Торањ за хлађење

С Википедије, слободне енциклопедије
(преусмерено са Rashladni toranj)

Хиперболоидна расхладна кула
Типични расхладни торањ са отвореним кругом са присилним испаравањем који одбацује топлоту из воденог круга кондензатора индустријске расхладне јединице.
Влажно расхладни торњеви са присилним пропухом (висина: 34 метра) и влажни хладњаци са природним пропухом (висина: 122 метра) у Вестфалији, Немачка.
Камуфлирани” влажни расхладни торањ са природним пропухом у Дрездену (Немачка)

Торањ за хлађење или расхладна кула је испарни хладњак који се користи за хлађење воде или другог радног медија на температуру околног ваздуха. Ове куле користе испаравање воде како би смањиле температуру система. Обично се користе у рафинеријама, хемијским електранама, нуклеарним електранама итд. Куле могу бити различитих величина и облика, од малих димњака на кућама па све до хиперболоидних кула, које могу да буду високе и до 200 m, са пречником и до 100 m, или пак правоугаоног облика, које могу бити висине до 40 m и дужине до 80 m.

Када електрана не би имала торањ за хлађење, морала би да располаже са око 100.000 кубних метара воде на сат, и та количина воде би морала да се континуално враћа у океан, језеро или реку, одакле се вода узима. Овакав принцип рада, без расхладне куле, може временом довести до повећања температуре реке или језера, што би довело до великог поремећаја локалног екосистема и животне средине. Расхладна кула омогућава дисипацију одређене количине топлоте у атмосферу, где се помоћу ветра и ваздуха шири у много већој запремини него што топла вода може да расподели у унутрашњости саме водене масе из које је првобитно узета.

Историја[уреди | уреди извор]

Гравира из 1902. године на „Барнардовом самохладном торњу без вентилатора“, раном великом испаравајућем расхладном торњу који се радије ослањао на природну промају и отворене странице, а не на вентилатор; вода која се хладила прскана је одозго на радијални узорак вертикалних мрежица од жичане мреже.

Расхладни торњеви су настали у 19. веку развојем кондензатора за употребу са парном машином.[1] Кондензатори користе релативно хладну воду, на разне начине, за кондензацију паре која излази из цилиндара или турбина. Ово смањује повратни притисак, што заузврат смањује потрошњу паре, а тиме и потрошњу горива, док истовремено повећава снагу и рециклира котловску воду.[2] Међутим, кондензаторима је потребан довољан довод расхладне воде, без кога су непрактични.[3][4] Иако употреба воде није проблем код бродских мотора, она представља значајно ограничење за многе копнене системе.

До почетка 20. века, неколико испаривачких метода рециклирања расхладне воде било је у употреби у подручјима којима недостаје адекватно снабдевање водом, као и на урбаним локацијама где општински водоводи често нису довољно снабдевени; поуздано у време потражње; или на други начин довољно за задовољавање потреба за хлађењем.[1][4] У областима са расположивим земљиштем, системи су попримили облик расхладног резервоара; у областима са ограниченим земљиштем, попут градова, они су имају облик расхладних торњева.[3][5]

Ови рани торњеви били су постављене на крововима зграда или као самостојеће грађевине, које су вентилатори снабдевали ваздухом или су се ослањали на природни проток ваздуха.[3][5] Један амерички инжењерски уџбеник из 1911. године описао је један дизајн као „кружну или правоугаону шкољку од лагане плоче - попут димњачке конструкције која је знатно вертикално скраћена (висока од 20 до 40 стопа) и веома увећан бочно. На врху се налазе разводна корита у која се мора пумпати вода из кондензатора; из њих се она спушта преко „простирки“ од дрвених летви или плетених жичаних паравана који испуњавају простор у кули.“[5]

Хиперболоидни расхладни торањ патентирали су холандски инжењери Фредерик ван Итерсон и Герард Кујперс 1918. године.[6] Први хиперболоидни расхладни торњеви изграђени су 1918. године у близини Херлена. Први у Уједињеном Краљевству изграђени су 1924. године у електрани Листер Дриве у Ливерпоолу, у Енглеској, за хлађење воде која се користи у електрани на угаљ.[7]

Процењује се да ће потрошња расхладне воде у унутрашњој преради и електранама смањити расположивост електричне енергије већине термоелектрана до 2040–2069.[8]

Расхладна вода[уреди | уреди извор]

Рашладна вода има у модерној погонској техници врло важну улогу. Рафинерије, челичане, гасне турбине, нуклеарни реактори, итд. не могу у својој функцији деловати без рашладне воде. Свака машина, која ослобађа топлотну енергију, троши расхладну воду. Под расхладном водом се подразумева вода која има улогу медија за одвођење топлоте код технолошких процеса. Пред индустријску расхладну воду се постављају данас потпуно одређени захтеви у погледу њеног састава. Практичко нема на располагању воде, која би идеално у потпуности одговарала тим захтевима. Стога је нужна припрема и обрада воде која се користи у расхладне сврхе.

Врсте расхладних торњева[уреди | уреди извор]

Расхладни торњеви се деле према типу струјања (природна или механичка циркулација) и према смеру струјања ваздуха (кружно или противсмерно). Рашладни торњеви с присилном циркулацијом (механичком) се још могу поделити на притисне и индуковане.

Рашладни торњеви с природном циркулацијом[уреди | уреди извор]

Рашладни торњеви с природном циркулацијом се понекад и зову хиперболичним торњевима због свог карактеристичног облика и функционисања торња. Њима није потребан вентилатор зато што су дизајнирани на начин да искористе разлику у густини између ваздуха који улази у торањ и топлијег ваздуха унутар самог торња.

