Filogenija — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
мНема описа измене
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Проучавање еволуционих односа између организама}}{{рут}}
{{Evolucijska biologija-lat}}
{{Evolucijska biologija-lat}}


'''Filogenija''' (ili ređe '''filogeneza''', [[grčki jezik|grčki]] '''φυλογένεση''', složenica od ''φῦλον'' — “pleme”, “rodbina”, i ''γéνeσiς'' — “nastanak”) je razvoj [[organizam|živih bića]], ([[биологија|biološka]] [[evolucija]]) kroz istoriju [[Zemlja|zemlje]].<ref>{{cite book |last1=Liddell |first1=Henry George |author-link1=Henry George Liddell |last2=Scott |first2=Robert |author-link2=Robert Scott (philologist) |last3=Jones |first3=Henry Stuart |author-link3=Henry Stuart-Jones |title=A Greek-English lexicon |year=1968 |publisher=Clarendon Press |location=Oxford |edition=9 |page=1961 |url=https://archive.org/stream/greekenglishlex00lidduoft#page/304/mode/2up}}</ref> Pojam nije ograničen samo na evoluciju životinjskih stabala nego uključuje i razvoj pojedinih [[takson|taksona]] na svim nivoima [[sistematika|sistematike]]. Koristi se i za karakterizaciju evolucije pojedinih osobina kroz razvojnu istoriju.<ref>{{cite web| title=phylogeny| publisher=Biology online| url=http://www.biology-online.org/dictionary/Phylogeny| access-date=2013-02-15}}</ref> Istraživanje filogeneze provodi se naročito: vrednovanjem [[morfologija (biologija)|morfoloških]] i [[anatomija|anatomskih]] osobina [[fosil]]a, upoređivanjem morfoloških, anatomskih i [[fiziologija|fizioloških]] osobina [[recentne vrste|recentnih]] živih bića, upoređivanjem [[ortogeneza|ortogeneze]] pretežno recentnih živih bića, analizom [[DNK]], naročito pojedinih segmenata DNK i [[filogenetsko stablo|molekularno filogenetskim metodama]]. Iz ovih podataka može da se izradi [[filogenetsko stablo]] koje prikazuje pretpostavljene srodničke odnose.
'''Filogenija''' (ili ređe '''filogeneza''', [[grčki jezik|grčki]] '''φυλογένεση''', složenica od ''φῦλον'' — “pleme”, “rodbina”, i ''γéνeσiς'' — “nastanak”) je razvoj [[organizam|živih bića]], ([[биологија|biološka]] [[evolucija]]) kroz istoriju [[Zemlja|zemlje]].


Naučno teorijski problem filogenetskih istraživanja leži u činjenici, da filogeneza po pravilu ne može direktno da se posmatra, niti da se eksperimentalno ponove evolucijski procesi koji su se evidentno dešavali. Radi koliko toliko zaokruženih rekonstrukcija stabala porekla odnosno razvitka, neophodno je da se koriste dokazi koje prikupljaju razna druga naučna područja. Kod vrednovanja raznih osobina vrlo važno je razlikovati homologiju od analogije. [[Homologija]], na primer homologni organi ili homologni način ponašanja pokazuju isti osnovni plan građe ili istu strukturu koja varira zavisno o [[ekologija|ekološkim]] uslovima. Homologni organi mogu da imaju vrlo različitu namenu pa prema tome mogu da imaju i vrlo različit izgled. Tipičan primer homologije organa su prednji udovi [[kičmenjaci|kičmenjaka]]. Delom su se razvili u prednje udove za hodanje, ali drukčije oblikovani, mogu biti [[krilo|krila]] ([[ptice]], [[pterosauria]], [[слепи мишеви|šišmiši]]), [[peraje]] ([[Рибе|ribe]], [[pingvinke]], [[ichthyosauria]], [[kitovi]]), udovi za hvatanje ([[čovek]], [[majmuni]] i neki pripadnici [[sauria]]) ili alat za kopanje ([[Talpidae|krtice]], [[gola krtica]], [[krtice tobolčari]]). [[Kost|Koštana]] podloga ovih udova u osnovu je ista. Isti način građe može da se objasni samo filogenezom. Homologije upućuju na filogenetsku srodnost i predstavljaju značajan dokaz za oblikovanje stabala srodnosti. [[Analogija (biologija)|Analogije]], na primer analogni organi, pokazuju - ponekad zapanjujuću - spoljašnje sličnosti a pored toga imaju i iste funkcije, ali su se razvili nezavisno jedni od drugih [[konvergentna evolucija|konvergentnim]] razvojem. Tako [[oko|oči]] dela [[glavonošci|glavonožaca]] i kičmenjaka spolja izgledaju isto, a imaju i istu funkciju. Tek kod detaljnije [[mikroskop]]ske analize može da se utvrdi razlika u građi. [[Ontogeneza|Ontogenetska]] istraživanja pokazuju, da su se razvili iz različitih [[klicin list|klicinih listića]]. Analogije nisu dokaz bliske filogenetske srodnosti. Upravo obrnuto, one po pravilu sugerišu odvojene razvojne puteve.
Pojam nije ograničen samo na evoluciju životinjskih stabala nego uključuje i razvoj pojedinih [[takson|taksona]] na svim nivoima [[sistematika|sistematike]]. Koristi se i za karakterizaciju evolucije pojedinih osobina kroz razvojnu istoriju.


