Оригами — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{short description|Традиционална јапанска уметност савијања папира}}{{рут}}
[[Датотека:折鶴 WUXGA.jpg|десно|мини|250п|Оригами модели]]
[[Датотека:折鶴 WUXGA.jpg|десно|мини|250п|Оригами модели]]
[[Датотека:Crane.ogv|мини|десно|250п|Савијање оригами модела]]
[[Датотека:Crane.ogv|мини|десно|250п|Савијање оригами модела]]
[[File:Hiroshima senzaburu.jpg|thumb|250px|A group of Japanese schoolchildren dedicate their contribution of [[Thousand origami cranes]] at the [[Sadako Sasaki]]
memorial in [[Hiroshima]].]]

'''Оригами''' ({{јез-јап|折り紙}}; ''-{ori}-'' = савијање + ''-{kami}-'' = папир) је традиционална [[јапан]]ска вештина креирања модела од [[папир]]а. Традицинално се користи квадрат али постоји велики број модела који се прави и од другачијих облика папира - [[правоугаоник]]а, [[троугао|троугла]], [[осмоугао]]ника итд.
'''Оригами''' ({{јез-јап|折り紙}}; ''-{ori}-'' = савијање + ''-{kami}-'' = папир) је традиционална [[јапан]]ска вештина креирања модела од [[папир]]а. Традицинално се користи квадрат али постоји велики број модела који се прави и од другачијих облика папира - [[правоугаоник]]а, [[троугао|троугла]], [[осмоугао]]ника итд.

The small number of basic [[Origami techniques|origami folds]] can be combined in a variety of ways to make intricate designs. The best-known origami model is the Japanese [[paper crane]]. In general, these designs begin with a [[square (geometry)|square]] sheet of paper whose sides may be of different colors, prints, or patterns. Traditional Japanese origami, which has been practiced since the [[Edo period]] (1603–1867), has often been less strict about these conventions, sometimes cutting the paper or using nonsquare shapes to start with. The principles of origami are also used in [[stent]]s, [[packaging]], and other engineering applications.<ref>
{{Citation
|last = Merali
|first = Zeeya
|title = 'Origami Engineer' Flexes to Create Stronger, More Agile Materials
|journal = Science
|volume = 332
|issue = 6036
|pages = 1376–1377
|date = June 17, 2011
|doi = 10.1126/science.332.6036.1376
|pmid = 21680824
|bibcode = 2011Sci...332.1376M
}}.
</ref><ref>{{cite web |url=http://www.sulphurdailynews.com/news/see-a-nasa-physicist-s-incredible-origami/youtube_4e2e7fc6-5f84-544d-9e12-b9617d333e1b.html |format=video | title=See a NASA Physicist's Incredible Origami |website=Southwest Daily News |language=en |date=16 Mar 2019}}</ref>


== Историја ==
== Историја ==
Ред 7: Ред 27:


Већ у [[8. век]]у, оригами је постао саставни део разних церемонија у Јапану. [[Самурај]]и су размењивали поклоне који су на себи имали украсе „ноши“ - савијене траке папира. За време обреда [[Шинтоизам|шинтоистичких]] венчања, коришћени су оригами лептири који су симболизовали младенце.
Већ у [[8. век]]у, оригами је постао саставни део разних церемонија у Јапану. [[Самурај]]и су размењивали поклоне који су на себи имали украсе „ноши“ - савијене траке папира. За време обреда [[Шинтоизам|шинтоистичких]] венчања, коришћени су оригами лептири који су симболизовали младенце.

