E (константа) — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{Short description|2.71828..., base of natural logarithms}}{{рут}}
[[Датотека:hyperbola E.svg|мини|237px|десно|График једначине <math>y=1/x.</math> Овдје је {{mvar|e}} јединствени број већи од 1, што чини осенчену површину једнаком 1.]]
[[Датотека:hyperbola E.svg|мини|237px|десно|График једначине <math>y=1/x.</math> Овдје је {{mvar|e}} јединствени број већи од 1, што чини осенчену површину једнаком 1.]]

'''Број -{e}-''', познат као '''[[Леонард Ојлер|Ојлеров]] број''' или '''[[Џон Непер|Неперова]] константа''', основа је [[природни логаритам|природног логаритма]] и један од најзначајнијих бројева у савременој математици, поред неутрала сабирања и множења [[0 (број)|0]] и [[1 (број)|1]], имагинарне јединице број [[и (број)|''i'']] и броја [[пи]]. Осим што је [[Ирационалан број|ирационалан]] и [[Реалан број|реалан]], овај број је још и [[трансцендентан број|трансцедентан]]. До тридесетог децималног места, овај број износи:
'''Број -{e}-''', познат као '''[[Леонард Ојлер|Ојлеров]] број''' или '''[[Џон Непер|Неперова]] константа''', основа је [[природни логаритам|природног логаритма]] и један од најзначајнијих бројева у савременој математици, поред неутрала сабирања и множења [[0 (број)|0]] и [[1 (број)|1]], имагинарне јединице број [[и (број)|''i'']] и броја [[пи]]. Осим што је [[Ирационалан број|ирационалан]] и [[Реалан број|реалан]], овај број је још и [[трансцендентан број|трансцедентан]]. До тридесетог децималног места, овај број износи:


:-{e}- ≈ 2,71828 18284 59045 23536 02874 71352...
:-{e}- ≈ 2,71828 18284 59045 23536 02874 71352...

It is the [[base of a logarithm|base]] of the [[natural logarithm]]s. It is the [[Limit of a sequence|limit]] of {{math|(1 + 1/''n'')<sup>''n''</sup>}} as {{mvar|n}} approaches infinity, an expression that arises in the study of [[compound interest]]. It can also be calculated as the sum of the infinite [[Series (mathematics)|series]]
<math display ="block">e = \sum\limits_{n = 0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1\cdot 2\cdot 3} + \cdots.</math>

It is also the unique positive number {{mvar|a}} such that the graph of the function {{math|1=''y'' = ''a''<sup>''x''</sup>}} has a [[slope]] of 1 at {{math|1=''x'' = 0}}.

The (natural) [[exponential function]] {{math|1=''f''(''x'') = ''e''<sup>''x''</sup>}} is the unique function {{mvar|f}} that equals its own [[derivative]] and satisfies the equation {{math|1=''f''(0) = 1}}; hence one can also define {{mvar|e}} as {{math|1=''f''(1)}}. The natural logarithm, or logarithm to base {{mvar|e}}, is the [[inverse function]] to the natural exponential function. The natural logarithm of a number {{math|''k'' > 1}} can be defined directly as the [[integral|area under]] the curve {{math|1=''y'' = 1/''x''}} between {{math|1=''x'' = 1}} and {{math|1=''x'' = ''k''}}, in which case {{mvar|e}} is the value of {{math|''k''}} for which this area equals one (see image). There are various [[#Alternative characterizations|other characterizations]].

