Алгебарска топологија — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Грана математике}}
[[Image:Torus.png|right|thumb|250px|[[Торус]], један од најчешће проучаваних објеката у алгебарској топологији]]

'''Алгебарска топологија''' је грана [[математика|математике]] која се користи алатима [[апстрактна алгебра|апстрактне алгебре]] у проучавању [[тополошки простор|тополошких простора]]. Основни циљ је проналажење алгебарских [[инваријанта (математика)|инваријанти]] које класификују тополошке просторе [[до на]] [[хомеоморфизам]]. У многим ситуацијама је ово исувише амбициозно, па је разумније поставити скромнији циљ, класификација до на [[хомотопија|хомотопску еквиваленцију]].
'''Алгебарска топологија''' је грана [[математика|математике]] која се користи алатима [[апстрактна алгебра|апстрактне алгебре]] у проучавању [[тополошки простор|тополошких простора]]. Основни циљ је проналажење алгебарских [[инваријанта (математика)|инваријанти]] које класификују тополошке просторе [[до на]] [[хомеоморфизам]]. У многим ситуацијама је ово исувише амбициозно, па је разумније поставити скромнији циљ, класификација до на [[хомотопија|хомотопску еквиваленцију]].


Мада алгебарска топологија обично користи алгебру за проучавање тополошких проблема, обратан случај, коришћење топологије за решавање алгебарских проблема, је такође понекад могућ. Алгебарска топологија на пример, омогућава згодан доказ да је свака [[подгрупа (математика)|подгрупа]] [[слободна група|слободне групе]] такође слободна група.
Мада алгебарска топологија обично користи алгебру за проучавање тополошких проблема, обратан случај, коришћење топологије за решавање алгебарских проблема, је такође понекад могућ. Алгебарска топологија на пример, омогућава згодан доказ да је свака [[подгрупа (математика)|подгрупа]] [[слободна група|слободне групе]] такође слободна група.

== Главне гране алгебарске топологије ==
{{rut}}
Below are some of the main areas studied in algebraic topology:

===Homotopy groups===
{{Main| Homotopy group}}
In mathematics, homotopy groups are used in algebraic topology to classify [[topological space]]s. The first and simplest homotopy group is the [[fundamental group]], which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.<ref>{{cite journal|first1=Graham J.|last1=Ellis|first2=Roman|last2=Mikhailov|title=A colimit of classifying spaces|journal=[[Advances in Mathematics]]|volume=223|year=2010|issue=6|pages=2097–2113|arxiv=0804.3581|doi=10.1016/j.aim.2009.11.003|doi-access=free|mr=2601009}}</ref>

===Homology===
{{Main|Homology (mathematics)|l1=Homology}}
In algebraic topology and [[abstract algebra]], '''homology''' (in part from [[Greek language|Greek]] ὁμός ''homos'' "identical")<ref>{{Harvnb|Stillwell|1993|p=170}}</ref> is a certain general procedure to associate a [[sequence]] of [[abelian group]]s or [[module (mathematics)|modules]] with a given mathematical object such as a [[topological space]] or a [[group (mathematics)|group]].<ref>{{harvtxt|Fraleigh|1976|p=163}}</ref>

===Cohomology===
{{Main|Cohomology}}
In [[homology theory]] and algebraic topology, '''cohomology''' is a general term for a [[sequence]] of [[abelian group]]s defined from a [[chain complex|cochain complex]]. That is, cohomology is defined as the abstract study of '''cochains''', [[chain complex|cocycle]]s, and [[coboundary|coboundaries]].{{sfn|Hatcher|2001|p=108}} Cohomology can be viewed as a method of assigning [[algebraic invariant]]s to a topological space that has a more refined [[algebraic structure]] than does [[homology (mathematics)|homology]]. Cohomology arises from the algebraic dualization of the construction of homology. In less abstract language, cochains in the fundamental sense should assign 'quantities' to the ''[[chain (algebraic topology)|chains]]'' of homology theory.