The tips of a phylogenetic tree can be living taxa or fossils, and represent the "end" or the present time in an evolutionary lineage. A phylogenetic diagram can be rooted or unrooted. A rooted tree diagram indicates the hypothetical common ancestor of the tree. An unrooted tree diagram (a network) makes no assumption about the ancestral line, and does not show the origin or "root" of the taxa in question or the direction of inferred evolutionary transformations.<ref>{{Cite web|url=http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec08/node3.html|title=Phylogenetic Trees|website=www.cs.tau.ac.il|access-date=2019-04-27}}</ref>
Istraživanje filogeneze provodi se naročito:


In addition to their use for inferring phylogenetic patterns among taxa, phylogenetic analyses are often employed to represent relationships among genes or individual organisms. Such uses have become central to understanding biodiversity, evolution, ecology, and genomes. In February 2021, scientists reported [[DNA sequencing|sequencing]] [[DNA]] from a [[mammoth]] that was over a million years old, the oldest DNA sequenced to date.<ref name="CNN-20210217">{{cite news |last=Hunt |first=Katie |title=World's oldest DNA sequenced from a mammoth that lived more than a million years ago |url=https://www.cnn.com/2021/02/17/world/mammoth-oldest-dna-million-years-ago-scn/index.html |date=17 February 2021 |work=[[CNN|CNN News]] |accessdate=17 February 2021 }}</ref><ref name="NAT-20210217">{{cite journal |last1=Callaway |first1=Ewen |title=Million-year-old mammoth genomes shatter record for oldest ancient DNA |journal=Nature |date=25 February 2021 |volume=590 |issue=7847 |pages=537–538 |doi=10.1038/d41586-021-00436-x |bibcode=2021Natur.590..537C |doi-access=free }}</ref> Phylogenetics is part of [[systematics]].
* vrednovanjem [[morfologija (biologija)|morfoloških]] i [[anatomija|anatomskih]] osobina [[fosil]]a,
* upoređivanjem morfoloških, anatomskih i [[fiziologija|fizioloških]] osobina [[recentne vrste|recentnih]] živih bića,
* upoređivanjem [[ortogeneza|ortogeneze]] pretežno recentnih živih bića,
* analizom [[DNK]], naročito pojedinih segmenata DNK i [[filogenetsko stablo|molekularno filogenetskim metodama]].


== Istorija ==
Iz ovih podataka može da se izradi [[filogenetsko stablo]] koje prikazuje pretpostavljene srodničke odnose.


The term "phylogeny" derives from the German {{lang|de|Phylogenie}}, introduced by Haeckel in 1866,<ref>{{cite encyclopedia |last=Harper |first=Douglas |encyclopedia=[[Online Etymology Dictionary]] |title=Phylogeny |url=http://www.etymonline.com/index.php?allowed_in_frame=0&search=Phylogeny&searchmode=term |year=2010}}</ref> and the [[Darwinian]] approach to classification became known as the "phyletic" approach.{{sfn|Stuessy|2009}}
Naučno teorijski problem filogenetskih istraživanja leži u činjenici, da filogeneza po pravilu ne može direktno da se posmatra, niti da se eksperimentalno ponove evolucijski procesi koji su se evidentno dešavali. Radi koliko toliko zaokruženih rekonstrukcija stabala porekla odnosno razvitka, neophodno je da se koriste dokazi koje prikupljaju razna druga naučna područja.


=== Timeline of key points ===
Kod vrednovanja raznih osobina vrlo važno je razlikovati homologiju od analogije.
[[File:Bronn tree.gif|right|250px|thumb|Branching tree diagram from Heinrich Georg Bronn's work (1858)]]
[[File:Haeckel arbol bn.png|right|250px|thumb|Phylogenetic tree suggested by Haeckel (1866)]]


