Фјорд — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{short description|Дугачак, уски залив са стрмим странама или литицама, створен глацијском активношћу}}
[[Датотека:Geirangerfjord (6-2007).jpg|мини|250п|[[Geirangerfjord|Гејрангерфјорд]], Норвешка]]
[[Датотека:Fjord1.JPG|мини|250п|десно|Фјорд у Норвешкој]]
[[Датотека:Fjord1.JPG|мини|250п|десно|Фјорд у Норвешкој]]
'''Фјордови''' су потопљене долине некадашњих [[ледник]]а. Стрмих су страна, уски и веома дубоки. Нпр. познати [[Согне фјорд]] у [[Норвешка|Норвешкој]] дугачак је 205 km и дубок је преко 1.200 -{[[Метар|m]]}-, а његове стране су високе до 1.500 -{[[Метар|m]]}-


'''Фјордови'''<ref>{{cite Merriam-Webster|fjord}}</ref> су потопљене долине некадашњих [[ледник]]а.<ref>{{cite news |url=http://norwaytoday.info/travel/what-is-a-fjord-and-how-is-it-formed/ |title=What is a Fjord, and how is it formed |date=2016-05-08 |work=Norway Today |access-date=2017-12-30 |language=en-US}}</ref> Стрмих су страна, уски и веома дубоки. Нпр. познати [[Согне фјорд]] у [[Норвешка|Норвешкој]] дугачак је 205 km и дубок је преко 1.200 -{[[Метар|m]]}-, а његове стране су високе до 1.500 -{[[Метар|m]]}-. Фјордови се налазе у областима које су у [[плеистоцен]]у биле захваћене [[глацијација|глацијацијом]] и чији су се ледници завршавали у мору ([[Аљаска]], [[Канада]], [[Исланд]], [[Чиле]], [[Нови Зеланд]]) али су најтипичнији за [[Скандинавија|Скандинавију]].<ref>{{cite book |title=Fjords: Processes and Products |first1=James P. M. |last1=Syvitsky |first2=David C. |last2=Burrell |first3=Jens M. |last3=Skei |pages=[https://archive.org/details/fjordsprocessesp0000syvi/page/46 46–49] |year=1987 |location=New York |publisher=[[Springer Science+Business Media|Springer]] |isbn=0-387-96342-1 |quote=The NE coast, from Victoria Fjord to the Scoresby Sund fjord complex ..., has approximately 60 major fjords, some of them the world's largest and deepest. ... The SE coast, from Scoresby Sund to Kap Farvel ..., has approximately 100 fjords. |url=https://archive.org/details/fjordsprocessesp0000syvi/page/46}}</ref> Процењује се да је [[Norwegian coastline|норвешка обала]] дуга 29.000 -{km}- (18.000 миља) са својих скоро 1.200 фјордова, али само 2.500 -{km}- (1.600 миља) [[coastline paradox|без фјордова]].<ref>{{cite web |title=Geografiske forhold (Geography of Norway) |url=https://www.ssb.no/a/aarbok/kart/i.html |publisher=Statistics Norway |access-date=24 March 2016}}</ref><ref>{{cite book |last=Gregory |first=J. W. |title=The Nature and Origin of Fiords |url=https://archive.org/details/in.ernet.dli.2015.215114 |date=1913 |publisher=John Murray |location=London}}</ref>
Фјордови се налазе у областима које су у [[плеистоцен]]у биле захваћене [[глацијација|глацијацијом]] и чији су се ледници завршавали у мору ([[Аљаска]], [[Канада]], [[Исланд]], [[Чиле]], [[Нови Зеланд]]) али су најтипичнији за [[Скандинавија|Скандинавију]].


== Карактеристике ==
== Карактеристике ==
Типичне карактеристике фјорда су узак рукавац, еродирано дно дубоко испод морске површине, стрме падине копна које га окружује, а које се пружају дубоко под море, и излаз на отворено море.
Типичне карактеристике фјорда су узак рукавац, еродирано дно дубоко испод морске површине, стрме падине копна које га окружује, а које се пружају дубоко под море, и излаз на отворено море.