===Manifolds===
{{Main|Manifold}}
A '''manifold''' is a [[topological space]] that near each point resembles [[Euclidean space]]. Examples include the [[Plane (geometry)|plane]], the [[sphere]], and the [[torus]], which can all be realized in three dimensions, but also the [[Klein bottle]] and [[real projective plane]] which cannot be embedded in three dimensions, but can be embedded in four dimensions. Typically, results in algebraic topology focus on global, non-differentiable aspects of manifolds; for example [[Poincaré duality]].

===Knot theory===
{{Main|Knot theory}}
'''Knot theory''' is the study of [[knot (mathematics)|mathematical knot]]s. While inspired by knots that appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an [[embedding]] of a [[circle]] in 3-dimensional [[Euclidean space]], <math>\mathbb{R}^3</math>. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of <math>\mathbb{R}^3</math> upon itself (known as an [[ambient isotopy]]); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

===Complexes===
{{Main|Simplicial complex|CW complex}}
[[File:Simplicial complex example.svg|thumb|200px|A simplicial 3-complex.]]
A '''simplicial complex''' is a [[topological space]] of a certain kind, constructed by "gluing together" [[Point (geometry)|point]]s, [[line segment]]s, [[triangle]]s, and their [[Simplex|''n''-dimensional counterparts]] (see illustration). Simplicial complexes should not be confused with the more abstract notion of a [[simplicial set]] appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an [[abstract simplicial complex]].

A '''CW complex''' is a type of topological space introduced by [[J. H. C. Whitehead]] to meet the needs of [[homotopy theory]]. This class of spaces is broader and has some better [[category theory|categorical]] properties than [[simplicial complex]]es, but still retains a combinatorial nature that allows for computation (often with a much smaller complex).

== Метода алгебарских инваријанти ==
An older name for the subject was [[combinatorial topology]], implying an emphasis on how a space X was constructed from simpler ones<ref>{{citation|title=Invitation to Combinatorial Topology| first1=Maurice|last1=Fréchet|author-link1=Maurice René Fréchet| first2=Ky|last2=Fan|author-link2=Ky Fan|publisher=Courier Dover Publications|year=2012|isbn=9780486147888|page=101|url=https://books.google.com/books?id=dfLSzs0vHNQC&pg=PA101}}.</ref> (the modern standard tool for such construction is the [[CW complex]]). In the 1920s and 1930s, there was growing emphasis on investigating topological spaces by finding correspondences from them to algebraic [[group (mathematics)|groups]], which led to the change of name to algebraic topology.<ref>{{citation|title=A Combinatorial Introduction to Topology|first=Michael|last=Henle|publisher=Courier Dover Publications|year=1994|isbn=9780486679662|page=221|url=https://books.google.com/books?id=S0RJYkBxowEC&pg=PA221}}.</ref> The combinatorial topology name is still sometimes used to emphasize an algorithmic approach based on decomposition of spaces.<ref>{{citation|title=Blowups, slicings and permutation groups in combinatorial topology|first=Jonathan|last=Spreer|publisher=Logos Verlag Berlin GmbH|year=2011|isbn=9783832529833|page=23|url=https://books.google.com/books?id=vdt5c07k0M4C&pg=PA23}}.</ref>

In the algebraic approach, one finds a correspondence between spaces and [[group (mathematics)|groups]] that respects the relation of [[homeomorphism]] (or more general [[homotopy]]) of spaces. This allows one to recast statements about topological spaces into statements about groups, which have a great deal of manageable structure, often making these statement easier to prove.
Two major ways in which this can be done are through [[fundamental group]]s, or more generally [[homotopy theory]], and through [[homology (mathematics)|homology]] and [[cohomology]] groups. The fundamental groups give us basic information about the structure of a topological space, but they are often [[abelian group|nonabelian]] and can be difficult to work with. The fundamental group of a (finite) [[simplicial complex]] does have a finite [[presentation of a group|presentation]].

