Diferencijalni račun

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу
Grafikon funkcije, nacrtan u crnom bojom, i tangenta te funkciju, nacrtana crvenom bojom. Nagib tangentne linije jednak je derivatu funkcije na označenoj tački.

U matematici, diferencijalni račun je podpolje računa[1] koje se bavi proučavanjem stopa kojima se veličine menjaju. To je jedan od dva tradicionalna dela računa, pri čemu je drugi integralni račun, proučavanje područja ispod krive.[2]

Primarni predmeti proučavanja u diferencijalnom računu su derivacija funkcije, srodni pojmovi kao što su diferencijali i njihove primene. Derivat funkcije pri izabranoj ulaznoj vrednosti opisuje brzinu promene funkcije u blizini te ulazne vrednosti. Proces pronalaženja derivata se naziva diferencijacija. Geometrijski, derivat u tački je nagib tangentne linije na grafikonu funkcije u toj tački, pod uslovom da derivat postoji i da je definisan u toj tački. Za funkciju realnih vrednosti jedne realne promenljive, derivat funkcije u tački generalno određuje najbolju linearnu aproksimaciju funkcije u toj tački. Diferencijalni račun i integralni račun su povezani fundamentalnim teoremom računa, koji navodi da je diferencijacija obrnuti proces integracije.

Diferencijacija nalazi primene u skoro svim kvantitativnim disciplinama. Na primer, u fizici, derivat pomeranja pokretnog tela u odnosu na vreme je brzina tela, a derivat brzine u odnosu na vreme je ubrzanje. Derivat momenta tela u odnosu na vreme jednak je sili primenjenoj na telo; preraspodela izraza ovog derivata dovodi do poznate jednačine F = ma, povezane sa Njutnovim drugim zakonom kretanja. Brzina hemijske reakcije je derivat. U operacionim istraživanjima, derivati određuju najefikasnije načine za transport materijala i dizajniranje fabrika.

Derivati se često koriste za pronalaženje maksimuma i minimuma funkcije. Jednačine koje uključuju derivate nazivaju se diferencijalne jednačine i fundamentalne su za opisivanje prirodnih fenomena. Derivati i njihove generalizacije pojavljuju se u mnogim oblastima matematike, kao što su kompleksna analiza, funkcionalna analiza, diferencijalna geometrija, teorija mera i apstraktna algebra.

Izvod[уреди]

Tangetna linija u (x,f(x))
Izvod raznih tačaka diferencijabilne funkcije

Pretpostavimo da su x i y realni brojevi i da je y funkcija od x, to jest, za svaku vrednost x postoji odgovarajuća vrijednost y. Ovaj odnos se može zapisati kao y = f(x). Ako je f(x) jednačina za pravu liniju (zvana linearna jednačina), onda postoje dva realna broja m i b takva da je y = mx + b. U ovoj „formi nagiva i preseka”, izraz m se naziva nagib i može se odrediti iz formule:

gde je simbol Δ (veliko grčko slovo delta) skraćenica za „promena u”. Odatle sledi da je Δy = m Δx.

Generalna funkcija nije linija, tako da nema nagib. Geometrijski, izvod od f u tački x = a je nagib tangentne linije funkcije f u tački a (pogledajte sliku). To se često označava sa f ′(a) u Lagranžovoj notaciji ili dy/dx|x = a u Lajbnicovoj notaciji. Kako je izvod nagib linearne aproksimacije od f u tački a, izvod (zajedno sa vrednošću f u a) određuje najbolju linearnu aproksimaciju, ili linearizaciju, od f u blizini tačkie a.

Ako svaka tačka a u domenu funkcije f ima izvod, onda postoji funkcija koja šalje svaku tačku a u derivat od f u a. Na primer, ako je f(x) = x2, onda je funkcija izvoda f ′(x) = dy/dx = 2x.

Blisko srodna notacije je diferencijal funkcije. Kad su x i y realne promenljive, derivat f od x je nagib tangetne linije na grafikonu f od x. Budući da su izvor i cilj funkcije f jednodimenzionalni, derivat od f je realni broj. Ako su x i y vektori, tada najbolja linearna aproksimacija grafu f zavisi od toga kako se f menja u više smerova odjednom. Uzimajući najbolju linearnu aproksimaciju u jednom pravcu, određuje se parcijalni derivat, koji se obično označava y/x. Linearizacija f u svim pravcima odjednom se naziva totalni derivat.

Reference[уреди]

  1. ^ „Definition of differential calculus”. www.merriam-webster.com (на језику: енглески). Приступљено 2018-09-26. 
  2. ^ „"Integral Calculus - Definition of Integral calculus by Merriam-Webster". www.merriam-webster.com (на језику: енглески). Приступљено 2018-05-01. 

Literatura[уреди]

Spoljašnje veze[уреди]