=== Хидрологија ===
{{рут}}
During the winter season there is usually little inflow of freshwater. Surface water and deeper water (down to {{cvt|100|m|disp=or||}} or more) are mixed during winter because of the steady cooling of the surface and wind. In the deep fjords there is still fresh water from the summer with less density than the saltier water along the coast. Offshore wind, common in the fjord areas during winter, sets up a current on the surface from the inner to the outer parts. This current on the surface in turn pulls dense salt water from the coast across the fjord threshold and into the deepest parts of the fjord.<ref name=Skreslet>{{Cite book|title= Fjordene og kyststrømmen|last= Skreslet|first= Stig|publisher= Møre og Romsdal naturvern |year=1980 |place= Åndalsnes |pages= 48–54 |work= Rauma/Ulvåa på vektskåla}}</ref> Bolstadfjorden has a threshold of only {{cvt|1.5|m|||}} and strong inflow of freshwater from [[Vosso]] river creates a brackish surface that blocks circulation of the deep fjord. The deeper, salt layers of Bolstadfjorden are deprived of oxygen and the seabed is covered with organic material. The shallow threshold also creates a strong tidal current.<ref name="Aarseth" />

During the summer season there is usually a large inflow of river water in the inner areas. This freshwater gets mixed with saltwater creating a layer of brackish water with a slightly higher surface than the ocean which in turn sets up a current from the river mouths towards the ocean. This current is gradually more salty towards the coast and right under the surface current there is a reverse current of saltier water from the coast. In the deeper parts of the fjord the cold water remaining from winter is still and separated from the atmosphere by the brackish top layer. This deep water is ventilated by mixing with the upper layer causing it to warm and freshen over the summer.<ref>J.H. Simpson and T.P. Rippeth (1993). The Clyde Sea - a model of seasonal stratification and mixing. Estuarine, Coastal and Shelf Science. 37, 129-144 </ref> In fjords with a shallow threshold or low levels of mixing this deep water is not replaced every year and low oxygen concentration makes the deep water unsuitable for fish and animals. In the most extreme cases there is a constant barrier of freshwater on the surface and the fjord freezes over such that there is no oxygen below the surface. [[Drammensfjorden]] is one example.<ref name=Skreslet/> The mixing in fjords predominantly results from the propagation of an [[internal tide]] from the entrance sill or internal seiching.<ref>Arneborg, L., Janzen, C., Liljebladh, B., Rippeth, T., Simpson, J. H. & Stigebrandt, A. (2004). Spatial variability of diapycnal mixing and turbulent dissipation rates in a stagnant fjord basin. Journal of Physical Oceanography, 34(7), 1679-1691</ref>


== Настанак ==
== Настанак ==
[[Датотека:Glacier in eastern Greenland.jpg|thumb|лево|250п|A glacier in eastern Greenland flowing through a fjord carved by the movement of ice]]
[[Датотека:Fjord genesis.png|thumb|лево|250п|Illustration of how a fjord is created]]
[[Датотека:Odda frå fly.jpg|thumb|лево|250п|[[Sørfjorden (Hardanger)]] with [[Sandvinvatnet]] and Odda valley can be clearly seen as continuation of the fjord. [[Odda]] sits on the [[isthmus]]. [[Folgefonna]] on the right hand.]]

Фјордови су настајали у ледено доба кад су велики ледници, отапајући се, путовали према мору односећи заробљене стене и својим абразивним деловањем дубили копно. Таквим деловањем ледника настајали су чак до 800 -{[[Метар|m]]}- дубоки [[Рукавац|рукавци]].
Фјордови су настајали у ледено доба кад су велики ледници, отапајући се, путовали према мору односећи заробљене стене и својим абразивним деловањем дубили копно. Таквим деловањем ледника настајали су чак до 800 -{[[Метар|m]]}- дубоки [[Рукавац|рукавци]].