In 1893, Indian [[civil service|civil servant]] T. Sundara Rao published ''[[Geometric Exercises in Paper Folding]]'' which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the [[kindergarten]] system. Rao demonstrated an approximate trisection of angles and implied construction of a cube root was impossible.<ref name=rao17>{{cite book |title=Geometric Exercises in Paper Folding|title-link= Geometric Exercises in Paper Folding |author= T. Sundara Rao |publisher=[[The Open Court Publishing Company]] |year=1917 |editor1-last=Beman |editor1-first=Wooster |editor2-last=Smith |editor2-first=David}}</ref>

[[File:Group1-Origami The Beloch Fold.png|thumb|left|250px|The Beloch fold]]
In 1936 [[Margherita Piazzola Beloch|Margharita P. Beloch]] showed that use of the '[[Beloch fold]]', later used in the sixth of the [[Huzita–Hatori axioms]], allowed the general [[cubic equation]] to be solved using origami.<ref name=hull11>{{cite journal
| last = Hull | first = Thomas C.
| doi = 10.4169/amer.math.monthly.118.04.307
| issue = 4
| journal = American Mathematical Monthly
| mr = 2800341
| pages = 307–315
| title = Solving cubics with creases: the work of Beloch and Lill
| url = http://mars.wne.edu/~thull/papers/amer.math.monthly.118.04.307-hull.pdf
| volume = 118
| year = 2011| s2cid = 2540978
}}</ref>

In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms.<ref>{{cite book |title=Geometric constructions |title-link=Geometric Constructions|author=George Edward Martin |publisher=Springer |year=1997 |isbn= 978-0-387-98276-2 |page=145}}</ref><ref>{{cite book|title=Geometric Tools |author=Robert Carl Yeates |publisher= Louisiana State University |year=1949}}</ref>

The [[Yoshizawa–Randlett system]] of instruction by diagram was introduced in 1961.<ref name=obible>{{cite book |title=The Origami Bible |author=Nick Robinson |page=18 |year=2004 |publisher=Chrysalis Books |isbn=978-1-84340-105-6}}</ref>

[[File:Miura-Ori CP.svg|thumb|250px|left|[[Crease pattern]] for a Miura fold. The parallelograms of this example have 84° and 96° angles.]]
In 1980 was reported a construction which enabled an angle to be trisected. Trisections are impossible under Euclidean rules.<ref name=hullcomp/>

Also in 1980, [[Kōryō Miura]] and Masamori Sakamaki demonstrated a novel map-folding technique whereby the folds are made in a prescribed parallelogram pattern, which allows the map to be expandable without any right-angle folds in the conventional manner. Their pattern allows the fold lines to be interdependent, and hence the map can be unpacked in one motion by pulling on its opposite ends, and likewise folded by pushing the two ends together. No unduly complicated series of movements are required, and folded ''Miura-ori'' can be packed into a very compact shape.<ref name=bain80>{{citation|url=https://www.britishorigami.info/academic/mathematics/the-miura-ori-map/|title=The Miura-Ori map|first=Ian|last=Bain|journal=[[New Scientist]]|year=1980}}. Reproduced in ''British Origami'', 1981, and online at the British Origami Society web site.</ref> In 1985 Miura reported a method of packaging and deployment of large membranes in outer space,<ref name=miura85>{{citation
| last = Miura | first = K.
| publisher = The Institute of Space and Astronautical Science
| series = Tech. Report 618
| title = Method of packaging and deployment of large membranes in space
| year = 1985}}</ref> and as late as 2012 this technique had become standard operating procedure for orbital vehicles.<ref name=jaxa>{{cite news |publisher=Japan Aerospace Exploration Agency|archive-url=https://web.archive.org/web/20051125174630/http://www.isas.jaxa.jp/e/enterp/missions/complate/sfu/2dsa.shtml |url=http://www.isas.jaxa.jp/e/enterp/missions/complate/sfu/2dsa.shtml |archive-date=25 November 2005|title=2D Array}}</ref><ref name=yutaka12>{{citation|first=Yutaka|last=Nishiyama|authorlink=Yutaka Nishiyama|url=http://www.ijpam.eu/contents/2012-79-2/8/8.pdf|title=Miura folding: Applying origami to space exploration|journal=International Journal of Pure and Applied Mathematics|volume=79|issue=2|pages=269–279|year=2012}}</ref>

