Комутативност

Појам комутативности се најчешће везује за бинарне математичке операције код којих редослед операнада не утиче на резултат операције. То је основно својство многих бинарних операција и од њега зависе многи математички докази. Најпознатије као име својства које на пример наводи да је „3 + 4 = 4 + 3” или „2 × 5 = 5 × 2”. Ово својство се такође може користити у напреднијим подешавањима. Име је потребно јер постоје операције, као што су дељење и одузимање, које га немају (на пример, „3 − 5 ≠ 5 − 3“); такве операције нису комутативне, те се називају некомутативним операцијама. Идеја да су једноставне операције, као што су множење и сабирање бројева, комутативне је много година имплицитно претпостављана. Стога ово својство није добило име све до 19. века, када је математика почела да се формализује.[1][2] Одговарајуће својство постоји за бинарне релације; за бинарну релацију се каже да је симетрична ако се релација примењује без обзира на редослед њених операнада; на пример, једнакост је симетрична пошто су два једнака математичка објекта једнака без обзира на њихов редослед.[3]

Математичке дефиниције[уреди | уреди извор]

Бинарна операција на скупу S је комутативна ако је[4][5]

Операција која не задовољава горњу особину назива се некомутативном.

Може се рећи да је x комутативно са y или да су x и y комутативни у погледу ако је

Другим речима, операција је комутативна ако се сваки пар елемената комутативан.

Бинарна функција се понекад назива комутативном ако је

Таква функција се чешће назива симетричном функцијом.

Пример[уреди | уреди извор]

Операција комутативности.

Рецимо да је дефинисана бинарна операција тако да за важи:



Онда је ова операција према дефиницији комутативна.

Уопштење[уреди | уреди извор]

Овде се може направити и уопштење за , . Операција је комутативна ако за сваку и сваку њену пермутацију важи:

тј.

Историја и етимологија[уреди | уреди извор]

Прва позната употреба термина била је у француском часопису објављеном 1814. године

Записи о имплицитној употреби комутативног својства сежу у давна времена. Египћани су користили комутативно својство множења да би поједноставили рачунарске производе.[6][7] Познато је да је Еуклид преузео комутативно својство множења у својој књизи Елементи.[8] Формална употреба комутативног својства настала је крајем 18. и почетком 19. века, када су математичари почели да раде на теорији функција. Данас је комутативно својство добро познато и основно својство које се користи у већини грана математике.

Прва забележена употреба термина комутативно била је у мемоарима Франсоа Сервоа из 1814. године,[1][9] који је користио реч комутативни када је описивао функције које имају оно што се данас зове комутативно својство. Реч је комбинација француске речи commuter што значи „заменити или променити” и суфикса -ative што значи „тежња ка”, тако да реч дословно значи „тежња да се замени или промени”. Термин се тада појавио на енглеском 1838. године[2] у чланку Данкана Фаркухарсона Грегорија под насловом „О стварној природи симболичке алгебре“ објављеном 1840. године у часопису Transactions of the Royal Society of Edinburgh.[10]

Пропозициона логика[уреди | уреди извор]

Правило замене[уреди | уреди извор]

У истинитосно-функционалној пропозиционој логици, комутација[11][12] или комутативност[13] се односи на два важећа правила замене. Правила дозвољавају транспоновање пропозиционих променљивих унутар логичких израза у логичким доказима. Правила су:

и

где је „металогички симбол који представља „може се заменити у доказу са”.

Истиносно функционални спојеви[уреди | уреди извор]

Комутативност је својство неких логичких спојева истинито функционалне пропозиционе логике. Следеће логичке еквиваленције показују да је комутативност својство одређених веза. Следе истинитосно-функционалне таутологије.

Комутативност конјункције
Комутативност дисјункције
Комутативност импликације (назива се и закон пермутације)
Комутативност еквиваленције (назива се и потпуни комутативни закон еквиваленције)

Теорија скупова[уреди | уреди извор]

У теорији група и скупова, многе алгебарске структуре се називају комутативним када одређени операнди задовоље комутативно својство. У вишим гранама математике, као што су анализа и линеарна алгебра, комутативност добро познатих операција (као што су сабирање и множење на реалним и комплексним бројевима) се често користи (или имплицитно претпоставља) у доказима.[14][15][16]

Математичке структуре и комутативност[уреди | уреди извор]

Види још[уреди | уреди извор]

Референце[уреди | уреди извор]

  1. ^ а б Cabillón & Miller, Commutative and Distributive
  2. ^ а б Flood, Raymond; Rice, Adrian; Wilson, Robin, ур. (2011). Mathematics in Victorian Britain. Oxford University Press. стр. 4. ISBN 9780191627941. 
  3. ^ Weisstein, Eric W. „Symmetric Relation”. MathWorld. 
  4. ^ Krowne, стр. 1
  5. ^ Weisstein, Commute, p.1
  6. ^ Lumpkin 1997, стр. 11
  7. ^ Gay & Shute 1987
  8. ^ O'Conner & Robertson Real Numbers
  9. ^ O'Conner & Robertson, Servois
  10. ^ Gregory, D. F. (1840). „On the real nature of symbolical algebra”. Transactions of the Royal Society of Edinburgh. 14: 208—216. 
  11. ^ Moore and Parker
  12. ^ Copi & Cohen 2005
  13. ^ Hurley & Watson 2016
  14. ^ Axler 1997, стр. 2
  15. ^ а б Gallian 2006, стр. 34
  16. ^ Gallian 2006, стр. 26,87
  17. ^ A. H. Clifford, G. B. Preston (1964). The Algebraic Theory of Semigroups Vol. I (Second Edition). American Mathematical Society. ISBN 978-0-8218-0272-4
  18. ^ A. H. Clifford, G. B. Preston (1967). The Algebraic Theory of Semigroups Vol. II (Second Edition). American Mathematical Society. ISBN 0-8218-0272-0
  19. ^ Gondran, Michel; Minoux, Michel (2008). Graphs, Dioids and Semirings: New Models and Algorithms. Operations Research/Computer Science Interfaces Series. 41. Dordrecht: Springer-Verlag. стр. 13. ISBN 978-0-387-75450-5. Zbl 1201.16038. 
  20. ^ Gallian 2006, стр. 236
  21. ^ Gallian 2006, стр. 250

Литература[уреди | уреди извор]

Спољашње везе[уреди | уреди извор]