Homologija (matematika)
U matematici, homologija[1] je opšti način povezivanja niza algebarskih objekata kao što su abelove grupe ili moduli sa drugim matematičkim objektima kao što su topološki prostori. Homološke grupe su prvobitno definisane u algebarskoj topologiji. Slične konstrukcije su dostupne u širokom spektru drugih konteksta, kao što su apstraktna algebra, grupe, Lijeva algebra, teorija Galoa i algebarska geometrija.
Prvobitna motivacija za definisanje grupa homologije bila je opservacija da se dva oblika mogu razlikovati putem ispitivanja njihovih otvora. Na primer, krug nije disk, jer krug ima otvor kroz njega dok je disk pun, a obična sfera nije krug, jer sfera okružuje dvodimenzionalni otvor, dok krug okružuje jednodimenzionalni otvor. Međutim, pošto je otvor „ne postoji”, nije odmah očigledno kako definisati otvor ili kako razlikovati različite vrste otvora. Homologija je izvorno bila rigorozna matematička metoda za definiranje i kategorizaciju otvora u mnogostrukosti. Slobodno govoreći, ciklus je zatvorena podmnogostrukost, granica je ciklus koji je takođe granica podmnogostrukosti, a klasa homologije (koja predstavlja otvor) je ekvivalentna klasi ciklusa po modularnim granicama. Klasa homologije je stoga predstavljena ciklusom koji nije granica bilo koje podmnogostrukosti: ciklus predstavlja otvor, odnosno hipotetičnu mnogostrukost čija bi granica bila taj ciklus, ali koji „nije tamo”.
Postoji mnogo različitih teorija homologije. Određeni tip matematičkog objekta, kao što je topološki prostor ili grupa, može imati jednu ili više povezanih teorija homologije. Kada osnovni objekat ima geometrijsku interpretaciju kao topološki prostori, n-ta grupa homologije predstavlja ponašanje u dimenziji n. Većina grupa ili modula homologije moge se formulisati kao izvedeni funktori na odgovarajućim Abelovskim kategorijama, merenjem neuspeha jednog funktora da bude tačan. Iz ove apstraktne perspektive, grupe homologije se određuju objektima izvedene kategorije.
Pozadina[уреди | уреди извор]
Poreklo[уреди | уреди извор]
Smatra se da je teorija homologije nastala sa Ojlerovom formulom poliedra, ili Ojlerovom karakteristikom.[2] Tomo je sledela Rimanova definicija numeričkih invarijanti rodova i n-tostruke povezanosti iy 1857. godine i Betijev dokaz nezavisnosti „homoloških brojeva” od izbora baze iz 1871. godine.[3]
Sama homologija je razvijena kao način za analizu i klasifikaciju mnogostrukosti prema njihovim ciklusima - zatvorenim petljama (ili opštije podmnogostrukostima) koje se mogu nacrtati na datoj n-dimenzionalnoj mnogostrukosti, ali ne i kontinuirano deformisanih jedne u druge.[4] Ovi ciklusi se ponekad pominju i kao rezovi koji se mogu spojiti zajedno ili kao spojevi koji se mogu pričvrstiti i odvojiti. Ciklusi su klasifikovani po dimenzijama. Na primer, linija nacrtana na površini predstavlja 1-ciklus, zatvorenu petlju ili (1-mnogostrukost), dok je površina prerezana kroz trodimenzionalnu mnogostrukost 2-ciklus.
Površine[уреди | уреди извор]
Na običnoj sferi , ciklus b u dijagramu može se smanjiti do pola, a čak i ekvatorijalna velika kružnica a može se smanjiti na isti način. Teorema Žordanove krive pokazuje da se bilo koji proizvoljni ciklus, kao što je c, može slično smanjiti do tačke. Svi ciklusi na sferi se stoga mogu kontinuirano transformisati jedan u drugi i pripadati istoj klasi homologije. Za njih se kaže da su homologni do nule. Presecanje mnogostrukosti duž ciklusa homolognog nuli razdvaja mnogostrukost na dve ili više komponenti. Na primer, sečenje sfere duž a proizvodi dve hemisfere.
Ovo se generalno ne odnosi na cikluse na drugim površinama. Torus ima cikluse koji se ne mogu kontinuirano deformirati jedan u drugi, na primer u dijagramu ni jedan od ciklusa a, b ili c ne može biti deformisan jedan u drugi. Konkretno, ciklusi a i b se ne mogu smanjiti u tačku, dok ciklus c može, što ga čini homolognim na nulu.
Ako je površina torusa isečena duž oba ciklusa a i b, ona se može otvoriti i spljoštiti u pravougaonik ili, još bolje, kvadrat. Jedan suprotan par strana predstavlja rez duž a, a drugi suprotan par predstavlja rez duž b.
Rubovi kvadrata mogu se zatim spojiti zajedno na različite načine. Kvadrat može biti zaokrenut da bi se ivice mogle susresti u suprotnom smeru, kao što je prikazano strelicama na dijagramu. U zavisnosti od simetrije, postoje četiri različita načina spajanja strana, od kojih svaka stvara različitu površinu:
Vidi još[уреди | уреди извор]
Reference[уреди | уреди извор]
- ^ in part from Greek ὁμός homos "identical"
- ^ Stillwell 1993, стр. 170
- ^ Weibel 1999, стр. 2–3 (in PDF)
- ^ Richeson 2008, стр. 254
Literatura[уреди | уреди извор]
- Cartan, Henri Paul and Eilenberg, Samuel (1956) Homological Algebra Princeton University Press, Princeton, NJ, OCLC 529171
- Eilenberg, Samuel and Moore, J. C. (1965) Foundations of relative homological algebra (Memoirs of the American Mathematical Society number 55) American Mathematical Society, Providence, R.I., OCLC 1361982
- Hatcher, A., (2002) Algebraic Topology Cambridge University Press, ISBN 0-521-79540-0. Detailed discussion of homology theories for simplicial complexes and manifolds, singular homology, etc.
- Homology group at Encyclopaedia of Mathematics
- Hilton, Peter (1988), „A Brief, Subjective History of Homology and Homotopy Theory in This Century”, Mathematics Magazine, Mathematical Association of America, 60 (5): 282—291, JSTOR 2689545
- Teicher, M., ур. (1999), The Heritage of Emmy Noether, Israel Mathematical Conference Proceedings, Bar-Ilan University/American Mathematical Society/Oxford University Press, ISBN 978-0-19-851045-1, OCLC 223099225
- Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topology, Princeton University (2008)
- Spanier, Edwin H. (1966). Algebraic Topology, Springer, p. 155,. ISBN 0-387-90646-0.
- Timothy Gowers, June Barrow-Green, Imre Leader (2010), The Princeton Companion to Mathematics, Princeton University Press, ISBN 9781400830398.
- John Stillwell (1993), Classical Topology and Combinatorial Group Theory, Springer, doi:10.1007/978-1-4612-4372-4_6, ISBN 978-0-387-97970-0.
- Charles A. Weibel (1999), History of Homological Algebra, chapter 28 in the book History of Topology by I.M. James, Elsevier, ISBN 9780080534077.