A true fjord is formed when a [[glacier]] cuts a [[U-shaped valley]] by [[ice segregation]] and [[Abrasion (geology)|abrasion]] of the surrounding bedrock.<ref name= Murton2006>{{Cite journal | last = Murton | first = Julian B. |author2=Peterson, Rorik |author3=Ozouf, Jean-Claude | title = Bedrock Fracture by Ice Segregation in Cold Regions | journal = [[Science (journal)|Science]] | volume = 314 | issue = 5802 | pages = 1127–1129| date = 17 November 2006| doi= 10.1126/science.1132127| pmid=17110573|bibcode = 2006Sci...314.1127M | s2cid = 37639112 }}</ref> According to the standard model, glaciers formed in pre-glacial valleys with a gently sloping valley floor. The work of the glacier then left an [[Overdeepening|overdeepened]] [[U-shaped valley]] that ends abruptly at a valley or trough end. Such valleys are fjords when flooded by the ocean. Thresholds above sea level create freshwater lakes.<ref name="Aarseth" /> Glacial melting is accompanied by the rebounding of Earth's crust as the ice load and eroded sediment is removed (also called [[isostasy]] or glacial rebound). In some cases this rebound is faster than [[sea level rise]]. Most fjords are [[Overdeepening|deeper than the adjacent sea]]; [[Sognefjord]], [[Norway]], reaches as much as {{convert|1300|m|abbr=on|0}} below [[sea level]]. Fjords generally have a sill or shoal (bedrock) at their mouth caused by the previous glacier's reduced erosion rate and [[terminal moraine]].<ref name=Alley2003>{{Cite journal | last = Alley | first = R.B. |author2=D. E. Dawson |author3=G. J. Larson |author4=E. B. Evenson |author5=G. S. Baker | title = Stabilizing feedbacks in glacier-bed erosion | journal = Nature | volume = 424 | issue = 6950| pages = 758–760 | publisher = Nature PublishingGroup | date = 14 August 2003 | doi = 10.1038/nature01839| pmid = 12917679 |bibcode = 2003Natur.424..758A | s2cid = 4319448 }}</ref> In many cases this sill causes extreme currents and large saltwater rapids (see [[Tidal rapid|skookumchuck]]). [[Saltstraumen]] in Norway is often described as the world's strongest [[Tide#Current|tidal current]]. These characteristics distinguish fjords from [[ria]]s (e.g. the [[Bay of Kotor]]), which are drowned valleys flooded by the rising sea. [[Drammensfjorden]] is cut almost in two by the [[Svelvik]] "ridge", a sandy moraine that during the ice cover was under sea level but after the post-glacial rebound reaches {{cvt|60|m|||}} above the fjord.<ref>Jørgensen, Per: ''Kvartærgeologi''. Landbruksforlaget, 1995.</ref>

[[Jens Esmark]] in the 19th century introduced the theory that fjords are or have been created by glaciers and that large parts of Northern Europe had been covered by thick ice in prehistory.<ref name="Holtedahl" /> Thresholds at the mouths and overdeepening of fjords compared to the ocean are the strongest evidence of glacial origin,<ref name="Nesje, A. 1994">{{cite journal |last1= Nesje|first1= Atle|last2= Whillans|first2= Ian M.|title=Erosion of Sognefjord, Norway |journal=Geomorphology |date=1 February 1994 |volume=9 |issue=1 |pages=33–45 |doi=10.1016/0169-555X(94)90029-9 |bibcode= 1994Geomo...9...33N|url=https://dx.doi.org/10.1016/0169-555X%2894%2990029-9 |access-date=20 September 2021 |language=en |issn=0169-555X}}</ref> and these thresholds are mostly rocky. Thresholds are related to sounds and low land where the ice could spread out and therefore have less erosive force. [[John Walter Gregory]] argued that fjords are of [[tectonic]] origin and that glaciers had a negligible role in their formation. Gregory's views were rejected by subsequent research and publications. In the case of Hardangerfjord the fractures of the [[Caledonian orogeny|Caledonian fold]] has guided the erosion by glaciers, while there is no clear relation between the direction of Sognefjord and the fold pattern.<ref name="Holtedahl">Holtedahl, H. (1967). Notes on the formation of fjords and fjord-valleys. ''Geografiska Annaler. Series A. Physical Geography,'' 49(2/4): 188-203.</ref> This relationship between fractures and direction of fjords is also observed in [[Lyngen]].<ref>Randall, B. A. O. (1961). On the relationship of valley and fjord directions to the fracture pattern of Lyngen, Troms N. Norway. ''Geografiska Annaler'', 43(3/4), 336-338.</ref> Preglacial, [[tertiary]] rivers presumably eroded the surface and created valleys that later guided the glacial flow and erosion of the bedrock. This may in particular have been the case in Western Norway where the tertiary uplift of the landmass amplified eroding forces of rivers.<ref name="Holtedahl" />