[[File:Group1-Origami Doubling the Cube .png|thumb|right|250px|A diagram showing the first and last step of how origami can double the cube]]
In 1986, Messer reported a construction by which one could [[double the cube]], which is impossible with Euclidean constructions.<ref name=messer86/>

The first complete statement of the seven axioms of origami by French folder and mathematician [[Jacques Justin]] was written in 1986, but were overlooked until the first six were rediscovered by [[Humiaki Huzita]] in 1989.<ref name=jjhh89>Justin, Jacques, "Resolution par le pliage de l'equation du troisieme degre et applications geometriques", reprinted in ''Proceedings of the First International Meeting of Origami Science and Technology'', H. Huzita ed. (1989), pp. 251–261.</ref> The first International Meeting of Origami Science and Technology (now known as the International Conference on Origami in Science, Math, and Education) was held in 1989 in Ferrara, Italy. At this meeting, a construction was given by Scimemi for the [[regular heptagon]].<ref name=scimemi90>Benedetto Scimemi, Regular Heptagon by Folding, Proceedings of Origami, Science and Technology, ed. H. Huzita., Ferrara, Italy, 1990</ref>

Around 1990, [[Robert J. Lang]] and others first attempted to write computer code that would solve origami problems.<ref name="lnpow">{{cite news |last1=Newton |first1=Liz |title=The power of origami |url=https://plus.maths.org/content/power-origami |agency=+ plus magazine |publisher=University of Cambridge |date=1 December 2009}}</ref>

[[File:Maekawas Theorem.svg|thumb|250px|Mountain-valley counting]]
In 1996, [[Marshall Bern]] and [[Barry Hayes]] showed to be an [[NP-complete]] problem the assignation of a crease pattern of mountain and valley folds in order to produce a flat origami structure starting from a flat sheet of paper.<ref name=bern96/>

In 1999, a theorem due to Haga provided constructions used to divide the side of a square into rational fractions.<ref name=howto/><ref name=haga99/>

In 2001, among other more mathematical results [[Britney Gallivan]] folded first a bedsheet then a sheet of [[gold foil]] in half 12 times, contrary to the belief that paper of any size could be folded at most eight times.<ref name="Mathworld"/><ref name=korpal15/>

In 2002, Belcastro and Hull brought to the theoretical origami the language of [[affine transformations]], with an extension from <math>R</math><sup>2</sup> to <math>R</math><sup>3</sup> in only the case of single-vertex construction.<ref name="belcastro02">{{cite journal |doi=10.1016/S0024-3795(01)00608-5|title=Modelling the folding of paper into three dimensions using affine transformations|year=2002|last1=Belcastro|first1=Sarah-Marie|last2=Hull|first2=Thomas C.|journal=Linear Algebra and Its Applications|volume=348|issue=1–3|pages=273–282|doi-access=free}}</ref>

<!--An origamic view of Alhazen’s optical problem, in Proceedings of O3-Science, Education and Mathematics, T. Hull, ed., A. K. Peters, Natick, MA, 2002, pp. 83–93.-->
In 2002, Alperin solved [[Alhazen's problem]] of spherical optics.<ref name="alperin02">{{cite book |doi=10.1201/b15735 |last1=Alperin|first1=Roger C.|title=Mathematical Origami: Another View of Alhazen's Optical Problem |chapter=Ch.12 |pages=83–93 |date=2002 |isbn=9780429064906 |editor1-last=Hull |editor1-first=Thomas }}</ref> In the same paper, Alperin showed a construction for a regular heptagon.<ref name=alperin02/> In 2004, was proven algorithmically the fold pattern for a regular heptagon.<ref name="robu04">{{cite book |doi=10.1007/11615798_2|chapter=Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness|title=Automated Deduction in Geometry|series=Lecture Notes in Computer Science|year=2006|last1=Robu|first1=Judit|last2=Ida|first2=Tetsuo|last3=Ţepeneu|first3=Dorin|last4=Takahashi|first4=Hidekazu|last5=Buchberger|first5=Bruno|volume=3763|pages=19–33|isbn=978-3-540-31332-8}}</ref> Bisections and trisections were used by Alperin in 2005 for the same construction.<ref name="alperin05">{{cite journal |doi=10.2307/30037438|jstor=30037438|last1=Alperin|first1=Roger C.|title=Trisections and Totally Real Origami|journal=The American Mathematical Monthly|year=2005|volume=112|issue=3|pages=200–211|arxiv=math/0408159}}</ref>

