Статистичка механика

С Википедије, слободне енциклопедије

Статистичка механика (често називана статистичка физика), је област физике, која се бави проучавањем физичких система сачињених од великог броја честица (реда величине Авогадровог броја). Статистичка физика описује мерљиве макроскопске физичке величине на основу особина, понашања и узајамног дејства микрочестица тог система. За овакво проучавање, статистичка механика користи методе теорије вероватноће и статистике. Она је неопходна за фундаментална изучавања физичких система који имају велик број степена слободе. Овај присту је базиран на статистичким методама, теорији вероватноће и макроскопским физичким законима.[1][2][3][note 1]

Статистичка механика се може користити за објашњавање термодинамичког понашања великих система. Ова грана статистичке механике, која третира и проширује статистичку термодинамику, је позната као статистичка термодинамика или равнотежна статистичка механика.

Развој статистичке механике[уреди | уреди извор]

Статистичка механика је настала као покушај да се термодинамичке особине система објасне преко микрочестица које чине тај систем.[4] Као први од значајних радова везаних за статистичку физику, појавио се рад Рудолфа Клаузијуса 1857. године из молекуларне теорије гасова у коме је показао да је топлота заправо кинетичка енергија хаотичног кретања молекула. Ослањајући се на његове радове, Џејмс Максвел је 1859. дошао до функције расподеле молекула гаса по брзинама. Посебан допринос даљем развоју статистичке механике крајем 19. века дали су Болцман, који је ослањајући се на интуитивно записану кинетичку једначину, 1872. године извео H-heat теорему уз помоћ које је дао статистичко објашњење другог закона термодинамике и Гибсу који је оваквом тумачењу термодинамике кинетичком теоријом дао назив “статистичка механика” како се ова област и данас зове. Радовима Гибса, статистичка механика добија фундаменталне основе, чиме је омогућено да се она примени на све системе који се састоје од честица, а не као до тада само на гасове.

Бозе и Ајнштајн примењују методе статистичке механике на фотоне као квантне честице, док Ферми и Дирак дају статистику којом се описују електрони као честице. Развојем квантне механике као посебне области физике, Џон фон Нојман формулише квантно механичку генерализацију статистичке механике чиме утемељењује квантну статистичку механику. Развојем нуклеарне физике, физике плазме и физичке електронике добијени су и значајни практични резултати. Радом у овим пољима Николај Богољубов показује (1946) како се користећи принцип инверзије времена полазећи од једначина које описују стања појединих честица може добити Болцманова кинетичка једначина екзактним путем, чиме су постали јасни услови при којима важе до тада познате кинетичке једначине. Богољубов класификује интерналну структуру статистичке механике.[5]

Хронологија важнијих открића[уреди | уреди извор]

Подела статистичке механике[уреди | уреди извор]

Области примене[уреди | уреди извор]

Статистичка физика се примењује у областима које се баве проучавањем гасова, течности, метала, полупроводника, плазме, електромагнетног-зрачења и разним системима са великим бројем чинилаца. Микрочестице које сачињавају систем могу бити молекули, атоми, јони, електрони (фермиони), фотони (бозони), фонони или неке макроскопске величине којих има велик број.

Статистичка физика има велику примену у другим областима због тога што се преко ње процеси који описују систем могу представити процесима који описују делове тог система.

Примењује се у другим областима физике (термодинамика, атомска физика, нуклеарна физика), у електроници (физичка електроника, микроелектроника, оптоелектроника), у хемији, биологији, медицини.

Види још[уреди | уреди извор]

Напомене[уреди | уреди извор]

  1. ^ Термин статистичка механика се понекад користи у смислу статистичке термодинамике. Овај чланак узима шире гледиште. По неким дефиницијама, статистичка физика је још шири термин којим се обухватају статистичке студије било ког типа физичког система, мада се често поистовећује са статистичком механиком.

Референце[уреди | уреди извор]

Литература[уреди | уреди извор]

Спољашње везе[уреди | уреди извор]