Ентропија

Из Википедије, слободне енциклопедије

Ентропија (грч. έντροπή, „обрт ка унутра“, као појам увео Рудолф Јулијус Εмануел Клаузијус 1865) је величина стања која се може посматрати као мера за „везану“ енергију неког затвореног материјалног система, тј. за енергију која се, насупрот „слободној“, више не може претворити у рад. Супротни појам је ектропија.

Од Болцмана (Предавања о принципима механике, 1897. до 1904) ентропијом се у смислу „кинетичке теорије гасова“ означава топлотни садржај неког система као енергија кретања његових молекула.

Ентропија дефиниција[уреди]

Ентропија је тежња система да спонтано пређе у стање веће неуређености, дакле, ентропија је мера неуређености система. Највећа уређеност система је на температури једнакој апсолутној нули. Пошто она не може да се постигне, према Трећем принципу термодинамике (Нернстова теорема), узима се да ентропија асимптотски тежи нули када температура система прилази апсолутној нули.

Ентропија - термодинамичка дефиниција[уреди]

Ентропија је величина одређена количником топлоте и апсолутне температуре.

Други принцип термодинамике описује последице ентропије: Није могућ перпетуум мобиле друге врсте. Или простије, не може се пренети топлота са хладнијег на топлије тело без уложеног рада. Исти принцип предвиђа да ентропија система препуштеног самом себи може само спонтано да расте, систем препуштен сам себи настоји да пређе из стања мање у стање веће неуређености.

Са ентропијом се непрекидно срећемо у свакодневном животу. Свако је видео књигу како падне са стола при чему се њена кинетичка енергија претворила у топлоту и мало загрејала подлогу на коју је пала. Али нико није видео да књига са пода полети на полицу уз спонтано хлађење пода. У првом случају ентропија система расте а у другом опада. Сви спонтани процеси се одигравају у смеру пораста ентропије. Наравно, нико нас не спречава да књигу подигнемо и вратимо на полицу. Али тада смо смањили ентропију на рачун рада који је извршен подизањем књиге. А да би се дошло до те енергије морала је да порасте ентропија на неком другом месту при чему је укупан резултат пораст ентропије у свемиру.

Ентропија у статистичкој механици[уреди]

Ентропија се у статистичкој механици може дефинисати као производ Болцманове константе и природног логаритма броја могућих стања датог изолованог термодинамичког система.

S = k \, \ln W.

Значај ове једнакости се огледа у повезивању макроскопског са микроскопским стањем система.

Болцманова константа, k служи да учини статистичку механичку ентропију једнаку класичној термодинамичкој ентропији Клаузија:

\Delta S = \int \frac{dQ}{T}

Равноправно са претходним то се може изразити овако:

{S^{\,'} = \ln \Omega} \; ; \; \; \; \Delta S^{\,'} = \int \frac{\mathrm{d}Q}{kT}.

Теорија информација[уреди]

Vista-xmag.png За више информација погледајте чланак Ентропија (теорија информација)

У теорији информације ентропија представља количину информације која недостаје пре пријема, и понекад се назива Шенонова ентропија. Шенонова ентропија је широк и општи концепт који налази примене како у теорији информације тако и у термодинамици. Појам је уведен од Клода Шенона, 1948. године ради проучавања количине информација у послатој поруци. Дефиниција информационе ентропије је, међутим, прилично уопштена, и изражава се преко дискретног скупа вероватноћа p_i:

H(X) = -\sum_{i=1}^n {p(x_i) \log p(x_i)}.

У случају послатих порука, ове вероватноће су вероватноће да је нека порука заправо послата, и да је ентропија система порука у ствари мера количине информације садржане у поруци. За случај једнаких вероватноћа (тј. ако је свака порука једнако вероватна), Шенонова ентропија (у битима) је број да/не питања потребних за одређивање садржаја поруке.

Што се тиче везе између информационе и термодинамичке ентропије, већина аутора сматра да постоји веза између њих, док неколицина тврди супротно.

Изрази за две ентропије су веома слични. Информациона ентропија H за једнаке вероватноће p_i = p = 1/n је

H = k\, \log(1/p),

где k представља константу која одређује јединицу ентропије. На пример, ако се ентропија представља у битима, тада је k = 1/ln(2). Термодинамичку ентропију S, са тачке гледишта статистичке механике, је прво изразио Болцман:

S = k_\mathrm{B} \log(1/p),

где је p вероватноћа да се систем нађе у одређеном микростању, ако се налази у неком макростању, где је k_\mathrm{B} Болцманова константа. Може се приметити да је термодинамичка ентропија у ствари Болцманова константа, подељена са log(2), помножена бројем да/не питања која се морају поставити да би се одредило микростање система, ако знамо макростање. Везу између ове две ентропије дао је у низу радова Едвин Џејнс почев од 1957.

Постоји више начина показивања еквиваленције информационе и физичке ентропије, тј. еквиваленције Шенонове и Болцманове ентропије. Међутим, неки аутори сматрају да H функцију у теорији информације не треба називати ентропијом, и користе други Шенонов израз, „неодређеност“.

Види још[уреди]

Спољашње везе[уреди]