Homology and cohomology groups, on the other hand, are abelian and in many important cases finitely generated. [[Finitely generated abelian group]]s are completely classified and are particularly easy to work with.

== Референце ==
{{Reflist}}


== Литература ==
== Литература ==
{{refbegin|30em}}
* {{Cite book| ref = harv | author=Ayres, Frank|title=Schaum's Outline of Modern Abstract Algebra|location=|publisher=McGraw-Hill|edition=1st|year=1965|isbn=978-0-07-002655-1|pages=}}.
* {{Cite book| ref = harv | author=Ayres, Frank|title=Schaum's Outline of Modern Abstract Algebra|location=|publisher=McGraw-Hill|edition=1st|year=1965|isbn=978-0-07-002655-1|pages=}}.
* {{citation |first=Dylan G. L. |last=Allegretti |url=http://www.math.uchicago.edu/~may/VIGRE/VIGREREU2008.html |title=Simplicial Sets and van Kampen's Theorem |year=2008}} ''(Discusses generalized versions of van Kampen's theorem applied to topological spaces and simplicial sets).''
* {{citation |last=Bredon |first=Glen E. |author-link=Glen Bredon|title=Topology and Geometry |year=1993 |publisher=Springer |series=Graduate Texts in Mathematics |volume=139 |url=https://books.google.com/books?id=G74V6UzL_PUC |isbn=0-387-97926-3}}.
* {{citation |first=R. |last=Brown |author-link=Ronald Brown (mathematician) |url=https://archive.today/20121222235120/http://www.bangor.ac.uk/r.brown/hdaweb2.html |title=Higher dimensional group theory |year=2007}} ''(Gives a broad view of higher-dimensional van Kampen theorems involving multiple groupoids)''.
* {{citation |first1=R. |last1=Brown |first2=A. |last2=Razak |title=A van Kampen theorem for unions of non-connected spaces |journal=Arch. Math. |volume=42 |pages=85–88 |year=1984 |doi=10.1007/BF01198133 |s2cid=122228464 }}. "Gives a general theorem on the [[fundamental groupoid]] with a set of base points of a space which is the union of open sets."
* {{citation |first1=R. |last1=Brown |first2=K. |last2=Hardie |first3=H. |last3=Kamps |first4=T. |last4=Porter |title=The homotopy double groupoid of a Hausdorff space |journal=Theory Appl. Categories |volume=10 |issue=2 |pages=71–93 |year=2002 |url=http://www.emis.de/journals/TAC/volumes/10/2/10-02abs.html}}.
* {{citation |first1=R. |last1=Brown |first2=P.J. |last2=Higgins |title=On the connection between the second relative homotopy groups of some related spaces |journal=Proc. London Math. Soc. |volume=S3-36 |issue= 2|pages=193–212 |year=1978 |doi=10.1112/plms/s3-36.2.193 }}. "The first 2-dimensional version of van Kampen's theorem."
* {{citation |first1=Ronald |last1=Brown |first2=Philip J. |last2=Higgins |first3=Rafael |last3=Sivera |title=Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids |url=http://www.bangor.ac.uk/~mas010/nonab-a-t.html |year=2011 |publisher=European Mathematical Society |isbn=978-3-03719-083-8 |series=European Mathematical Society Tracts in Mathematics |volume=15|archive-url=https://web.archive.org/web/20090604050453/http://www.bangor.ac.uk/~mas010/nonab-a-t.html |archive-date=2009-06-04 |arxiv=math/0407275 }} This provides a homotopy theoretic approach to basic algebraic topology, without needing a basis in [[singular homology]], or the method of simplicial approximation. It contains a lot of material on [[crossed module]]s.