{{mvar|e}} is sometimes called '''Euler's number''' (not to be confused with [[Euler's constant]] <math>\gamma</math>), after the Swiss mathematician [[Leonhard Euler]], or '''Napier's constant''', after [[John Napier]].<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=e|url=https://mathworld.wolfram.com/e.html|access-date=2020-08-10|website=mathworld.wolfram.com|language=en|ref=mathworld}}</ref> The constant was discovered by the Swiss mathematician [[Jacob Bernoulli]] while studying compound interest.<ref name="Pickover">{{cite book |title=The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics |edition=illustrated |first1=Clifford A. |last1=Pickover |publisher=Sterling Publishing Company |year=2009 |isbn=978-1-4027-5796-9 |page=166 |url=https://books.google.com/books?id=JrslMKTgSZwC}} [https://books.google.com/books?id=JrslMKTgSZwC&pg=PA166 Extract of page 166]</ref><ref name="OConnor">{{cite web|url=<!-- http://www.gap-system.org/~history/PrintHT/e.html -->http://www-history.mcs.st-and.ac.uk/HistTopics/e.html|title=The number ''e''|publisher=MacTutor History of Mathematics|first1=J J|last1=O'Connor|first2=E F|last2=Robertson}}</ref>

The number {{mvar|e}} is of great importance in mathematics,<ref>{{cite book|title = An Introduction to the History of Mathematics|url = https://archive.org/details/introductiontohi00eves_0|url-access = registration|author = Howard Whitley Eves|year = 1969|publisher = Holt, Rinehart & Winston|isbn =978-0-03-029558-4}}</ref>{{pn|date=January 2022}} alongside 0, 1, [[Pi|{{pi}}]], and {{mvar|[[Imaginary unit|i]]}}. All five appear in one formulation of [[Euler's identity]], and play important and recurring roles across mathematics.<ref>{{cite book |title=Euler's Pioneering Equation: The most beautiful theorem in mathematics |edition=illustrated |first1=Robinn |last1=Wilson |publisher=Oxford University Press |year=2018 |isbn=978-0-19-251405-9 |page=(preface) |url=https://books.google.com/books?id=345HDwAAQBAJ}}</ref><ref>{{cite book |title=Pi: A Biography of the World's Most Mysterious Number |edition=illustrated |first1=Alfred S. |last1=Posamentier |first2=Ingmar |last2=Lehmann |publisher=Prometheus Books |year=2004 |isbn=978-1-59102-200-8 |page=68 |url=https://books.google.com/books?id=QFPvAAAAMAAJ}}</ref> Like the constant {{pi}}, {{mvar|e}} is [[Irrational number|irrational]] (that is, it cannot be represented as a ratio of integers) and [[Transcendental number|transcendental]] (that is, it is not a root of any non-zero [[polynomial]] with rational coefficients).<ref name=":1" />


== Дефиниције ==
== Дефиниције ==
Ред 21: Ред 34:
#: <math>e^{\mathrm i\cdot\pi} = -1</math>
#: <math>e^{\mathrm i\cdot\pi} = -1</math>


== Историја ==
== Додатна литература ==
The first references to the constant were published in 1618 in the table of an appendix of a work on logarithms by [[John Napier]]. However, this did not contain the constant itself, but simply a list of [[natural logarithm|logarithms to the base <math>e</math>]]. It is assumed that the table was written by [[William Oughtred]].<ref name="OConnor" />

The discovery of the constant itself is credited to [[Jacob Bernoulli]] in 1683,<ref name="Bernoulli, 1690">Jacob Bernoulli considered the problem of continuous compounding of interest, which led to a series expression for ''e''. See: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the ''Journal des Savants'' (''Ephemerides Eruditorum Gallicanæ''), in the year (anno) 1685.**), ''Acta eruditorum'', pp.&nbsp;219–23. [https://books.google.com/books?id=s4pw4GyHTRcC&pg=PA222#v=onepage&q&f=false On page 222], Bernoulli poses the question: ''"Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?"'' (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would he be owed [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: ''" … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si ''a''=''b'', debebitur plu quam 2½''a'' & minus quam 3''a''."'' ( … which our series [a geometric series] is larger [than]. … if ''a''=''b'', [the lender] will be owed more than 2½''a'' and less than 3''a''.) If ''a''=''b'', the geometric series reduces to the series for ''a'' × ''e'', so 2.5 < ''e'' < 3. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the ''Journal des Sçavans'' of 1685 at the bottom of [http://gallica.bnf.fr/ark:/12148/bpt6k56536t/f307.image.langEN page 314.])</ref><ref>{{cite book|author1=Carl Boyer|author2=Uta Merzbach|author2-link= Uta Merzbach |title=A History of Mathematics|url=https://archive.org/details/historyofmathema00boye|url-access=registration|page=[https://archive.org/details/historyofmathema00boye/page/419 419]|publisher=Wiley|year=1991|isbn=978-0-471-54397-8|edition=2nd}}</ref> who attempted to find the value of the following expression (which is equal to {{mvar|e}}):