In 2009, Alperin and Lang extended the theoretical origami to rational equations of arbitrary degree, with the concept of manifold creases.<ref name="alperin09">{{cite journal |last1=Lang |first1=Robert J. |last2=Alperin |first2=Roger C. |title=One-, two-, and multi-fold origami axioms |journal=Origami<sup>4</sup>: Fourth International Meeting of Origami Science, Mathematics, and Education |date=2009 |pages=383–406 |doi=10.1201/b10653-38 |isbn=9780429106613 |url=http://pub.math.leidenuniv.nl/~edixhovensj/talks/2017/2017_03_27origami_LiOdag/o4_multifold_axioms.pdf}}</ref><ref name="ugmo">{{cite book |last1=Bertschinger |first1=Thomas H. |last2=Slote |first2=Joseph |last3=Spencer |first3=Olivia Claire |last4=Vinitsky |first4=Samuel |title=The Mathematics of Origami |publisher=Carleton College |url=https://joeslote.com/documents/origami_undergrad_thesis.pdf}}</ref> This work was a formal extension of Lang's unpublished 2004 demonstration of angle quintisection.<ref name=ugmo/><ref name="quinti">{{cite web |last1=Lang |first1=Robert J. |title=Angle Quintisection |url=https://langorigami.com/wp-content/uploads/2015/09/quintisection.pdf |website=langorigami.com |access-date=16 January 2021 |date=2004}}</ref>


== Материјал ==
== Материјал ==
Ред 19: Ред 90:
== Види још ==
== Види још ==
[[Киригами]]
[[Киригами]]

== Референце ==
{{reflist|refs=
<ref name="hullcomp">{{cite web |last1=Hull |first1=Tom |title=a comparison between straight edge and compass constructions and origami |url=http://origametry.net/omfiles/geoconst.html |website=origametry.net |date=1997}}</ref>
<ref name=messer86>{{cite journal|author=Peter Messer|year=1986|title=Problem 1054|url=https://cms.math.ca/crux/backfile/Crux_v12n10_Dec.pdf|journal=[[Crux Mathematicorum]]|volume=12|issue=10|pages=284–285|via=Canadian Mathematical Society}}</ref>
<ref name=bern96>{{cite conference
| last1 = Bern | first1 = Marshall
| last2 = Hayes | first2 = Barry
| contribution = The complexity of flat origami
| contribution-url = http://dl.acm.org/citation.cfm?id=313918
| mr = 1381938
| pages = 175–183
| publisher = ACM, New York
| title = Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996)
| year = 1996}}</ref>
<ref name=howto>{{cite web |url=http://origami.gr.jp/Archives/People/CAGE_/divide/02-e.html |title=How to Divide the Side of Square Paper |first=Koshiro |last=Hatori |publisher=Japan Origami Academic Society}}</ref>
<ref name=haga99>K. Haga, Origamics, Part 1, Nippon Hyoron Sha, 1999 (in Japanese)</ref>
<ref name="Mathworld">{{MathWorld | title = Folding | urlname = Folding}}</ref>
<ref name=korpal15>{{cite journal|last1=Korpal|first1=Gaurish|title=Folding Paper in Half|journal=At Right Angles |publisher=Teachers of India |date=25 November 2015|volume=4|issue=3|pages=20–23|url=http://teachersofindia.org/en/ebook/folding-paper-half}}</ref>
}}