Confluence of tributary fjords led to excavation of the deepest fjord basins. Near the very coast the typical West Norwegian glacier spread out (presumably through sounds and low valleys) and lost their concentration and reduced the glaciers' power to erode leaving bedrock thresholds. [[Bolstadfjorden]] is {{cvt|160|m|||}} deep with a threshold of only {{cvt|1.5|m|||}},<ref name="Holtedahl" /><ref name="Aarseth">Aarseth, I., Nesje, A., & Fredin, O. (2014). ''West Norwegian fjords.'' Geological Society of Norway (NGF), Trondheim, 2014. {{ISBN|978-82-92-39491-5}}</ref> while the {{cvt|1300|m|||}} deep Sognefjorden has a threshold around {{cvt|100|to|200|m|}} deep.<ref name="Geografisk">''Geografisk leksikon'', edited by Waldemar Brøgger. Oslo: Cappelen, 1963.</ref><ref>{{Cite web|url=https://snl.no/Sognefjorden|title=Sognefjorden|date=15 August 2021}}</ref> [[Hardangerfjord]] is made up of several basins separated by thresholds: The deepest basin Samlafjorden between Jonaneset ([[Jondal]]) and [[Ålvik]] with a distinct threshold at Vikingneset in [[Kvam]].<ref name="Holtedahl" />

[[File:Muldalsfossen.JPG|thumb|250п|Muldalsfossen waterfall drops several hundred meters from the Muldalen hanging valley to [[Tafjorden]].]]
[[Hanging valley]]s are common along glaciated fjords and [[U-shaped valley]]s. A hanging valley is a [[tributary]] valley that is higher than the main valley and was created by tributary [[glacier]] flows into a glacier of larger volume. The shallower valley appears to be 'hanging' above the main valley or a fjord. Often, [[waterfall]]s form at or near the outlet of the upper valley.<ref>{{cite web| title =Glossary of Glacier Terminology| publisher =U.S. Geological Survey| date =May 28, 2004| url =http://pubs.usgs.gov/of/2004/1216/h/h.html| access-date = 2007-05-24 }}</ref> Small waterfalls within these fjords are also used as freshwater resources. Hanging valleys also occur under water in fjord systems. The branches of [[Sognefjord]] are for instance much shallower than the main fjord. The mouth of [[Fjærlandsfjord]] is about {{cvt|400|m|||}} deep while the main fjord is {{cvt|1200|m|||}} nearby. The mouth of Ikjefjord is only 50 meters deep while the main fjord is around {{cvt|1300|m|||}} at the same point.<ref name="Nesje, A. 1994"/>


== Локације фјордова ==
== Локације фјордова ==
=== Западна европска обала ===
=== Западна европска обала ===
[[Датотека:UlvikfjordMountainsPanorama.jpg|280п|десно|мини|Улвикфјорд у Норвешкој]]
[[Датотека:UlvikfjordMountainsPanorama.jpg|250п|десно|мини|Улвикфјорд у Норвешкој]]
* [[Фарска Острва|Фарска острва]]
* [[Фарска Острва|Фарска острва]]
* [[Норвешка]]
* [[Норвешка]]
Ред 49: Ред 69:
** Арктичка острва
** Арктичка острва
* [[Антарктик]]
* [[Антарктик]]

== Референце ==
{{reflist|}}


== Литература ==
== Литература ==
{{refbegin|30em}}
# Марковић М., Павловић Р., Чупковић Т. 2003. ''Геоморфологија''. Београд: Завод за уџбенике и наставна средства
* {{cite book|last1=Moore|first1=Arthur William|title=The Surnames & Place-Names of the Isle of Man|publisher=E. Stock|isbn=978-1110309573|url=https://archive.org/details/surnamesplacena00moorgoog|page=[https://archive.org/details/surnamesplacena00moorgoog/page/n18 2]|quote=surnames and place-names of isle of man.|date=1890|access-date=April 24, 2015}}
# Пешић Л. 2001. ''Општа геологија - Егзодинамика''. Београд: Рударско-геолошки факултет
* Марковић М., Павловић Р., Чупковић Т. 2003. ''Геоморфологија''. Београд: Завод за уџбенике и наставна средства
* Пешић Л. 2001. ''Општа геологија - Егзодинамика''. Београд: Рударско-геолошки факултет
* Kurt-Dietmar Schmidtke: ''Die Entstehung Schleswig-Holsteins'', Neumünster (Germany), 3rd edition 1995, {{ISBN|3-529-05316-3}}

