2009.

Литература

  • Yates, Robert C. (март 1941), „The trisection problem”, National Mathematics Magazine, 15 (6): 278—293, JSTOR 3028413, doi:10.2307/3028413 

Спољашње везе