== Литература ==
{{refbegin|30em}}
* [[Kunihiko Kasahara]] (1988). ''Origami Omnibus: Paper Folding for Everybody''. Tokyo: Japan Publications, Inc. {{ISBN|4-8170-9001-4}}
* Kunihiko Kasahara and [[Toshie Takahama]] (1987). ''Origami for the Connoisseur''. Tokyo: Japan Publications, Inc. {{ISBN|0-87040-670-1}}
* [[Satoshi Kamiya]] (2005). ''Works by Satoshi Kamiya, 1995–2003''. Tokyo: Origami House
* [[Kunihiko Kasahara]] (2001). ''Extreme Origami''. {{ISBN|0-8069-8853-3}}
* Michael LaFosse. ''Origamido : Masterworks of Paper Folding'' {{ISBN|978-1564966391}}
* Nick Robinson (2004). ''Encyclopedia of Origami''. Quarto. {{ISBN|1-84448-025-9}}. A book full of stimulating designs.
* [[Erik Demaine|Demaine, Erik D.]], [http://erikdemaine.org/papers/dthesis/ "Folding and Unfolding"], PhD thesis, Department of Computer Science, University of Waterloo, 2001.
* {{cite book|first= Michael|last=Friedman|publisher=Birkhäuser|year=2018|title=A History of Folding in Mathematics: Mathematizing the Margins|title-link=A History of Folding in Mathematics|series=Science Networks. Historical Studies|volume=59|isbn=978-3-319-72486-7|doi=10.1007/978-3-319-72487-4}}
* {{cite journal |doi=10.2307/2690924|jstor=2690924|last1=Geretschlager|first1=Robert|title=Euclidean Constructions and the Geometry of Origami|journal=Mathematics Magazine|year=1995|volume=68|issue=5|pages=357–371}}
* {{Cite book |last=Haga|first=Kazuo|place=University of Tsukuba, Japan |title=Origamics: Mathematical Explorations Through Paper Folding |editor-last=Fonacier|editor-first=Josefina C |editor2-last=Isoda|editor2-first=Masami|year=2008|
isbn=978-981-283-490-4|publisher=World Scientific Publishing }}
* {{cite book|author=Lang, Robert J.|author-link=Robert J. Lang|title=Origami Design Secrets: Mathematical Methods for an Ancient Art|publisher=A K Peters| year=2003| isbn=978-1-56881-194-9}}
* [[David Dureisseix|Dureisseix, David]], [https://hal.archives-ouvertes.fr/hal-00321386 "Folding optimal polygons from squares"], ''Mathematics Magazine'' 79(4): 272–280, 2006. {{doi|10.2307/27642951}}
* [[David Dureisseix|Dureisseix, David]], [https://hal.archives-ouvertes.fr/hal-00687311 "An Overview of Mechanisms and Patterns with Origami"], ''International Journal of Space Structures'' 27(1): 1–14, 2012. {{doi|10.1260/0266-3511.27.1.1}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commons and category|Origami}}
{{refbegin|30em}}
* [http://www.origami-resource-center.com/ Origami Resource Center]
* [http://www.origami-resource-center.com/ Origami Resource Center]
* [http://www.origami-instructions.com/ Origami Instructions]
* [http://www.origami-instructions.com/ Origami Instructions]
* [http://www.origamicentre.ru/mod/i_clas.htm Classical origami] on Moscow origami club portal (рус)
* [http://www.origamicentre.ru/mod/i_clas.htm Classical origami] on Moscow origami club portal (рус)
* [http://www.loveorigami.info/oriwiki/Заглавная_страница OrigamiWiki] (рус.)
* [http://www.loveorigami.info/oriwiki/Заглавная_страница OrigamiWiki] (рус.)
* [https://web.archive.org/web/20180921013419/https://www.giladorigami.com/ GiladOrigami.com], contains many book reviews
* [[wikiHow:Make-Origami|WikiHow on how to make origami]]
* [https://web.archive.org/web/20180922182714/https://origamiusa.org/ Origami USA], many resources, especially for folders in the USA
* [https://web.archive.org/web/20181004121514/http://www.britishorigami.info/ British Origami Society], many resources, especially for folders in the UK
* [https://web.archive.org/web/20161220033640/http://www.greenfusefilms.com/index.html ''Between the Folds''], documentary film about origami and origami artists
* {{cite web |url=http://www.ted.com/talks/robert_lang_folds_way_new_origami.html |format=video |title=The math and magic of origami |first=Robert |last=Lang |publisher =[[TED (conference)|TED ED]] |date=February 2008|access-date =April 6, 2013}}
* {{cite web |url=http://www.sulphurdailynews.com/news/see-a-nasa-physicist-s-incredible-origami/youtube_4e2e7fc6-5f84-544d-9e12-b9617d333e1b.html |format=video | title=See a NASA Physicist's Incredible Origami |website=Southwest Daily News |language=en |date=16 Mar 2019 |subject=Robert Lang}}
* [https://www.youtube.com/watch?v=ThwuT3_AG6w Engineering with Origami], [[YouTube]] video by [[Veritasium]] about uses of origami for [[structural engineering]]
{{refend}}