*14th century, ''lex parsimoniae'' (parsimony principle), [[William of Ockam]], English philosopher, theologian, and Franciscan friar, but the idea actually goes back to [[Aristotle]], precursor concept
* [[Homologija]], na primer homologni organi ili homologni način ponašanja pokazuju isti osnovni plan građe ili istu strukturu koja varira zavisno o [[ekologija|ekološkim]] uslovima. Homologni organi mogu da imaju vrlo različitu namenu pa prema tome mogu da imaju i vrlo različit izgled. Tipičan primer homologije organa su prednji udovi [[kičmenjaci|kičmenjaka]]. Delom su se razvili u prednje udove za hodanje, ali drukčije oblikovani, mogu biti [[krilo|krila]] ([[ptice]], [[pterosauria]], [[слепи мишеви|šišmiši]]), [[peraje]] ([[Рибе|ribe]], [[pingvinke]], [[ichthyosauria]], [[kitovi]]), udovi za hvatanje ([[čovek]], [[majmuni]] i neki pripadnici [[sauria]]) ili alat za kopanje ([[Talpidae|krtice]], [[gola krtica]], [[krtice tobolčari]]). [[Kost|Koštana]] podloga ovih udova u osnovu je ista. Isti način građe može da se objasni samo filogenezom. Homologije upućuju na filogenetsku srodnost i predstavljaju značajan dokaz za oblikovanje stabala srodnosti.
*1763, Bayesian probability, Rev. Thomas Bayes,<ref>{{cite journal |doi=10.1098/rstl.1763.0053 |title=An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S |journal=Philosophical Transactions of the Royal Society of London |volume=53 |pages=370–418 |year=1763 |last1=Bayes |first1=Mr |last2=Price |first2=Mr |doi-access=free }}</ref> precursor concept

