Mehanika kontinuuma

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу

Mehanika kontinuuma je grana mehanike koja se bavi mehaničkim ponašanjem modelovanih materijala kao kontiunalne mase pre nego diskretnih čestica. Frencuski matematičar Ogisten Luj Koši je prvi formulisao takve modele u 19. veku.

Objašnjenje[уреди]

Modelovanje objekta kao kontinuuma podrazumeva da supstanca datog predmeta u potpunosti ispunjava prostor koji zauzima. Modelovanje objekata na ovaj način zanemaruje činjenicu da je materija sačinjena od atoma, i da stoga nije neprekidna; međutim, pri razmerama dužine mnogo većim od međuatomskih rastojanja, takvi modeli su vrlo tačni. Fundamentalni fizički zakoni kao što su očuvanje mase, očuvanje momenta i očuvanje energije mogu se primeniti na ove modele, kako bi se dobile diferencijalne jednačine koje opisuju ponašanje objekata, a neke informacije o proučavanom materijalu dodaju se putem konstitutivnih odnosa.

Mehanika kontinuuma bavi se fizičkim svojstvima čvrstih materija i tečnosti koja su nezavisna o bilo kog datog koordinatnom sistemu u kome se posmatraju. Ova fizička svojstva se zatim predstavljaju tenzorima, matematičkim objektima koji imaju traženo svojstvo da su nezavisni od koordinatnog sistema. Tenzori se mogu izraziti u koordinatnim sistemima radi lakšeg računanja.

Koncept kontinuuma[уреди]

Materijali, poput čvrste materije, tečnosti i gasova, sastoje se od molekula razdvojenih prostorom. Na mikroskopskom nivou, materijali imaju pukotine i diskontinuitete. Međutim, određeni fizički fenomeni mogu se modelovati uz pretpostavku da materijali postoje kao kontinuum, što znači da je materija u telu neprekidno distribuirana i da ispunjava celokupno područje prostora koji zauzima. Kontinuum je telo koje se može neprestano deliti u infinitezimalne elemente sa svojstvima koja su karakteristična za celokupni materijal.

Validnost pretpostavke o kontinuumu može se potvrditi teorijskom analizom, kojom se bilo identifikuje neka jasna periodičnost ili postoje statistička homogenost i ergodičnost mikrostrukture. Tačnije, hipoteza/pretpostavka o kontinuumu zavisi od koncepata reprezentativne elementarne zapremine i separacije skala zasnovane na uslovu Hil-Mandela. Ovaj uslov pruža vezu između eksperimentalnog i teoretskog gledišta na konstitutivne jednačine (linearna i nelinearna elastična/neelastična ili uparena polja), kao i načina prostornog i statističkog usrednjavanja mikrostrukture.[1]

Kada razdvajanje skala ne postoji, ili kada se želi da se uspostavi kontinuum finije rezolucije od veličine reprezentativnog zapreminskog elementa (engl. representative volume element - RVE), koristi se statistički zapreminski element engl. (statistical volume element - SVE), što dovodi do randomnih polja kontinuuma. Potonja zatim pružaju mikromehaničku osnovu za stohastičke konačne elemente (engl. stochastic finite element - SFE). Nivoi SVE i RVE vezuju mehaniku kontinuuma sa statističkom mehanikom. RVE se može proceniti samo na ograničen način putem eksperimentalnog testiranja: kada konstitutivni respons postane prostorno homogen.

Konkretno za fluide, Knudsenov broj se koristi za procenu u kojoj se meri može postići približna vrednost kontinuiteta.

Reference[уреди]

  1. ^ Ostoja-Starzewski, M. (2008). „7-10”. Microstructural randomness and scaling in mechanics of materials. CRC Press. ISBN 978-1-58488-417-0. 

Literatura[уреди]

  • Batra, R. C. (2006). Elements of Continuum Mechanics. Reston, VA: AIAA. 
  • Eringen, A. Cemal (1980). Mechanics of Continua (2nd изд.). Krieger Pub Co. ISBN 978-0-88275-663-9. 
  • Chen, Youping; James D. Lee; Azim Eskandarian (2009). Meshless Methods in Solid Mechanics (First изд.). Springer New York. ISBN 978-1-4419-2148-2. 
  • Dimitrienko, Yuriy (2011). Nonlinear Continuum Mechanics and Large Inelastic Deformations. Germany: Springer. ISBN 978-94-007-0033-8. 
  • Fung, Y. C. (1977). A First Course in Continuum Mechanics (2nd изд.). Prentice-Hall, Inc. ISBN 978-0-13-318311-5. 
  • Malvern, Lawrence E. (1969). Introduction to the mechanics of a continuous medium. New Jersey: Prentice-Hall, Inc. 
  • Wright, T. W. (2002). The Physics and Mathematics of Adiabatic Shear Bands. Cambridge, UK: Cambridge University Press. 

Spoljašnje veze[уреди]