:<math>\lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n.</math>

The first known use of the constant, represented by the letter {{math|''b''}}, was in correspondence from [[Gottfried Leibniz]] to [[Christiaan Huygens]] in 1690 and 1691.<ref>{{cite web |url=https://leibniz.uni-goettingen.de/files/pdf/Leibniz-Edition-III-5.pdf |title=Sämliche Schriften Und Briefe |last=Leibniz |first=Gottfried Wilhelm |date=2003 |language=de |quote=look for example letter nr. 6}}</ref> [[Leonhard Euler]] introduced the letter {{mvar|e}} as the base for natural logarithms, writing in a letter to [[Christian Goldbach]] on 25 November 1731.<ref>Lettre XV. Euler à Goldbach, dated November 25, 1731 in: P.H. Fuss, ed., ''Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle'' … (Mathematical and physical correspondence of some famous geometers of the 18th century), vol. 1, (St. Petersburg, Russia: 1843), pp.&nbsp;56–60, see especially [https://books.google.com/books?id=gf1OEXIQQgsC&pg=PA58#v=onepage&q&f=false p. 58.] From p. 58: ''" … ( e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), … "'' ( … (e denotes that number whose hyperbolic [i.e., natural] logarithm is equal to 1) … )</ref><ref>{{Cite book|last=Remmert|first=Reinhold|author-link=Reinhold Remmert|title=Theory of Complex Functions|page=136|publisher=[[Springer-Verlag]]|year=1991|isbn=978-0-387-97195-7}}</ref> Euler started to use the letter {{mvar|e}} for the constant in 1727 or 1728, in an unpublished paper on explosive forces in cannons,<ref name="Meditatio">Euler, ''[https://scholarlycommons.pacific.edu/euler-works/853/ Meditatio in experimenta explosione tormentorum nuper instituta]''. {{lang|la|Scribatur pro numero cujus logarithmus est unitas, e, qui est 2,7182817…}} (English: Written for the number of which the logarithm has the unit, e, that is 2,7182817...")</ref> while the first appearance of {{mvar|e}} in a publication was in Euler's ''[[Mechanica]]'' (1736).<ref>Leonhard Euler, ''Mechanica, sive Motus scientia analytice exposita'' (St. Petersburg (Petropoli), Russia: Academy of Sciences, 1736), vol. 1, Chapter 2, Corollary 11, paragraph 171, p.&nbsp;68. [https://books.google.com/books?id=qalsP7uMiV4C&pg=PA68#v=onepage&q&f=false From page 68:] ''Erit enim <math>\frac{dc}{c} = \frac{dy ds}{rdx}</math> seu <math>c = e^{\int\frac{dy ds}{rdx}}</math> ubi ''e'' denotat numerum, cuius logarithmus hyperbolicus est 1.'' (So it [i.e., ''c'', the speed] will be <math>\frac{dc}{c} = \frac{dy ds}{rdx}</math> or <math>c = e^{\int\frac{dy ds}{rdx}}</math>, where ''e'' denotes the number whose hyperbolic [i.e., natural] logarithm is 1.)</ref> Although some researchers used the letter {{math|''c''}} in the subsequent years, the letter {{mvar|e}} was more common and eventually became standard.