*18th century, Pierre Simon (Marquis de Laplace), perhaps first to use ML (maximum likelihood), precursor concept
* [[Analogija (biologija)|Analogije]], na primer analogni organi, pokazuju - ponekad zapanjujuću - spoljašnje sličnosti a pored toga imaju i iste funkcije, ali su se razvili nezavisno jedni od drugih [[konvergentna evolucija|konvergentnim]] razvojem. Tako [[oko|oči]] dela [[glavonošci|glavonožaca]] i kičmenjaka spolja izgledaju isto, a imaju i istu funkciju. Tek kod detaljnije [[mikroskop]]ske analize može da se utvrdi razlika u građi. [[Ontogeneza|Ontogenetska]] istraživanja pokazuju, da su se razvili iz različitih [[klicin list|klicinih listića]]. Analogije nisu dokaz bliske filogenetske srodnosti. Upravo obrnuto, one po pravilu sugerišu odvojene razvojne puteve.
*1809, evolutionary theory, ''[[Philosophie Zoologique]],'' [[Jean-Baptiste de Lamarck]], precursor concept, foreshadowed in the 17th century and 18th century by Voltaire, Descartes, and Leibniz, with Leibniz even proposing evolutionary changes to account for observed gaps suggesting that many species had become extinct, others transformed, and different species that share common traits may have at one time been a single race,<ref>Strickberger, Monroe. 1996. Evolution, 2nd. ed. Jones & Bartlett.</ref> also foreshadowed by some early Greek philosophers such as [[Anaximander]] in the 6th century BC and the atomists of the 5th century BC, who proposed rudimentary theories of evolution<ref>The Theory of Evolution, Teaching Company course, Lecture 1</ref>
*1837, Darwin's notebooks show an evolutionary tree<ref>[http://www.nhm.ac.uk/nature-online/evolution/tree-of-life/darwin-tree/ Darwin's Tree of Life] {{webarchive|url=https://web.archive.org/web/20140313124644/http://www.nhm.ac.uk/nature-online/evolution/tree-of-life/darwin-tree/ |date=13 March 2014 }}</ref>
*1843, distinction between [[Homology (biology)|homology]] and [[Analogy (biology)|analogy]] (the latter now referred to as [[homoplasy]]), Richard Owen, precursor concept
*1858, Paleontologist Heinrich Georg Bronn (1800–1862) published a hypothetical tree to illustrating the paleontological "arrival" of new, similar species following the extinction of an older species. Bronn did not propose a mechanism responsible for such phenomena, precursor concept.<ref>{{cite journal |doi=10.1007/s10739-008-9163-y |pmid=20027787 |title=Edward Hitchcock's Pre-Darwinian (1840) 'Tree of Life' |journal=Journal of the History of Biology |volume=42 |issue=3 |pages=561–92 |year=2008 |last1=Archibald |first1=J. David |citeseerx=10.1.1.688.7842 |s2cid=16634677 }}</ref>
*1858, elaboration of evolutionary theory, Darwin and Wallace,<ref>{{cite journal |doi=10.1111/j.1096-3642.1858.tb02500.x |title=On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection |journal=Journal of the Proceedings of the Linnean Society of London. Zoology |volume=3 |issue=9 |pages=45–62 |year=1858 |last1=Darwin |first1=Charles |last2=Wallace |first2=Alfred |doi-access=free }}</ref> also in Origin of Species by Darwin the following year, precursor concept
*1866, [[Ernst Haeckel]], first publishes his phylogeny-based evolutionary tree, precursor concept
*1893, Dollo's Law of Character State Irreversibility,<ref>Dollo, Louis. 1893. Les lois de l'évolution. Bull. Soc. Belge Géol. Paléont. Hydrol. 7: 164–66.</ref> precursor concept
*1912, ML recommended, analyzed, and popularized by Ronald Fisher, precursor concept
*1921, Tillyard uses term "phylogenetic" and distinguishes between archaic and specialized characters in his classification system<ref>{{cite journal |doi=10.4039/Ent5335-2 |title=A New Classification of the Order Perlaria |journal=The Canadian Entomologist |volume=53 |issue=2 |pages=35–43 |year=2012 |last1=Tillyard |first1=R. J }}</ref>
*1940, term "[[clade]]" coined by Lucien Cuénot
*1949, [[Jackknife resampling]], Maurice Quenouille (foreshadowed in '46 by Mahalanobis and extended in '58 by Tukey), precursor concept
*1950, Willi Hennig's classic formalization<ref>{{cite book |last1=Hennig |first1=Willi |year=1950 |title=Grundzüge einer Theorie der Phylogenetischen Systematik |trans-title=Basic features of a theory of phylogenetic systematics |language=de |publisher=Deutscher Zentralverlag |location=Berlin |oclc=12126814 }}</ref>
*1952, William Wagner's groundplan divergence method<ref>{{cite journal |last1=Wagner |first1=Warren Herbert |year=1952 |title=The fern genus Diellia: structure, affinities, and taxonomy |journal=University of California Publications in Botany |volume=26 |issue=1–6 |pages=1–212 |oclc=4228844 }}</ref>
*1953, "cladogenesis" coined<ref>Webster's 9th New Collegiate Dictionary</ref>
