Ексцентрицитет

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу
Изглед конусног пресека у зависности од ексцентрицитета

Ексцентрицитет (нумерички) је ненегативни број особен за сваки конусни пресек и једнозначно одређује његов облик. Формалније, два конусна пресека су слична ако и само ако имају исти ексцентрицитет. На ексцентрицитет се може гледати и као одступање конусног пресека од круга:

  • Ексцентрицитет круга је 0
  • Ексцентрицитет елипсе је већи од 0, али мањи од 1.
  • Ексцентрицитет параболе је 1.
  • Ексцентрицитет хиперболе је већи од 1.

Дефиниција[уреди]

Конусни пресек се дефинише као геометријско место тачака у равни са особином да је однос растојања било које тачке на њему од стале тачке (фокус, F) и сталне праве (директриса, d) константан. Тај однос представља нумерички ексцентритет и за произвољну тачку М може се рачунати по формули: .

Линеарни ексцентрицитет елипсе или хиперболе означава се са и представља растојање једног фокуса од центра елипсе или хиперболе. Код круга се центар и фокус поклапају, те је његов линеарни ексцентрицитет 0. С обзиром да парабола нема центар, њен линеарни ексцентрицитет није дефинисан.

Нумерички ексцентрицитет се такође може изразити као однос линеарног ексцентрицитета и велике полуосе за елипсу, односно реалне полуосе за хиперболу: .

Конусни пресек Једначина Ексцентрицитет (e) Линеарни ексцентрицитет (c)
Круг
Елипса или , где је , ,
Парабола или
Хипербола или ,

Ексцентрицитет у астрономији[уреди]

У астрономији, ексцентрицитет (или ексцентричност) орбите је један од шест орбиталних елемената и важна особина путања небеских тела у простору: (планета око сунца, сателита око планета...).

Објекти са екцентрицитетом нула (е = 0) имају кружну путању. Овакав случај у васиони је само теоријски, јер идеално кружна путања у природи не постоји.

Ако је ексцентрицитет путање између нуле и један (0 < е < 1) ради се о елиптичној путањи. Ако је неко тело гравитационо везано за неко друго имаће елиптичну путању око центра масе система. Ексцентрицитет једнак јединици (е = 1) даје параболичну путању, али и овај случај је само идеализован. Ипак има доста тела која имају елиптичну путању са великим ексцентрицитетом који тежи јединици. Рецимо, дугопериодичне комете најчешће имају екцентрицитете е > 0.95.

Објекти са путањом ексцентрицитета изнад јединице (е > 1) имају хиперболичну путању, односно, тај објекат тада није гравитационо везан за систем у односу на који има хиперболичну путању. Рецимо, ако би неко тело пролетело поред планете Земље великом брзином, довољном да га Земља не зароби у своју орбиту, оно ће имати хиперболичну орбиту у односу на Земљу (а ако припада Сунчевом систему, имаће елиптичну путању у односу на Сунце).