== Референце ==
{{Reflist|}}

== Литература ==
{{refbegin|30em}}
* Maor, Eli; ''{{mvar|e}}: The Story of a Number''. {{page|year=|isbn=978-0-691-05854-2|pages=}}
* Maor, Eli; ''{{mvar|e}}: The Story of a Number''. {{page|year=|isbn=978-0-691-05854-2|pages=}}
* [http://www.johnderbyshire.com/Books/Prime/Blog/page.html#endnote10 Commentary on Endnote 10] of the book ''[[Prime Obsession]]'' for another stochastic representation
* [http://www.johnderbyshire.com/Books/Prime/Blog/page.html#endnote10 Commentary on Endnote 10] of the book ''[[Prime Obsession]]'' for another stochastic representation
* {{cite journal| last = McCartin | first = Brian J. |title=e: The Master of All|journal=The Mathematical Intelligencer|volume=28|year=2006|issue= 2|url=http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/mccartin.pdf|doi=10.1007/bf02987150| pages = 10–21}}
* {{cite journal| last = McCartin | first = Brian J. |title=e: The Master of All|journal=The Mathematical Intelligencer|volume=28|year=2006|issue= 2|url=http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/mccartin.pdf|doi=10.1007/bf02987150| pages = 10–21}}
* {{cite web |url = http://jeff560.tripod.com/stat.html|title=Earliest Uses of Symbols in Probability and Statistics|last2=Miller|first2=Jeff |last1=Aldrich|first1=John}}
* {{cite web |url = http://jeff560.tripod.com/mathword.html|title=Earliest Known Uses of Some of the Words of Mathematics |last2=Miller|first2=Jeff|last1=Aldrich |first1=John }} In particular, the entries for [http://jeff560.tripod.com/b.html "bell-shaped and bell curve"], [http://jeff560.tripod.com/n.html "normal (distribution)"], [http://jeff560.tripod.com/g.html "Gaussian"], and [http://jeff560.tripod.com/e.html "Error, law of error, theory of errors, etc."].
* {{cite book |title=Methods of Information Geometry|last2=Nagaoka|first2=Hiroshi|publisher=Oxford University Press|year=2000|isbn=978-0-8218-0531-2|last1=Amari|first1=Shun-ichi}}
* {{cite book |title=Bayesian Theory|last2=Smith|first2=Adrian F. M.|publisher=Wiley|year=2000|isbn=978-0-471-49464-5 |last1=Bernardo|first1=José M.}}
* {{cite book |title=The Normal Distribution: Characterizations with Applications|last=Bryc|first=Wlodzimierz|publisher=Springer-Verlag|year=1995|isbn=978-0-387-97990-8}}
* {{cite book |title=Statistical Inference|last2=Berger|first2=Roger L.|publisher=Duxbury|year=2001|isbn=978-0-534-24312-8|edition=2nd|last1=Casella|first1=George}}
* {{cite journal |last=Cody|first=William J.|year=1969|title=Rational Chebyshev Approximations for the Error Function|journal=Mathematics of Computation|volume=23|issue=107|pages=631–638|doi=10.1090/S0025-5718-1969-0247736-4|title-link=Error function#cite note-5|doi-access=free}}
* {{cite book |title=Elements of Information Theory|last2=Thomas|first2=Joy A.|publisher=John Wiley and Sons|year=2006|last1=Cover|first1=Thomas M.}}
* {{cite book |title=The Doctrine of Chances|last=de Moivre|first=Abraham|year=1738|isbn=978-0-8218-2103-9|author-link=Abraham de Moivre|title-link=The Doctrine of Chances}}
* {{cite journal |last=Fan|first=Jianqing|year=1991|title=On the optimal rates of convergence for nonparametric deconvolution problems|journal=The Annals of Statistics|volume=19|issue=3|pages=1257–1272|doi=10.1214/aos/1176348248|jstor=2241949|doi-access=free}}
* {{cite book |url=http://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf|title=Natural Inheritance|last=Galton|first=Francis|publisher=Richard Clay and Sons|year=1889|location=London, UK}}
* {{cite book |title=Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions|url=https://archive.org/details/productsofrandom00gala|url-access=registration|last2=Simonelli|first2=Italo|publisher=Marcel Dekker, Inc.|year=2004|isbn=978-0-8247-5402-0|last1=Galambos|first1=Janos}}