*1960, "cladistic" coined by Cain and Harrison<ref>{{cite journal |doi=10.1111/j.1469-7998.1960.tb05828.x |title=Phyletic Weighting |journal=Proceedings of the Zoological Society of London |volume=135 |issue=1 |pages=1–31 |year=2009 |last1=Cain |first1=A. J |last2=Harrison |first2=G. A }}</ref>
*1963, first attempt to use ML (maximum likelihood) for phylogenetics, Edwards and Cavalli-Sforza<ref>"The reconstruction of evolution" in {{cite journal |doi=10.1111/j.1469-1809.1963.tb00786.x |title=Abstracts of Papers |journal=Annals of Human Genetics |volume=27 |issue=1 |pages=103–5 |year=1963 }}</ref>
*1965
**Camin-Sokal parsimony, first parsimony (optimization) criterion and first computer program/algorithm for cladistic analysis both by Camin and Sokal<ref>{{cite journal |doi=10.1111/j.1558-5646.1965.tb01722.x |title=A Method for Deducing Branching Sequences in Phylogeny |journal=Evolution |volume=19 |issue=3 |pages=311–26 |year=1965 |last1=Camin |first1=Joseph H |last2=Sokal |first2=Robert R |s2cid=20957422 |doi-access=free }}</ref>
**character compatibility method, also called clique analysis, introduced independently by Camin and Sokal (loc. cit.) and [[E. O. Wilson]]<ref>{{cite journal |doi=10.2307/2411550 |jstor=2411550 |title=A Consistency Test for Phylogenies Based on Contemporaneous Species |journal=Systematic Zoology |volume=14 |issue=3 |pages=214–20 |year=1965 |last1=Wilson |first1=Edward O }}</ref>
*1966
**English translation of Hennig<ref>Hennig. W. (1966). Phylogenetic systematics. Illinois University Press, Urbana.</ref>
**"cladistics" and "cladogram" coined (Webster's, loc. cit.)
*1969
**dynamic and successive weighting, James Farris<ref>{{cite journal |doi=10.2307/2412182 |jstor=2412182 |title=A Successive Approximations Approach to Character Weighting |journal=Systematic Zoology |volume=18 |issue=4 |pages=374–85 |year=1969 |last1=Farris |first1=James S }}</ref>
**Wagner parsimony, Kluge and Farris<ref name="Kluge">{{cite journal |doi=10.1093/sysbio/18.1.1 |title=Quantitative Phyletics and the Evolution of Anurans |journal=Systematic Biology |volume=18 |issue=1 |pages=1–32 |year=1969 |last1=Kluge |first1=A. G |last2=Farris |first2=J. S }}</ref>
**CI (consistency index), Kluge and Farris<ref name="Kluge" />
**introduction of pairwise compatibility for clique analysis, Le Quesne<ref>{{cite journal |doi=10.2307/2412604 |jstor=2412604 |title=A Method of Selection of Characters in Numerical Taxonomy |journal=Systematic Zoology |volume=18 |issue=2 |pages=201–205 |year=1969 |last1=Quesne |first1=Walter J. Le }}</ref>
*1970, Wagner parsimony generalized by Farris<ref>{{cite journal |doi=10.1093/sysbio/19.1.83 |title=Methods for Computing Wagner Trees |journal=Systematic Biology |volume=19 |pages=83–92 |year=1970 |last1=Farris |first1=J. S }}</ref>
*1971
**first successful application of ML to phylogenetics (for protein sequences), Neyman<ref>{{cite book |doi=10.1016/B978-0-12-307550-5.50005-8 |chapter=Molecular studies of evolution: a source of novel statistical problems |title=Statistical Decision Theory and Related Topics |year=1971 |last1=Neyman |first1=Jerzy |pages=1–27 |isbn=978-0-12-307550-5 }}</ref>
**Fitch parsimony, Fitch<ref>{{cite journal |doi=10.1093/sysbio/20.4.406 |jstor=2412116 |title=Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology |journal=Systematic Biology |volume=20 |issue=4 |pages=406–16 |year=1971 |last1=Fitch |first1=W. M }}</ref>
**NNI (nearest neighbour interchange), first branch-swapping search strategy, developed independently by Robinson<ref>{{cite journal |doi=10.1016/0095-8956(71)90020-7 |title=Comparison of labeled trees with valency three |journal=Journal of Combinatorial Theory, Series B |volume=11 |issue=2 |pages=105–19 |year=1971 |last1=Robinson |first1=D.F |doi-access=free }}</ref> and Moore et al.
**ME (minimum evolution), Kidd and Sgaramella-Zonta<ref>{{cite journal |pmid=5089842 |pmc=1706731 |year=1971 |last1=Kidd |first1=K. K |title=Phylogenetic analysis: Concepts and methods |journal=American Journal of Human Genetics |volume=23 |issue=3 |pages=235–52 |last2=Sgaramella-Zonta |first2=L. A }}</ref> (it is unclear if this is the pairwise distance method or related to ML as Edwards and Cavalli-Sforza call ML "minimum evolution")
*1972, Adams consensus, Adams<ref>{{cite journal |doi=10.1093/sysbio/21.4.390 |title=Consensus Techniques and the Comparison of Taxonomic Trees |journal=Systematic Biology |volume=21 |issue=4 |pages=390–397 |year=1972 |last1=Adams |first1=E. N }}</ref>