* {{ citation | first1 = John B. | last1 = Fraleigh | year = 1976 | isbn = 0-201-01984-1 | title = A First Course In Abstract Algebra | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }}
* {{citation |author-link1=Marvin Greenberg |last1=Greenberg |first1=Marvin J. |first2=John R. |last2=Harper |title=Algebraic Topology: A First Course, Revised edition |year=1981 |publisher=Westview/Perseus |series=Mathematics Lecture Note Series |isbn=9780805335576 |url-access=registration |url=https://archive.org/details/algebraictopolog00gree_0 }}. A functorial, algebraic approach originally by Greenberg with geometric flavoring added by Harper.
* {{citation| last=Hatcher |first= Allen |author-link=Allen Hatcher| title=Algebraic Topology |url=http://www.math.cornell.edu/~hatcher/AT/ATpage.html |year= 2002 |publisher=Cambridge University Press |place=Cambridge |isbn=0-521-79540-0}}. A modern, geometrically flavoured introduction to algebraic topology.
* {{citation |first=Philip J. |last=Higgins |title=Notes on categories and groupoids |url=https://books.google.com/books?id=IqdIAAAAMAAJ |year=1971 |publisher=Van Nostrand Reinhold |isbn=9780442034061}}
* {{citation| last=Maunder |first=C. R. F. |title=Algebraic Topology |year=1970 |publisher= Van Nostrand Reinhold |place=London |isbn=0-486-69131-4}}.
* {{citation |author-link=Tammo tom Dieck |first=Tammo |last=tom Dieck |title=Algebraic Topology |url=https://books.google.com/books?id=ruSqmB7LWOcC |year=2008 |publisher=European Mathematical Society |isbn=978-3-03719-048-7 |series=EMS Textbooks in Mathematics}}
* {{citation|first=Egbert|last= van Kampen|author-link=Egbert van Kampen| title=On the connection between the fundamental groups of some related spaces| journal=[[American Journal of Mathematics]]|volume= 55 |year=1933 |issue= 1|pages=261–7 |jstor=51000091}}
* {{Springer |title=Algebraic topology |id=p/a011700}}
* {{cite book |last=May |first=J. Peter |author-link=J. Peter May|title=A Concise Course in Algebraic Topology |year=1999 |publisher=[[University of Chicago Press]] |url=http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf |access-date=2008-09-27 |name-list-style=vanc }} Section 2.7 provides a category-theoretic presentation of the theorem as a colimit in the category of groupoids.
* [[Ronald Brown (mathematician)|Ronald Brown]], `Groupoids and crossed objects in algebraic topology', [[Homology, Homotopy and Applications]], 1 (1999) 1–78.
* {{citation|last=Čech|first=Eduard|author-link=Eduard Čech|title=Höherdimensionale Homotopiegruppen|journal=Verhandlungen des Internationalen Mathematikerkongress, Zürich|year=1932}}.
* {{Springer|title=Homotopy group|id=p/h047930}}
* {{citation|last=Hopf|first=Heinz|author-link=Heinz Hopf|title=Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche|journal=[[Mathematische Annalen]]|volume=104|issue=1|pages=637–665|year=1931|url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002274760|doi=10.1007/BF01457962}}.
* {{cite book|last1=Kamps|first1=Klaus H.|last2=Porter|first2=Timothy|title=Abstract homotopy and simple homotopy theory|publisher=World Scientific Publishing|location=River Edge, NJ|year=1997|isbn=981-02-1602-5|mr=1464944|doi=10.1142/9789812831989}}
