Канторов став о равномерној непрекидности

Из Википедије, слободне енциклопедије

Канторов став даје општи критеријум за одређивање равномерне непрекидности функција.

Формулација[уреди]

Канторов став о равномерној непрекидности функција или Канторова теорема о равномерној непрекидности функција гласи:

Свака функција која је непрекидна на интервалу , равномерно је непрекидна на њему.

Доказ[уреди]

Део 1:

Из дефиниције непрекидности имамо да ако је функција непрекидна на интервалу (дато као услов за теорему), онда за произвољну тачку из тог сегмента постоји нека околина и за све тачке важи: .

Изаберимо 2 тачке, . Тада је:

Део 2:

Изаберимо сада околину дупло мањег полупречника, . Ако такву околину конструишемо за сваку тачку сегмента , добићемо скуп отворених интервала који очигледно прекрива цео сегмент , па скуп тих интервала чини покривач сегмента . Из Борел-Лебегове леме имамо да постоји коначан подпокривач тог интервала, тј. да постоје тачке тако да њихове околине образују подпокривач сегмента . Како тачака има коначно много, може се међу њиховим околинама пронаћи најмање и означимо га са .

Део 3:

Изаберимо сада неку тачку из интервала која припада неком од интервала , што записујемо: .

Изаберимо и тачку из интервала која се налази у -околини тачке , тј. . То можемо урадити по дефиницији, зато што је функција у целом сегменту непрекидна, а пошто је , онда је сигурно и .

Сада, из и имамо да је:

тј. обе тачке, и и , припадају -околини тачке , односно, обе се налазе унутар неке околине , па из Дела 1: имамо да је онда , што је и требало доказати.

Напомена[уреди]

Канторов став у наведеном облику се односи на реалну анализу. Аналогна теорема постоји и у општијем случају, у топологији код метричких простора.

Види још[уреди]

Литература[уреди]

  • Душан Аднађевић, Зоран Каделбург: Математичка анализа 1, Студентски трг, Београд, 1995.