* {{cite book |title=Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm|url=https://archive.org/details/theoriamotuscor00gausgoog|last=Gauss|first=Carolo Friderico|year=1809|publisher=Hambvrgi, Svmtibvs F. Perthes et I. H. Besser |language=la|id=[https://books.google.com/books?id=1TIAAAAAQAAJ English translation]|author-link=Carl Friedrich Gauss|trans-title=Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections}}
* {{cite book |title=The Mismeasure of Man|last=Gould|first=Stephen Jay|publisher=W. W. Norton|year=1981|isbn=978-0-393-01489-1|edition=first|author-link=Stephen Jay Gould|title-link=The Mismeasure of Man}}
* {{cite journal |last2=Hartley|first2=Herman O.|last3=Hoel|first3=Paul G.|year=1965|title=Recommended Standards for Statistical Symbols and Notation. COPSS Committee on Symbols and Notation|journal=The American Statistician|volume=19|issue=3|pages=12–14|doi=10.2307/2681417|jstor=2681417|last1=Halperin|first1=Max}}
* {{cite book |title=Computer Approximations|last=Hart|first=John F.|publisher=John Wiley & Sons, Inc.|year=1968|isbn=978-0-88275-642-4|location=New York, NY|display-authors=etal}}
* {{Springer
| title = Normal Distribution
| id = p/n067460
}}
* {{cite book |title=The Bell Curve: Intelligence and Class Structure in American Life|last2=Murray|first2=Charles|publisher=[[Free Press (publisher)|Free Press]]|year=1994|isbn=978-0-02-914673-6|last1=Herrnstein|first1=Richard J.|author-link2=Charles Murray (political scientist)|title-link=The Bell Curve}}
* {{cite book|title=Problems of Relative Growth|last=Huxley|first=Julian S.|publisher=London|year=1932|isbn=978-0-486-61114-3|oclc=476909537}}
* {{cite book|title=Continuous Univariate Distributions, Volume 1|last2=Kotz|first2=Samuel|last3=Balakrishnan|first3=Narayanaswamy|publisher=Wiley|year=1994|isbn=978-0-471-58495-7|last1=Johnson|first1=Norman L.}}
* {{cite book|title=Continuous Univariate Distributions, Volume 2|last2=Kotz|first2=Samuel|last3=Balakrishnan|first3=Narayanaswamy|publisher=Wiley|year=1995|isbn=978-0-471-58494-0|last1=Johnson|first1=Norman L.}}
* {{cite journal|last=Karney|first=C. F. F.|year=2016|title=Sampling exactly from the normal distribution|journal=ACM Transactions on Mathematical Software|volume=42|issue=1|pages=3:1–14|arxiv=1303.6257|doi=10.1145/2710016|s2cid=14252035}}
* {{cite journal|last2=Monahan|first2=John F.|year=1977|title=Computer Generation of Random Variables Using the Ratio of Uniform Deviates|journal=ACM Transactions on Mathematical Software|volume=3|issue=3|pages=257–260|doi=10.1145/355744.355750|first1=Albert J.|last1=Kinderman|s2cid=12884505}}
* {{cite book|title=Handbook of Statistical Distributions with Applications|last=Krishnamoorthy|first=Kalimuthu|publisher=Chapman & Hall/CRC|year=2006|isbn=978-1-58488-635-8}}
* {{cite book|title=Normative Terminology: 'Normal' in Statistics and Elsewhere|last2=Stigler|first2=Stephen M.|publisher=Oxford University Press|year=1997|isbn=978-0-19-852341-3|editor-last = Spencer|editor-first = Bruce D.|series=Statistics and Public Policy|last1=Kruskal|first1=William H.}}
* {{cite journal|last=Laplace|first=Pierre-Simon de|year=1774|title=Mémoire sur la probabilité des causes par les événements|url=http://gallica.bnf.fr/ark:/12148/bpt6k77596b/f32|journal=Mémoires de l'Académie Royale des Sciences de Paris (Savants étrangers), Tome 6|pages=621–656|author-link=Pierre-Simon Laplace}} Translated by Stephen M. Stigler in ''Statistical Science'' '''1''' (3), 1986: {{jstor|2245476}}.
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|E (mathematical constant)}}
{{Commons category|E (mathematical constant)}}
* [https://web.archive.org/web/20070210095028/http://www.gutenberg.org/ebooks/127 The number {{mvar|e}} to 1 million places] and [https://apod.nasa.gov/htmltest/rjn_dig.html NASA.gov] 2 and 5 million places