*1976, prefix system for ranks, Farris<ref>{{cite journal |doi=10.2307/2412495 |jstor=2412495 |title=Phylogenetic Classification of Fossils with Recent Species |journal=Systematic Zoology |volume=25 |issue=3 |pages=271–282 |year=1976 |last1=Farris |first1=James S }}</ref>
*1977, Dollo parsimony, Farris<ref>{{cite journal |doi=10.1093/sysbio/26.1.77 |title=Phylogenetic Analysis Under Dollo's Law |journal=Systematic Biology |volume=26 |pages=77–88 |year=1977 |last1=Farris |first1=J. S }}</ref>
*1979
**Nelson consensus, Nelson<ref>{{cite journal |doi=10.1093/sysbio/28.1.1 |title=Cladistic Analysis and Synthesis: Principles and Definitions, with a Historical Note on Adanson's Familles Des Plantes (1763-1764) |journal=Systematic Biology |volume=28 |pages=1–21 |year=1979 |last1=Nelson |first1=G }}</ref>
**MAST (maximum agreement subtree)((GAS)greatest agreement subtree), a consensus method, Gordon<ref>{{cite journal |doi= 10.1093/biomet/66.1.7|jstor=2335236 |title=A Measure of the Agreement between Rankings |journal=Biometrika |volume=66 |issue=1 |pages=7–15 |year=1979 |last1=Gordon |first1=A. D }}</ref>
**bootstrap, Bradley Efron, precursor concept<ref>Efron B. (1979). Bootstrap methods: another look at the jackknife. Ann. Stat. 7: 1–26.</ref>
*1980, PHYLIP, first software package for phylogenetic analysis, Felsenstein
*1981
**majority consensus, Margush and MacMorris<ref>{{cite journal |doi=10.1016/S0092-8240(81)90019-7 |title=Consensus-trees |journal=Bulletin of Mathematical Biology |volume=43 |issue=2 |pages=239 |year=1981 |last1=Margush |first1=T |last2=McMorris |first2=F }}</ref>
**strict consensus, Sokal and Rohlf<ref>{{cite journal |doi=10.2307/2413252 |jstor=2413252 |title=Taxonomic Congruence in the Leptopodomorpha Re-Examined |journal=Systematic Zoology |volume=30 |issue=3 |pages=309 |year=1981 |last1=Sokal |first1=Robert R |last2=Rohlf |first2=F. James }}</ref>
**first computationally efficient ML algorithm, Felsenstein<ref>{{cite journal |doi=10.1007/BF01734359 |pmid=7288891 |title=Evolutionary trees from DNA sequences: A maximum likelihood approach |journal=Journal of Molecular Evolution |volume=17 |issue=6 |pages=368–76 |year=1981 |last1=Felsenstein |first1=Joseph |bibcode=1981JMolE..17..368F |s2cid=8024924 }}</ref>
*1982
**PHYSIS, Mikevich and Farris
**branch and bound, Hendy and Penny<ref>{{cite journal |doi=10.1016/0025-5564(82)90027-X |title=Branch and bound algorithms to determine minimal evolutionary trees |journal=Mathematical Biosciences |volume=59 |issue=2 |pages=277 |year=1982 |last1=Hendy |first1=M.D |last2=Penny |first2=David }}</ref>
*1985
**first cladistic analysis of eukaryotes based on combined phenotypic and genotypic evidence Diana Lipscomb<ref>{{cite journal | last1 = Lipscomb | first1 = Diana | year = 1985 | title = The Eukaryotic Kingdoms | journal = Cladistics | volume = 1 | issue = 2 | pages = 127–40 | doi = 10.1111/j.1096-0031.1985.tb00417.x | s2cid = 84151309 }}</ref>
**first issue of ''Cladistics''
**first phylogenetic application of bootstrap, Felsenstein<ref>{{cite journal | last1 = Felsenstein | first1 = J | year = 1985 | title = Confidence limits on phylogenies: an approach using the bootstrap | journal = Evolution | volume = 39 | issue = 4 | pages = 783–791 | doi = 10.2307/2408678 | jstor = 2408678 | pmid = 28561359 }}</ref>
**first phylogenetic application of jackknife, Scott Lanyon<ref>{{cite journal |doi=10.1093/sysbio/34.4.397 |title=Detecting Internal Inconsistencies in Distance Data |journal=Systematic Biology |volume=34 |issue=4 |pages=397–403 |year=1985 |last1=Lanyon |first1=S. M |citeseerx=10.1.1.1000.3956 }}</ref>
*1986, MacClade, Maddison and Maddison
*1987, neighbor-joining method Saitou and Nei<ref>{{cite journal |doi=10.1093/oxfordjournals.molbev.a040454 |pmid=3447015 |title=The neighbor-joining method: A new method for reconstructing phylogenetic trees |journal=Molecular Biology and Evolution |volume=4 |issue=4 |pages=406–25 |year=1987 |last1=Saitou |first1=N. |last2=Nei |first2=M. |doi-access=free }}</ref>
*1988, Hennig86 (version 1.5), Farris
**Bremer support (decay index), Bremer<ref>{{cite journal |doi=10.1111/j.1558-5646.1988.tb02497.x |pmid=28563878 |title=The Limits of Amino Acid Sequence Data in Angiosperm Phylogenetic Reconstruction |journal=Evolution |volume=42 |issue=4 |pages=795–803 |year=1988 |last1=Bremer |first1=Kåre |s2cid=13647124 }}</ref>
*1989
**RI (retention index), RCI (rescaled consistency index), Farris<ref>{{cite journal |doi=10.1111/j.1096-0031.1989.tb00573.x |title=The Retention Index and the Rescaled Consistency Index |journal=Cladistics |volume=5 |issue=4 |pages=417–419 |year=1989 |last1=Farris |first1=James S |s2cid=84287895 }}</ref>
**HER (homoplasy excess ratio), Archie<ref>{{cite journal |doi=10.2307/2992286 |jstor=2992286 |title=Homoplasy Excess Ratios: New Indices for Measuring Levels of Homoplasy in Phylogenetic Systematics and a Critique of the Consistency Index |journal=Systematic Zoology |volume=38 |issue=3 |pages=253–269 |year=1989 |last1=Archie |first1=James W }}</ref>
*1990