{{Authority control}}
== Референце ==
{{reflist}}


[[Категорија:Уметност]]
[[Категорија:Уметност]]

Верзија на датум 10. новембар 2021. у 18:55

Оригами модели
Савијање оригами модела
A group of Japanese schoolchildren dedicate their contribution of Thousand origami cranes at the Sadako Sasaki memorial in Hiroshima.

Оригами (јап. 折り紙; ori = савијање + kami = папир) је традиционална јапанска вештина креирања модела од папира. Традицинално се користи квадрат али постоји велики број модела који се прави и од другачијих облика папира - правоугаоника, троугла, осмоугаоника итд.

The small number of basic origami folds can be combined in a variety of ways to make intricate designs. The best-known origami model is the Japanese paper crane. In general, these designs begin with a square sheet of paper whose sides may be of different colors, prints, or patterns. Traditional Japanese origami, which has been practiced since the Edo period (1603–1867), has often been less strict about these conventions, sometimes cutting the paper or using nonsquare shapes to start with. The principles of origami are also used in stents, packaging, and other engineering applications.[1][2]

Историја

Не постоје прецизни подаци о томе када је оригами настао. Најчешће се везује за изум папира у Кини негде око 2. века н. е. Иако је тамо највероватније и настао, оригами је прави процват доживео у Јапану, где се и третира као национална уметност. Поред Јапана, ова вештина се појавила и у другим деловима света, на пример, у Шпанији где је позната под именом Papiroflexia.

Већ у 8. веку, оригами је постао саставни део разних церемонија у Јапану. Самураји су размењивали поклоне који су на себи имали украсе „ноши“ - савијене траке папира. За време обреда шинтоистичких венчања, коришћени су оригами лептири који су симболизовали младенце.

In 1893, Indian civil servant T. Sundara Rao published Geometric Exercises in Paper Folding which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the kindergarten system. Rao demonstrated an approximate trisection of angles and implied construction of a cube root was impossible.[3]

The Beloch fold

In 1936 Margharita P. Beloch showed that use of the 'Beloch fold', later used in the sixth of the Huzita–Hatori axioms, allowed the general cubic equation to be solved using origami.[4]

In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms.[5][6]

The Yoshizawa–Randlett system of instruction by diagram was introduced in 1961.[7]

Crease pattern for a Miura fold. The parallelograms of this example have 84° and 96° angles.

In 1980 was reported a construction which enabled an angle to be trisected. Trisections are impossible under Euclidean rules.[8]

Also in 1980, Kōryō Miura and Masamori Sakamaki demonstrated a novel map-folding technique whereby the folds are made in a prescribed parallelogram pattern, which allows the map to be expandable without any right-angle folds in the conventional manner. Their pattern allows the fold lines to be interdependent, and hence the map can be unpacked in one motion by pulling on its opposite ends, and likewise folded by pushing the two ends together. No unduly complicated series of movements are required, and folded Miura-ori can be packed into a very compact shape.[9] In 1985 Miura reported a method of packaging and deployment of large membranes in outer space,[10] and as late as 2012 this technique had become standard operating procedure for orbital vehicles.[11][12]