* [http://mathworld.wolfram.com/eApproximations.html {{mvar|e}} Approximations]&nbsp;– Wolfram MathWorld
{{клица-мат}}
* [http://jeff560.tripod.com/constants.html Earliest Uses of Symbols for Constants] Jan. 13, 2008
* [http://www.gresham.ac.uk/lectures-and-events/the-story-of-e "The story of {{mvar|e}}"], by Robin Wilson at [[Gresham College]], 28 February 2007 (available for audio and video download)
* [http://pisearch.org/e {{mvar|e}} Search Engine] 2 billion searchable digits of {{mvar|e}}, {{pi}} and {{radic|2}}


{{Ирационалан број}}
{{Ирационалан број}}

Верзија на датум 10. јул 2022. у 08:38

График једначине Овдје је e јединствени број већи од 1, што чини осенчену површину једнаком 1.

Број e, познат као Ојлеров број или Неперова константа, основа је природног логаритма и један од најзначајнијих бројева у савременој математици, поред неутрала сабирања и множења 0 и 1, имагинарне јединице број i и броја пи. Осим што је ирационалан и реалан, овај број је још и трансцедентан. До тридесетог децималног места, овај број износи:

e ≈ 2,71828 18284 59045 23536 02874 71352...

It is the base of the natural logarithms. It is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series

It is also the unique positive number a such that the graph of the function y = ax has a slope of 1 at x = 0.

The (natural) exponential function f(x) = ex is the unique function f that equals its own derivative and satisfies the equation f(0) = 1; hence one can also define e as f(1). The natural logarithm, or logarithm to base e, is the inverse function to the natural exponential function. The natural logarithm of a number k > 1 can be defined directly as the area under the curve y = 1/x between x = 1 and x = k, in which case e is the value of k for which this area equals one (see image). There are various other characterizations.

e is sometimes called Euler's number (not to be confused with Euler's constant ), after the Swiss mathematician Leonhard Euler, or Napier's constant, after John Napier.[1] The constant was discovered by the Swiss mathematician Jacob Bernoulli while studying compound interest.[2][3]

The number e is of great importance in mathematics,[4][потребна страна] alongside 0, 1, π, and i. All five appear in one formulation of Euler's identity, and play important and recurring roles across mathematics.[5][6] Like the constant π, e is irrational (that is, it cannot be represented as a ratio of integers) and transcendental (that is, it is not a root of any non-zero polynomial with rational coefficients).[1]

Дефиниције

Број e се може представити као:

  1. Гранична вредност бесконачног низа:
  2. Сума бесконачног низа:
    Где је n! факторијел n.
  3. Позитивна вредност која задовољава следећу једначину:
    Може се доказати да су наведена три исказа еквивалентна.
  4. Овај број се среће и као део Ојлеровог идентитета:

Историја

The first references to the constant were published in 1618 in the table of an appendix of a work on logarithms by John Napier. However, this did not contain the constant itself, but simply a list of logarithms to the base . It is assumed that the table was written by William Oughtred.[3]

The discovery of the constant itself is credited to Jacob Bernoulli in 1683,[7][8] who attempted to find the value of the following expression (which is equal to e):

The first known use of the constant, represented by the letter b, was in correspondence from Gottfried Leibniz to Christiaan Huygens in 1690 and 1691.[9] Leonhard Euler introduced the letter e as the base for natural logarithms, writing in a letter to Christian Goldbach on 25 November 1731.[10][11] Euler started to use the letter e for the constant in 1727 or 1728, in an unpublished paper on explosive forces in cannons,[12] while the first appearance of e in a publication was in Euler's Mechanica (1736).[13] Although some researchers used the letter c in the subsequent years, the letter e was more common and eventually became standard.