**combinable components (semi-strict) consensus, Bremer<ref>{{cite journal |doi=10.1111/j.1096-0031.1990.tb00551.x |title=Combinable Component Consensus |journal=Cladistics |volume=6 |issue=4 |pages=369–372 |year=1990 |last1=Bremer |first1=Kåre |s2cid=84151348 }}</ref>
**SPR (subtree pruning and regrafting), TBR (tree bisection and reconnection), Swofford and Olsen<ref>D. L. Swofford and G. J. Olsen. 1990. Phylogeny reconstruction. In D. M. Hillis and G. Moritz (eds.), Molecular Systematics, pages 411–501. Sinauer Associates, Sunderland, Mass.</ref>
*1991
**DDI (data decisiveness index), Goloboff<ref>{{cite journal |doi=10.1111/j.1096-0031.1991.tb00035.x |title=Homoplasy and the Choice Among Cladograms |journal=Cladistics |volume=7 |issue=3 |pages=215–232 |year=1991 |last1=Goloboff |first1=Pablo A |s2cid=85418697 }}</ref><ref>{{cite journal |doi=10.1111/j.1096-0031.1991.tb00046.x |title=Random Data, Homoplasy and Information |journal=Cladistics |volume=7 |issue=4 |pages=395–406 |year=1991 |last1=Goloboff |first1=Pablo A |s2cid=85132346 }}</ref>
**first cladistic analysis of eukaryotes based only on phenotypic evidence, Lipscomb
*1993, implied weighting Goloboff<ref>{{cite journal |doi=10.1111/j.1096-0031.1993.tb00209.x |title=Estimating Character Weights During Tree Search |journal=Cladistics |volume=9 |pages=83–91 |year=1993 |last1=Goloboff |first1=Pablo A |issue=1 |s2cid=84231334 }}</ref>
*1994, reduced consensus: RCC (reduced cladistic consensus) for rooted trees, Wilkinson<ref>{{cite journal |doi=10.1093/sysbio/43.3.343 |title=Common Cladistic Information and its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles |journal=Systematic Biology |volume=43 |issue=3 |pages=343–368 |year=1994 |last1=Wilkinson |first1=M }}</ref>
*1995, reduced consensus RPC (reduced partition consensus) for unrooted trees, Wilkinson<ref>{{cite journal |doi=10.2307/2413604 |jstor=2413604 |title=More on Reduced Consensus Methods |journal=Systematic Biology |volume=44 |issue=3 |pages=435–439 |year=1995 |last1=Wilkinson |first1=Mark }}</ref>
*1996, first working methods for BI (Bayesian Inference)independently developed by Li,<ref>{{cite journal |doi=10.1080/01621459.2000.10474227 |jstor=2669394 |title=Phylogenetic Tree Construction Using Markov Chain Monte Carlo |journal=Journal of the American Statistical Association |volume=95 |issue=450 |pages=493 |year=2000 |last1=Li |first1=Shuying |last2=Pearl |first2=Dennis K |last3=Doss |first3=Hani |citeseerx=10.1.1.40.4461 |s2cid=122459537 }}</ref> Mau,<ref>{{cite journal |doi=10.1111/j.0006-341X.1999.00001.x |pmid=11318142 |jstor=2533889 |title=Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods |journal=Biometrics |volume=55 |issue=1 |pages=1–12 |year=1999 |last1=Mau |first1=Bob |last2=Newton |first2=Michael A |last3=Larget |first3=Bret |citeseerx=10.1.1.139.498 }}</ref> and Rannala and Yang<ref>{{cite journal |doi=10.1007/BF02338839 |pmid=8703097 |title=Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference |journal=Journal of Molecular Evolution |volume=43 |issue=3 |pages=304–11 |year=1996 |last1=Rannala |first1=Bruce |last2=Yang |first2=Ziheng |bibcode=1996JMolE..43..304R |s2cid=8269826 }}</ref> and all using MCMC (Markov chain-Monte Carlo)
*1998, TNT (Tree Analysis Using New Technology), Goloboff, Farris, and Nixon
*1999, Winclada, Nixon
*2003, symmetrical resampling, Goloboff<ref>{{cite journal |doi= 10.1111/j.1096-0031.2003.tb00376.x|title=Improvements to resampling measures of group support |journal=Cladistics |volume=19 |issue=4 |pages=324–32 |year=2003 |last1=Goloboff |first1=P |s2cid=55516104 }}</ref>
*2004,2005, symmilarity metric (using an approximation to Kolmogorov complexity) or NCD (normalized compression distance), Li et al.,<ref>{{cite journal |last1=Li |first1=M. |last2=Chen |first2=X. |last3=Li |first3=X. |last4=Ma |first4=B. |last5=Vitanyi |first5=P.M.B. |title=The Similarity Metric |journal=IEEE Transactions on Information Theory |date=December 2004 |volume=50 |issue=12 |pages=3250–3264 |doi=10.1109/TIT.2004.838101 |s2cid=221927 }}</ref> Cilibrasi and Vitanyi.<ref>{{cite journal |last1=Cilibrasi |first1=R. |last2=Vitanyi |first2=P.M.B. |title=Clustering by Compression |journal=IEEE Transactions on Information Theory |date=April 2005 |volume=51 |issue=4 |pages=1523–1545 |doi=10.1109/TIT.2005.844059 |arxiv=cs/0312044 |s2cid=911 }}</ref>