* {{cite book|last=Toda|first=Hiroshi|author-link=Hiroshi Toda|title=Composition methods in homotopy groups of spheres|publisher=Princeton University Press|location=Princeton, N.J.|series=Annals of Mathematics Studies|volume=49|year=1962|isbn=0-691-09586-8|mr=0143217}}
* {{cite book|first=George William|last=Whitehead|author-link=George W. Whitehead|title=Elements of homotopy theory|url=https://books.google.com/books?id=wlrvAAAAMAAJ|edition=3rd|series=Graduate Texts in Mathematics|volume=61|year=1978|publisher=Springer-Verlag|location=New York-Berlin|isbn=978-0-387-90336-1|pages=xxi+744|mr=0516508 }}
* {{cite journal |last1 = van den Berg |first1 = J.B. |last2 = Ghrist |first2 = R. |last3 = Vandervorst |first3 = R.C. |last4 = Wójcik |first4 = W. |s2cid = 16865053 |title=Braid Floer homology |journal=Journal of Differential Equations
|date=2015 |volume=259 |issue=5 |pages=1663–1721 |doi=10.1016/j.jde.2015.03.022 |bibcode = 2015JDE...259.1663V |url=http://www.math.vu.nl/~janbouwe/pub/braidfloerhomology.pdf |doi-access = free }}
* {{cite journal|last=Pellikka|first=M|author2=S. Suuriniemi |author3=L. Kettunen |author4=C. Geuzaine |title=Homology and Cohomology Computation in Finite Element Modeling|journal=SIAM J. Sci. Comput.|date=2013|volume=35|issue=5|pages=B1195–B1214|doi=10.1137/130906556|citeseerx=10.1.1.716.3210|url=http://geuz.org/gmsh/doc/preprints/gmsh_homology_preprint.pdf}}
* {{cite journal|last=Arnold|first=Douglas N. |author2=Richard S. Falk |author3=Ragnar Winther|title=Finite element exterior calculus, homological techniques, and applications|journal=Acta Numerica|date=16 May 2006|volume=15|pages=1–155|doi=10.1017/S0962492906210018|bibcode=2006AcNum..15....1A |s2cid=122763537 |url=http://purl.umn.edu/4216 }}
* {{cite book |author-link=Henri Cartan |author2-link=Samuel Eilenberg |last1=Cartan |first1=Henri Paul |last2=Eilenberg |first2=Samuel |title=Homological Algebra |publisher=Princeton University Press |year=1956 |isbn=9780674079779 |series=Princeton mathematical series |volume=19 |oclc=529171}}
* {{cite book |last1=Eilenberg |first1=Samuel |last2=Moore |first2=J.C. |title=Foundations of relative homological algebra |publisher=American Mathematical Society |year=1965 |isbn=9780821812556 |series=Memoirs of the American Mathematical Society number |volume=55 |oclc=1361982}}
* {{citation|editor1-first=Timothy|editor1-last=Gowers|editor1-link=Timothy Gowers|editor2-first=June|editor2-last=Barrow-Green|editor2-link=June Barrow-Green|editor3-first=Imre|editor3-last=Leader|year=2010|title=The Princeton Companion to Mathematics|title-link=The Princeton Companion to Mathematics|publisher=Princeton University Press|isbn=9781400830398}}.
* {{citation|last=Hatcher|first=A.|year=2002|url=http://www.math.cornell.edu/~hatcher/AT/ATchapters.html|title=Algebraic Topology|publisher=Cambridge University Press|isbn=0-521-79540-0}}. Detailed discussion of homology theories for simplicial complexes and manifolds, singular homology, etc.
* {{citation|last=Hilton|first=Peter|year=1988|title=A Brief, Subjective History of Homology and Homotopy Theory in This Century |journal = Mathematics Magazine|volume=60|issue=5|pages=282–291| jstor = 2689545|publisher=Mathematical Association of America|doi=10.1080/0025570X.1988.11977391}}