{{refend}}


== Спољашње везе ==
{{Други пројекти
{{Други пројекти
| commons = Fjords
| commons = Fjords
Ред 64: Ред 93:
| wikinews =
| wikinews =
}}
}}
* [http://news.bbc.co.uk/1/hi/sci/tech/2683797.stm Use of whales to probe Arctic fjord's secrets]
* [http://www.doc.govt.nz/parks-and-recreation/places-to-visit/fiordland/western-fiordland/fiordlands-marine-reserves/features/fiordland-marine-reserves-a-z/ Fiordland's Marine Reserves] Department of Conservation
* [http://www.nextstopnorway.com/norwegian-fjords Nextstopnorway – Listing of Norwegian fjords]
* [http://www.canadiangeographic.ca/atlas/themes.aspx?id=rivers&sub=rivers_east_saguenay Saguenay River – The Canadian Atlas Online]
* {{Cite web|url = http://www.artsdatabanken.no/NiN/Naturtype/6|title = Fjord|access-date = 30 January 2016|publisher = Norwegian Biodiversity Information Centre|url-status = dead|archive-url = https://web.archive.org/web/20160203130343/http://www.artsdatabanken.no/NiN/Naturtype/6|archive-date = 3 February 2016}}


{{Типови залива}}
{{Типови залива}}

Верзија на датум 6. фебруар 2022. у 04:09

Гејрангерфјорд, Норвешка
Фјорд у Норвешкој

Фјордови[1] су потопљене долине некадашњих ледника.[2] Стрмих су страна, уски и веома дубоки. Нпр. познати Согне фјорд у Норвешкој дугачак је 205 km и дубок је преко 1.200 m, а његове стране су високе до 1.500 m. Фјордови се налазе у областима које су у плеистоцену биле захваћене глацијацијом и чији су се ледници завршавали у мору (Аљаска, Канада, Исланд, Чиле, Нови Зеланд) али су најтипичнији за Скандинавију.[3] Процењује се да је норвешка обала дуга 29.000 km (18.000 миља) са својих скоро 1.200 фјордова, али само 2.500 km (1.600 миља) без фјордова.[4][5]

Карактеристике

Типичне карактеристике фјорда су узак рукавац, еродирано дно дубоко испод морске површине, стрме падине копна које га окружује, а које се пружају дубоко под море, и излаз на отворено море.

Хидрологија

During the winter season there is usually little inflow of freshwater. Surface water and deeper water (down to 100 m or 330 ft or more) are mixed during winter because of the steady cooling of the surface and wind. In the deep fjords there is still fresh water from the summer with less density than the saltier water along the coast. Offshore wind, common in the fjord areas during winter, sets up a current on the surface from the inner to the outer parts. This current on the surface in turn pulls dense salt water from the coast across the fjord threshold and into the deepest parts of the fjord.[6] Bolstadfjorden has a threshold of only 15 m (49 ft) and strong inflow of freshwater from Vosso river creates a brackish surface that blocks circulation of the deep fjord. The deeper, salt layers of Bolstadfjorden are deprived of oxygen and the seabed is covered with organic material. The shallow threshold also creates a strong tidal current.[7]

During the summer season there is usually a large inflow of river water in the inner areas. This freshwater gets mixed with saltwater creating a layer of brackish water with a slightly higher surface than the ocean which in turn sets up a current from the river mouths towards the ocean. This current is gradually more salty towards the coast and right under the surface current there is a reverse current of saltier water from the coast. In the deeper parts of the fjord the cold water remaining from winter is still and separated from the atmosphere by the brackish top layer. This deep water is ventilated by mixing with the upper layer causing it to warm and freshen over the summer.[8] In fjords with a shallow threshold or low levels of mixing this deep water is not replaced every year and low oxygen concentration makes the deep water unsuitable for fish and animals. In the most extreme cases there is a constant barrier of freshwater on the surface and the fjord freezes over such that there is no oxygen below the surface. Drammensfjorden is one example.[6] The mixing in fjords predominantly results from the propagation of an internal tide from the entrance sill or internal seiching.[9]

Настанак

A glacier in eastern Greenland flowing through a fjord carved by the movement of ice
Illustration of how a fjord is created
Sørfjorden (Hardanger) with Sandvinvatnet and Odda valley can be clearly seen as continuation of the fjord. Odda sits on the isthmus. Folgefonna on the right hand.

Фјордови су настајали у ледено доба кад су велики ледници, отапајући се, путовали према мору односећи заробљене стене и својим абразивним деловањем дубили копно. Таквим деловањем ледника настајали су чак до 800 m дубоки рукавци.