A diagram showing the first and last step of how origami can double the cube

In 1986, Messer reported a construction by which one could double the cube, which is impossible with Euclidean constructions.[13]

The first complete statement of the seven axioms of origami by French folder and mathematician Jacques Justin was written in 1986, but were overlooked until the first six were rediscovered by Humiaki Huzita in 1989.[14] The first International Meeting of Origami Science and Technology (now known as the International Conference on Origami in Science, Math, and Education) was held in 1989 in Ferrara, Italy. At this meeting, a construction was given by Scimemi for the regular heptagon.[15]

Around 1990, Robert J. Lang and others first attempted to write computer code that would solve origami problems.[16]

Mountain-valley counting

In 1996, Marshall Bern and Barry Hayes showed to be an NP-complete problem the assignation of a crease pattern of mountain and valley folds in order to produce a flat origami structure starting from a flat sheet of paper.[17]

In 1999, a theorem due to Haga provided constructions used to divide the side of a square into rational fractions.[18][19]

In 2001, among other more mathematical results Britney Gallivan folded first a bedsheet then a sheet of gold foil in half 12 times, contrary to the belief that paper of any size could be folded at most eight times.[20][21]

In 2002, Belcastro and Hull brought to the theoretical origami the language of affine transformations, with an extension from 2 to 3 in only the case of single-vertex construction.[22]

In 2002, Alperin solved Alhazen's problem of spherical optics.[23] In the same paper, Alperin showed a construction for a regular heptagon.[23] In 2004, was proven algorithmically the fold pattern for a regular heptagon.[24] Bisections and trisections were used by Alperin in 2005 for the same construction.[25]

In 2009, Alperin and Lang extended the theoretical origami to rational equations of arbitrary degree, with the concept of manifold creases.[26][27] This work was a formal extension of Lang's unpublished 2004 demonstration of angle quintisection.[27][28]

Материјал

Оригами се у принципу прави од папира, иако се могу користити и другачији материјали (тканина и сл.)

За вежбу и неке једноставне моделе често се користи папир за фотокопирање стандардне грамаже 70–90 g/m². Поред тога, могуће је користити и разне друге врсте папира - фолију, папир за увијање, хамер и тд. Постоји и специјализован папир за оригами који је најчешће двобојан и већ исечен у облик квадрата.[29]

У Јапану се често користи „ваши“ - специјалан папир чвршће структуре направљен од пулпе добијене из коре неколико карактеристичних дрвенастих врста које расту у Јапану.

Постоји и посебна грана оригамија која користи новчанице за прављење модела и то најчешће амерички долар.