* {{citation|author-link=David Richeson|last=Richeson|first=D.|title=Euler's Gem: The Polyhedron Formula and the Birth of Topology|publisher=Princeton University|year=2008}}.
* {{citation|last=Spanier|first=Edwin H.|author-link=Edwin Spanier|year=1966|title=Algebraic Topology|publisher=Springer|page=155|isbn=0-387-90646-0}}.
* {{citation|last=Stillwell|first=John|author-link=John Stillwell|year=1993|title=Classical Topology and Combinatorial Group Theory|publisher=Springer|doi=10.1007/978-1-4612-4372-4_6|isbn=978-0-387-97970-0}}.
* {{citation|title=The Heritage of Emmy Noether|editor-first= M.|editor-last =Teicher|editor-link= Mina Teicher |series=Israel Mathematical Conference Proceedings|publisher= [[Bar-Ilan University]]/[[American Mathematical Society]]/[[Oxford University Press]]|year= 1999|oclc= 223099225 |isbn= 978-0-19-851045-1}}
* {{citation|first=Charles A.|last=Weibel|year=1999|chapter-url=http://www.math.uiuc.edu/K-theory/0245/survey.pdf |chapter=28. History of Homological Algebra |title=History of Topology|editor-first=I. M.|editor-last=James|publisher=Elsevier|isbn=9780080534077}}.
* {{Citation | author1-first=Jean | author1-last=Dieudonné | author1-link=Jean Dieudonné | title=History of Algebraic and Differential Topology | publisher=[[Birkhäuser]] | year=1989 | mr=0995842 | isbn=0-8176-3388-X | url-access=registration | url=https://archive.org/details/historyofalgebra0000dieu_g9a3 }}
* {{Citation | author1-first=Albrecht | author1-last=Dold | author1-link=Albrecht Dold | title=Lectures on Algebraic Topology | publisher=[[Springer-Verlag]] | year=1972 | mr=0415602 | isbn=978-3-540-58660-9}}
* {{Citation | author1-first=Samuel | author1-last=Eilenberg | author1-link=Samuel Eilenberg | author2-first=Norman | author2-last=Steenrod | author2-link=Norman Steenrod | title=Foundations of Algebraic Topology | publisher=[[Princeton University Press]] | year=1952 | mr=0050886 | isbn=9780691627236}}
* {{Citation | author1-last=Hartshorne | author1-first=Robin | author1-link=Robin Hartshorne | title=Algebraic Geometry | publisher=[[Springer-Verlag]] | location=New York, Heidelberg | series=Graduate Texts in Mathematics | isbn=0-387-90244-9 | mr=0463157 | year=1977 | volume=52}}
* {{Citation | author1-first=Allen | author1-last=Hatcher | author1-link=Allen Hatcher | title=Algebraic Topology | publisher=[[Cambridge University Press]] | year=2001 | url=http://www.math.cornell.edu/~hatcher/AT/ATpage.html | isbn=0-521-79540-0 | mr =1867354}}
* {{Springer |title=Cohomology |id=p/c023060 }}.
* {{Citation | author1-first=J. Peter | author1-last=May | author1-link=J. Peter May | title=A Concise Course in Algebraic Topology | publisher=[[University of Chicago Press]] | year=1999 | url=http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf | mr=1702278 | isbn=0-226-51182-0}}
* {{Citation | author1-first=Robert | author1-last=Switzer | title=Algebraic Topology — Homology and Homotopy | publisher=[[Springer-Verlag]] | year=1975 | mr=0385836 | isbn=3-540-42750-3}}
* {{Citation|author1-first=René | author1-last=Thom | author1-link=René Thom | mr=0061823| title=Quelques propriétés globales des variétés différentiables|journal=[[Commentarii Mathematici Helvetici]] |volume=28|year=1954|pages= 17–86 |url=http://retro.seals.ch/digbib/view2?pid=com-001:1954:28::48 | doi=10.1007/BF02566923}}