Референце

  1. ^ а б Weisstein, Eric W. „e”. mathworld.wolfram.com (на језику: енглески). Приступљено 2020-08-10. 
  2. ^ Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (illustrated изд.). Sterling Publishing Company. стр. 166. ISBN 978-1-4027-5796-9.  Extract of page 166
  3. ^ а б O'Connor, J J; Robertson, E F. „The number e. MacTutor History of Mathematics. 
  4. ^ Howard Whitley Eves (1969). An Introduction to the History of MathematicsНеопходна слободна регистрација. Holt, Rinehart & Winston. ISBN 978-0-03-029558-4. 
  5. ^ Wilson, Robinn (2018). Euler's Pioneering Equation: The most beautiful theorem in mathematics (illustrated изд.). Oxford University Press. стр. (preface). ISBN 978-0-19-251405-9. 
  6. ^ Posamentier, Alfred S.; Lehmann, Ingmar (2004). Pi: A Biography of the World's Most Mysterious Number (illustrated изд.). Prometheus Books. стр. 68. ISBN 978-1-59102-200-8. 
  7. ^ Jacob Bernoulli considered the problem of continuous compounding of interest, which led to a series expression for e. See: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the Journal des Savants (Ephemerides Eruditorum Gallicanæ), in the year (anno) 1685.**), Acta eruditorum, pp. 219–23. On page 222, Bernoulli poses the question: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would he be owed [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: " … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." ( … which our series [a geometric series] is larger [than]. … if a=b, [the lender] will be owed more than 2½a and less than 3a.) If a=b, the geometric series reduces to the series for a × e, so 2.5 < e < 3. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the Journal des Sçavans of 1685 at the bottom of page 314.)
  8. ^ Carl Boyer; Uta Merzbach (1991). A History of MathematicsНеопходна слободна регистрација (2nd изд.). Wiley. стр. 419. ISBN 978-0-471-54397-8. 
  9. ^ Leibniz, Gottfried Wilhelm (2003). „Sämliche Schriften Und Briefe” (PDF) (на језику: немачки). „look for example letter nr. 6 
  10. ^ Lettre XV. Euler à Goldbach, dated November 25, 1731 in: P.H. Fuss, ed., Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle … (Mathematical and physical correspondence of some famous geometers of the 18th century), vol. 1, (St. Petersburg, Russia: 1843), pp. 56–60, see especially p. 58. From p. 58: " … ( e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), … " ( … (e denotes that number whose hyperbolic [i.e., natural] logarithm is equal to 1) … )
  11. ^ Remmert, Reinhold (1991). Theory of Complex Functions. Springer-Verlag. стр. 136. ISBN 978-0-387-97195-7. 
  12. ^ Euler, Meditatio in experimenta explosione tormentorum nuper instituta. Scribatur pro numero cujus logarithmus est unitas, e, qui est 2,7182817… (English: Written for the number of which the logarithm has the unit, e, that is 2,7182817...")
  13. ^ Leonhard Euler, Mechanica, sive Motus scientia analytice exposita (St. Petersburg (Petropoli), Russia: Academy of Sciences, 1736), vol. 1, Chapter 2, Corollary 11, paragraph 171, p. 68. From page 68: Erit enim seu ubi e denotat numerum, cuius logarithmus hyperbolicus est 1. (So it [i.e., c, the speed] will be or , where e denotes the number whose hyperbolic [i.e., natural] logarithm is 1.)

Литература

Спољашње везе