Топао и влажан ваздух унутар торња је мање густине и он се подиже према горе, док се хладан и гушћи ваздух спушта према доњем делу торња. Разлог за велику висину расхладног торања (до 200м) је што је потребно остварити адекватно струјање ваздуха. Расхладни торњеви с природном циркулацијом могу имати противструјно или кружно струјање ваздуха. Морају имати елиминатор капљица како мање капљице не би отишле са струјом ваздуха. Због губитка воде потребно је додавати свежу воду. Пунило торња има летвице разних облика које успоравају падање воде и повећавају површину размене, а циљ им је да се интензивира интеракција воде и ваздуха, а при томе термодинамички не учествују у процесу. Учинак торња зависи само од енталпије ваздуха, а не од температуре.

Рашладни торњеви с присилним струјањем[уреди | уреди извор]

Рашладни торњеви с присилним струјањем користе вентилатор за струјање ваздуха према дну торња. Струјање вазудха може бити индуковано и притисно. Могу се још поделити на расхладне торњеве с кружним и противсмерним струјањем. Скоро сви расхладни торњеви с присилном циркулацијом су протусмерни. Они дају поузданији проток ваздуха и тиме је ефикасност већа. Снага вентилатора је сразмерно мала с обзиром на измењени топлотни ток (1:100), али код постројења од нпр. 100 000 kW била би потребна снага вентилатора од 1000 kW што је јако пуно, те се у то случају прелази на рашладне торњеве с природним струјањем. Карактеришу их мање димензије измјењивачке површине и нижа излазна температура медија који се хлади, те укупне мање димензије.

Топлотни учинак расхладног торња пре свега зависи од температуре влажног термометра ваздуха. Температура сувог термометра и релативна влажност имају незнатан утицај на топлотни учинак расхладних торњева с присилним струјањем, али утичу на количину испарене воде унутар расхладног торња. Загрејавање ваздуха може се поделити на осетни део и на латентни део топлоте коју ваздух преузима хлађењем воде. Ако се улазном ваздуху повећава температура сувог термометра, уз непромењену температуру влажног термометра, укупна размена топлоте остаје иста, али се мења однос измењене осетне и латентне топлоте.

Кружни рашладни торањ[уреди | уреди извор]

Код кружних рашладних торњева ваздух попречно струји на воду која се цеди кроз пунило. Вентилатор је смештен низ струју ваздуха у односу на испуну торња, на излазу ваздуха при врху уређаја. Испуна се налази у нивоу с улазима ваздуха. Ваздух улази у торањ кроз бочне жалузије и струји водоравно кроз испуну и елиминатор капи. Ваздух се затим усмерава према горе и излази при врху уређаја. Вода се распршује из сапница, пада преко испуне и долази до кружног струјања воде и струје ваздуха. Кружни расхладни торањ с индукованим струјањем има повећану површину за улаз ваздуха. Услед кружног струјања, овакав торањ може бити знатно нижи од противсмерног торња. Негативна страна те имплементације је повећан ризик од рециркулације истрошеног ваздуха из торња.

Проблеми који настају у рашладним системима[уреди | уреди извор]

Вода се користи у системима за хлађење као медиј за пренос топлоте, а често и као коначна тачка за одбацивање топлоте у атмосферу путем испаравања унутар расхладних торњева. Проблеми који настају у расхладним системима се могу поделити у три главне групе: корозија, каменац, и развој микроорганизама и алги. Корозија скраћује животни век компоненти рашладног система и узрокује пропуштање радне материје или расхладне воде за измењиваче топлоте. Такође узрокује проблеме као што је смањење делотворности измењивача топлоте и смањење проточне количине воде или радне материје. Када у измењивачима топлоте долази до таложења каменца и облагања муља, не само што се смањује ефикасност измењивача, већ долази и до стварања опште корозије испод слоја талога.

Ови се проблеми ретко јављају сами и обично се појављују у комбинацији једно с другим. Најчешће се јављају у отвореним рециркулирајућим рашладним торњевима јер су чврсте материје растворене у расхладној води концентрисане испаравањем воде.

Референце[уреди | уреди извор]

  1. ^ а б International Correspondence Schools (1902). A Textbook on Steam Engineering. Scranton, Pa.: International Textbook Co. 33–34 of Section 29:"Condensers". 
  2. ^ Croft, Terrell, ур. (1922). Steam-Engine Principles and Practice. New York: McGraw-Hill. стр. 283—286. 
  3. ^ а б в Heck, Robert Culbertson Hays (1911). The Steam Engine and Turbine: A Text-Book for Engineering Colleges. New York: D. Van Nostrand. стр. 569—570. 
  4. ^ а б Watson, Egbert P. (1906). „Power plant and allied industries”. The Engineer (With Which is Incorporated Steam Engineering). Chicago: Taylor Publishing Co. 43 (1): 69—72. 
  5. ^ а б в Snow, Walter B. (1908). The Steam Engine: A Practical Guide to the Construction, Operation, and care of Steam Engines, Steam Turbines, and Their Accessories. Chicago: American School of Correspondence. стр. 43—46. 
  6. ^ UK Patent No. 108,863
  7. ^ „Power Plant Cooling Tower Like Big Milk Bottle”. Popular Mechanics. Hearst Magazines. фебруар 1930. стр. 201. ISSN 0032-4558. 
  8. ^ van Vliet, Michelle T. H.; Wiberg, David; Leduc, Sylvain; Riahi, Keywan (2016). „Power-generation system vulnerability and adaptation to changes in climate and water resources”. Nature Climate Change. 6 (4): 375—380. ISSN 1758-678X. doi:10.1038/nclimate2903. 

Литература[уреди | уреди извор]

Спољашње везе[уреди | уреди извор]