A true fjord is formed when a glacier cuts a U-shaped valley by ice segregation and abrasion of the surrounding bedrock.[10] According to the standard model, glaciers formed in pre-glacial valleys with a gently sloping valley floor. The work of the glacier then left an overdeepened U-shaped valley that ends abruptly at a valley or trough end. Such valleys are fjords when flooded by the ocean. Thresholds above sea level create freshwater lakes.[7] Glacial melting is accompanied by the rebounding of Earth's crust as the ice load and eroded sediment is removed (also called isostasy or glacial rebound). In some cases this rebound is faster than sea level rise. Most fjords are deeper than the adjacent sea; Sognefjord, Norway, reaches as much as 1.300 m (4.265 ft) below sea level. Fjords generally have a sill or shoal (bedrock) at their mouth caused by the previous glacier's reduced erosion rate and terminal moraine.[11] In many cases this sill causes extreme currents and large saltwater rapids (see skookumchuck). Saltstraumen in Norway is often described as the world's strongest tidal current. These characteristics distinguish fjords from rias (e.g. the Bay of Kotor), which are drowned valleys flooded by the rising sea. Drammensfjorden is cut almost in two by the Svelvik "ridge", a sandy moraine that during the ice cover was under sea level but after the post-glacial rebound reaches 60 m (200 ft) above the fjord.[12]

Jens Esmark in the 19th century introduced the theory that fjords are or have been created by glaciers and that large parts of Northern Europe had been covered by thick ice in prehistory.[13] Thresholds at the mouths and overdeepening of fjords compared to the ocean are the strongest evidence of glacial origin,[14] and these thresholds are mostly rocky. Thresholds are related to sounds and low land where the ice could spread out and therefore have less erosive force. John Walter Gregory argued that fjords are of tectonic origin and that glaciers had a negligible role in their formation. Gregory's views were rejected by subsequent research and publications. In the case of Hardangerfjord the fractures of the Caledonian fold has guided the erosion by glaciers, while there is no clear relation between the direction of Sognefjord and the fold pattern.[13] This relationship between fractures and direction of fjords is also observed in Lyngen.[15] Preglacial, tertiary rivers presumably eroded the surface and created valleys that later guided the glacial flow and erosion of the bedrock. This may in particular have been the case in Western Norway where the tertiary uplift of the landmass amplified eroding forces of rivers.[13]

Confluence of tributary fjords led to excavation of the deepest fjord basins. Near the very coast the typical West Norwegian glacier spread out (presumably through sounds and low valleys) and lost their concentration and reduced the glaciers' power to erode leaving bedrock thresholds. Bolstadfjorden is 160 m (520 ft) deep with a threshold of only 15 m (49 ft),[13][7] while the 1.300 m (4.300 ft) deep Sognefjorden has a threshold around 100 to 200 m (330 to 660 ft) deep.[16][17] Hardangerfjord is made up of several basins separated by thresholds: The deepest basin Samlafjorden between Jonaneset (Jondal) and Ålvik with a distinct threshold at Vikingneset in Kvam.[13]

Muldalsfossen waterfall drops several hundred meters from the Muldalen hanging valley to Tafjorden.

Hanging valleys are common along glaciated fjords and U-shaped valleys. A hanging valley is a tributary valley that is higher than the main valley and was created by tributary glacier flows into a glacier of larger volume. The shallower valley appears to be 'hanging' above the main valley or a fjord. Often, waterfalls form at or near the outlet of the upper valley.[18] Small waterfalls within these fjords are also used as freshwater resources. Hanging valleys also occur under water in fjord systems. The branches of Sognefjord are for instance much shallower than the main fjord. The mouth of Fjærlandsfjord is about 400 m (1.300 ft) deep while the main fjord is 1.200 m (3.900 ft) nearby. The mouth of Ikjefjord is only 50 meters deep while the main fjord is around 1.300 m (4.300 ft) at the same point.[14]

Локације фјордова

Западна европска обала

Улвикфјорд у Норвешкој

Новозеландска западна обала

Северноамеричка западна обала

Западна обала Јужне Америке

Остала ледничка подручја

Фјордови постоје и на неким другим ледничким подручјима, као на пример:

Референце

  1. ^ „Fjord”. Merriam-Webster Dictionary. 
  2. ^ „What is a Fjord, and how is it formed”. Norway Today (на језику: енглески). 2016-05-08. Приступљено 2017-12-30. 
  3. ^ Syvitsky, James P. M.; Burrell, David C.; Skei, Jens M. (1987). Fjords: Processes and Products. New York: Springer. стр. 46–49. ISBN 0-387-96342-1. „The NE coast, from Victoria Fjord to the Scoresby Sund fjord complex ..., has approximately 60 major fjords, some of them the world's largest and deepest. ... The SE coast, from Scoresby Sund to Kap Farvel ..., has approximately 100 fjords. 
  4. ^ „Geografiske forhold (Geography of Norway)”. Statistics Norway. Приступљено 24. 3. 2016. 
  5. ^ Gregory, J. W. (1913). The Nature and Origin of Fiords. London: John Murray. 
  6. ^ а б Skreslet, Stig (1980). Fjordene og kyststrømmen. Rauma/Ulvåa på vektskåla. Åndalsnes: Møre og Romsdal naturvern. стр. 48—54. 
  7. ^ а б в Aarseth, I., Nesje, A., & Fredin, O. (2014). West Norwegian fjords. Geological Society of Norway (NGF), Trondheim, 2014. ISBN 978-82-92-39491-5
  8. ^ J.H. Simpson and T.P. Rippeth (1993). The Clyde Sea - a model of seasonal stratification and mixing. Estuarine, Coastal and Shelf Science. 37, 129-144
  9. ^ Arneborg, L., Janzen, C., Liljebladh, B., Rippeth, T., Simpson, J. H. & Stigebrandt, A. (2004). Spatial variability of diapycnal mixing and turbulent dissipation rates in a stagnant fjord basin. Journal of Physical Oceanography, 34(7), 1679-1691
  10. ^ Murton, Julian B.; Peterson, Rorik; Ozouf, Jean-Claude (17. 11. 2006). „Bedrock Fracture by Ice Segregation in Cold Regions”. Science. 314 (5802): 1127—1129. Bibcode:2006Sci...314.1127M. PMID 17110573. S2CID 37639112. doi:10.1126/science.1132127. 
  11. ^ Alley, R.B.; D. E. Dawson; G. J. Larson; E. B. Evenson; G. S. Baker (14. 8. 2003). „Stabilizing feedbacks in glacier-bed erosion”. Nature. Nature PublishingGroup. 424 (6950): 758—760. Bibcode:2003Natur.424..758A. PMID 12917679. S2CID 4319448. doi:10.1038/nature01839. 
  12. ^ Jørgensen, Per: Kvartærgeologi. Landbruksforlaget, 1995.
  13. ^ а б в г д Holtedahl, H. (1967). Notes on the formation of fjords and fjord-valleys. Geografiska Annaler. Series A. Physical Geography, 49(2/4): 188-203.
  14. ^ а б Nesje, Atle; Whillans, Ian M. (1. 2. 1994). „Erosion of Sognefjord, Norway”. Geomorphology (на језику: енглески). 9 (1): 33—45. Bibcode:1994Geomo...9...33N. ISSN 0169-555X. doi:10.1016/0169-555X(94)90029-9. Приступљено 20. 9. 2021. 
  15. ^ Randall, B. A. O. (1961). On the relationship of valley and fjord directions to the fracture pattern of Lyngen, Troms N. Norway. Geografiska Annaler, 43(3/4), 336-338.
  16. ^ Geografisk leksikon, edited by Waldemar Brøgger. Oslo: Cappelen, 1963.
  17. ^ „Sognefjorden”. 15. 8. 2021. 
  18. ^ „Glossary of Glacier Terminology”. U.S. Geological Survey. 28. 5. 2004. Приступљено 2007-05-24. 

Литература

  • Moore, Arthur William (1890). The Surnames & Place-Names of the Isle of Man. E. Stock. стр. 2. ISBN 978-1110309573. Приступљено 24. 4. 2015. „surnames and place-names of isle of man. 
  • Марковић М., Павловић Р., Чупковић Т. 2003. Геоморфологија. Београд: Завод за уџбенике и наставна средства
  • Пешић Л. 2001. Општа геологија - Егзодинамика. Београд: Рударско-геолошки факултет
  • Kurt-Dietmar Schmidtke: Die Entstehung Schleswig-Holsteins, Neumünster (Germany), 3rd edition 1995, ISBN 3-529-05316-3

Спољашње везе