Види још

Киригами

Референце

  1. ^ Merali, Zeeya (17. 6. 2011), „'Origami Engineer' Flexes to Create Stronger, More Agile Materials”, Science, 332 (6036): 1376—1377, Bibcode:2011Sci...332.1376M, PMID 21680824, doi:10.1126/science.332.6036.1376 .
  2. ^ „See a NASA Physicist's Incredible Origami” (video). Southwest Daily News (на језику: енглески). 16. 3. 2019. 
  3. ^ T. Sundara Rao (1917). Beman, Wooster; Smith, David, ур. Geometric Exercises in Paper Folding. The Open Court Publishing Company. 
  4. ^ Hull, Thomas C. (2011). „Solving cubics with creases: the work of Beloch and Lill” (PDF). American Mathematical Monthly. 118 (4): 307—315. MR 2800341. S2CID 2540978. doi:10.4169/amer.math.monthly.118.04.307. 
  5. ^ George Edward Martin (1997). Geometric constructions. Springer. стр. 145. ISBN 978-0-387-98276-2. 
  6. ^ Robert Carl Yeates (1949). Geometric Tools. Louisiana State University. 
  7. ^ Nick Robinson (2004). The Origami Bible. Chrysalis Books. стр. 18. ISBN 978-1-84340-105-6. 
  8. ^ Hull, Tom (1997). „a comparison between straight edge and compass constructions and origami”. origametry.net. 
  9. ^ Bain, Ian (1980), „The Miura-Ori map”, New Scientist . Reproduced in British Origami, 1981, and online at the British Origami Society web site.
  10. ^ Miura, K. (1985), Method of packaging and deployment of large membranes in space, Tech. Report 618, The Institute of Space and Astronautical Science 
  11. ^ „2D Array”. Japan Aerospace Exploration Agency. Архивирано из оригинала 25. 11. 2005. г. 
  12. ^ Nishiyama, Yutaka (2012), „Miura folding: Applying origami to space exploration” (PDF), International Journal of Pure and Applied Mathematics, 79 (2): 269—279 
  13. ^ Peter Messer (1986). „Problem 1054” (PDF). Crux Mathematicorum. 12 (10): 284—285 — преко Canadian Mathematical Society. 
  14. ^ Justin, Jacques, "Resolution par le pliage de l'equation du troisieme degre et applications geometriques", reprinted in Proceedings of the First International Meeting of Origami Science and Technology, H. Huzita ed. (1989), pp. 251–261.
  15. ^ Benedetto Scimemi, Regular Heptagon by Folding, Proceedings of Origami, Science and Technology, ed. H. Huzita., Ferrara, Italy, 1990
  16. ^ Newton, Liz (1. 12. 2009). „The power of origami”. University of Cambridge. + plus magazine. 
  17. ^ Bern, Marshall; Hayes, Barry (1996). „The complexity of flat origami”. Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996). ACM, New York. стр. 175—183. MR 1381938. 
  18. ^ Hatori, Koshiro. „How to Divide the Side of Square Paper”. Japan Origami Academic Society. 
  19. ^ K. Haga, Origamics, Part 1, Nippon Hyoron Sha, 1999 (in Japanese)
  20. ^ Weisstein, Eric W. „Folding”. MathWorld. 
  21. ^ Korpal, Gaurish (25. 11. 2015). „Folding Paper in Half”. At Right Angles. Teachers of India. 4 (3): 20—23. 
  22. ^ Belcastro, Sarah-Marie; Hull, Thomas C. (2002). „Modelling the folding of paper into three dimensions using affine transformations”. Linear Algebra and Its Applications. 348 (1–3): 273—282. doi:10.1016/S0024-3795(01)00608-5Слободан приступ. 
  23. ^ а б Alperin, Roger C. (2002). „Ch.12”. Ур.: Hull, Thomas. Mathematical Origami: Another View of Alhazen's Optical Problem. стр. 83—93. ISBN 9780429064906. doi:10.1201/b15735. 
  24. ^ Robu, Judit; Ida, Tetsuo; Ţepeneu, Dorin; Takahashi, Hidekazu; Buchberger, Bruno (2006). „Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness”. Automated Deduction in Geometry. Lecture Notes in Computer Science. 3763. стр. 19—33. ISBN 978-3-540-31332-8. doi:10.1007/11615798_2. 
  25. ^ Alperin, Roger C. (2005). „Trisections and Totally Real Origami”. The American Mathematical Monthly. 112 (3): 200—211. JSTOR 30037438. arXiv:math/0408159Слободан приступ. doi:10.2307/30037438. 
  26. ^ Lang, Robert J.; Alperin, Roger C. (2009). „One-, two-, and multi-fold origami axioms” (PDF). Origami4: Fourth International Meeting of Origami Science, Mathematics, and Education: 383—406. ISBN 9780429106613. doi:10.1201/b10653-38. 
  27. ^ а б Bertschinger, Thomas H.; Slote, Joseph; Spencer, Olivia Claire; Vinitsky, Samuel. The Mathematics of Origami (PDF). Carleton College. 
  28. ^ Lang, Robert J. (2004). „Angle Quintisection” (PDF). langorigami.com. Приступљено 16. 1. 2021. 
  29. ^ Разноврсни оригами папир

Литература

Спољашње везе