{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Algebraic topology}}
{{Commonscat|Algebraic topology}}
* [https://www.youtube.com/playlist?list=PL6763F57A61FE6FE8] N.J. Windberger intro to algebraic topology, last six lectures with an easy intro to homology
* [https://pi.math.cornell.edu/~hatcher/AT/AT.pdf] Algebraic topology Allen Hatcher - Chapter 2 on homology
* [http://www.encyclopediaofmath.org/index.php/Homology_group ''Homology group'' at Encyclopaedia of Mathematics]


{{Топологија}}
{{Топологија}}

Верзија на датум 17. јул 2022. у 22:30

Торус, један од најчешће проучаваних објеката у алгебарској топологији

Алгебарска топологија је грана математике која се користи алатима апстрактне алгебре у проучавању тополошких простора. Основни циљ је проналажење алгебарских инваријанти које класификују тополошке просторе до на хомеоморфизам. У многим ситуацијама је ово исувише амбициозно, па је разумније поставити скромнији циљ, класификација до на хомотопску еквиваленцију.

Мада алгебарска топологија обично користи алгебру за проучавање тополошких проблема, обратан случај, коришћење топологије за решавање алгебарских проблема, је такође понекад могућ. Алгебарска топологија на пример, омогућава згодан доказ да је свака подгрупа слободне групе такође слободна група.

Главне гране алгебарске топологије

Below are some of the main areas studied in algebraic topology:

Homotopy groups

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.[1]

Homology

In algebraic topology and abstract algebra, homology (in part from Greek ὁμός homos "identical")[2] is a certain general procedure to associate a sequence of abelian groups or modules with a given mathematical object such as a topological space or a group.[3]

Cohomology

In homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups defined from a cochain complex. That is, cohomology is defined as the abstract study of cochains, cocycles, and coboundaries.[4] Cohomology can be viewed as a method of assigning algebraic invariants to a topological space that has a more refined algebraic structure than does homology. Cohomology arises from the algebraic dualization of the construction of homology. In less abstract language, cochains in the fundamental sense should assign 'quantities' to the chains of homology theory.

Manifolds

A manifold is a topological space that near each point resembles Euclidean space. Examples include the plane, the sphere, and the torus, which can all be realized in three dimensions, but also the Klein bottle and real projective plane which cannot be embedded in three dimensions, but can be embedded in four dimensions. Typically, results in algebraic topology focus on global, non-differentiable aspects of manifolds; for example Poincaré duality.

Knot theory

Knot theory is the study of mathematical knots. While inspired by knots that appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Complexes

A simplicial 3-complex.

A simplicial complex is a topological space of a certain kind, constructed by "gluing together" points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex.

A CW complex is a type of topological space introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex).

Метода алгебарских инваријанти

An older name for the subject was combinatorial topology, implying an emphasis on how a space X was constructed from simpler ones[5] (the modern standard tool for such construction is the CW complex). In the 1920s and 1930s, there was growing emphasis on investigating topological spaces by finding correspondences from them to algebraic groups, which led to the change of name to algebraic topology.[6] The combinatorial topology name is still sometimes used to emphasize an algorithmic approach based on decomposition of spaces.[7]

In the algebraic approach, one finds a correspondence between spaces and groups that respects the relation of homeomorphism (or more general homotopy) of spaces. This allows one to recast statements about topological spaces into statements about groups, which have a great deal of manageable structure, often making these statement easier to prove. Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and cohomology groups. The fundamental groups give us basic information about the structure of a topological space, but they are often nonabelian and can be difficult to work with. The fundamental group of a (finite) simplicial complex does have a finite presentation.

Homology and cohomology groups, on the other hand, are abelian and in many important cases finitely generated. Finitely generated abelian groups are completely classified and are particularly easy to work with.

Референце

  1. ^ Ellis, Graham J.; Mikhailov, Roman (2010). „A colimit of classifying spaces”. Advances in Mathematics. 223 (6): 2097—2113. MR 2601009. arXiv:0804.3581Слободан приступ. doi:10.1016/j.aim.2009.11.003Слободан приступ. 
  2. ^ Stillwell 1993, стр. 170
  3. ^ Fraleigh (1976, стр. 163)
  4. ^ Hatcher 2001, стр. 108.
  5. ^ Fréchet, Maurice; Fan, Ky (2012), Invitation to Combinatorial Topology, Courier Dover Publications, стр. 101, ISBN 9780486147888 .
  6. ^ Henle, Michael (1994), A Combinatorial Introduction to Topology, Courier Dover Publications, стр. 221, ISBN 9780486679662 .
  7. ^ Spreer, Jonathan (2011), Blowups, slicings and permutation groups in combinatorial topology, Logos Verlag Berlin GmbH, стр. 23, ISBN 9783832529833 .

Литература

Спољашње везе