== Vidi još ==
== Vidi još ==
* [[Filogenija životinja]]
* [[Filogenija životinja]]

== Reference ==
{{Reflist}}


== Literatura ==
== Literatura ==
{{refbegin}}
{{refbegin|30em}}
* {{Cite book|ref= harv|last=Schuh|first=Randall T.|last2=Brower|first2=Andrew V.Z.|title=Biological systematics : principles and applications|date=2009|publisher=Comstock Pub. Associates/Cornell University Press|location=Ithaca|isbn=978-0-8014-4799-0|edition=2.}}
* {{Cite book|ref= harv|last=Schuh|first=Randall T.|last2=Brower|first2=Andrew V.Z.|title=Biological systematics : principles and applications|date=2009|publisher=Comstock Pub. Associates/Cornell University Press|location=Ithaca|isbn=978-0-8014-4799-0|edition=2.}}
* {{Cite book |last1=Schuh |first1=Randall T. |last2=Brower |first2=Andrew V.Z. |year=2009 |title=Biological Systematics: principles and applications |location=Ithaca |publisher=Comstock Pub. Associates/Cornell University Press |edition=2nd |isbn=978-0-8014-4799-0 |oclc=312728177}}
* {{Cite book|editor1-link=Peter Forster (geneticist)|editor1-last=Forster|editor1-first=Peter|editor2-link=Colin Renfrew, Baron Renfrew of Kaimsthorn|editor2-last=Renfrew|editor2-first=Colin|title=Phylogenetic Methods and the Prehistory of Languages|publisher= McDonald Institute Press, University of Cambridge|year=2006|isbn=978-1-902937-33-5|oclc=69733654}}
* {{Cite book|last1=Baum|first1=David A.|last2=Smith|first2=Stacey D.|title=Tree Thinking: an introduction to phylogenetic biology|location=Greenwood Village, CO|publisher=Roberts and Company|year=2013|isbn=978-1-936221-16-5|oclc=767565978}}
* {{cite book|last=Stuessy|first=Tod F.|title=Plant Taxonomy: The Systematic Evaluation of Comparative Data|publisher=Columbia University Press|isbn=978-0-231-14712-5|url=https://books.google.com/books?id=0bYs8F0Mb9gC|year=2009}}
{{refend}}
{{refend}}


Ред 34: Ред 115:


{{Evoluciona biologija-lat}}
{{Evoluciona biologija-lat}}
{{normativna kontrola-lat}}
{{нормативна контрола-лат}}


{{DEFAULTSORT:Филогенија}}
{{DEFAULTSORT:Филогенија}}

Верзија на датум 14. април 2022. у 05:49

Filogenija (ili ređe filogeneza, grčki φυλογένεση, složenica od φῦλον — “pleme”, “rodbina”, i γéνeσiς — “nastanak”) je razvoj živih bića, (biološka evolucija) kroz istoriju zemlje.[1] Pojam nije ograničen samo na evoluciju životinjskih stabala nego uključuje i razvoj pojedinih taksona na svim nivoima sistematike. Koristi se i za karakterizaciju evolucije pojedinih osobina kroz razvojnu istoriju.[2] Istraživanje filogeneze provodi se naročito: vrednovanjem morfoloških i anatomskih osobina fosila, upoređivanjem morfoloških, anatomskih i fizioloških osobina recentnih živih bića, upoređivanjem ortogeneze pretežno recentnih živih bića, analizom DNK, naročito pojedinih segmenata DNK i molekularno filogenetskim metodama. Iz ovih podataka može da se izradi filogenetsko stablo koje prikazuje pretpostavljene srodničke odnose.

Naučno teorijski problem filogenetskih istraživanja leži u činjenici, da filogeneza po pravilu ne može direktno da se posmatra, niti da se eksperimentalno ponove evolucijski procesi koji su se evidentno dešavali. Radi koliko toliko zaokruženih rekonstrukcija stabala porekla odnosno razvitka, neophodno je da se koriste dokazi koje prikupljaju razna druga naučna područja. Kod vrednovanja raznih osobina vrlo važno je razlikovati homologiju od analogije. Homologija, na primer homologni organi ili homologni način ponašanja pokazuju isti osnovni plan građe ili istu strukturu koja varira zavisno o ekološkim uslovima. Homologni organi mogu da imaju vrlo različitu namenu pa prema tome mogu da imaju i vrlo različit izgled. Tipičan primer homologije organa su prednji udovi kičmenjaka. Delom su se razvili u prednje udove za hodanje, ali drukčije oblikovani, mogu biti krila (ptice, pterosauria, šišmiši), peraje (ribe, pingvinke, ichthyosauria, kitovi), udovi za hvatanje (čovek, majmuni i neki pripadnici sauria) ili alat za kopanje (krtice, gola krtica, krtice tobolčari). Koštana podloga ovih udova u osnovu je ista. Isti način građe može da se objasni samo filogenezom. Homologije upućuju na filogenetsku srodnost i predstavljaju značajan dokaz za oblikovanje stabala srodnosti. Analogije, na primer analogni organi, pokazuju - ponekad zapanjujuću - spoljašnje sličnosti a pored toga imaju i iste funkcije, ali su se razvili nezavisno jedni od drugih konvergentnim razvojem. Tako oči dela glavonožaca i kičmenjaka spolja izgledaju isto, a imaju i istu funkciju. Tek kod detaljnije mikroskopske analize može da se utvrdi razlika u građi. Ontogenetska istraživanja pokazuju, da su se razvili iz različitih klicinih listića. Analogije nisu dokaz bliske filogenetske srodnosti. Upravo obrnuto, one po pravilu sugerišu odvojene razvojne puteve.

The tips of a phylogenetic tree can be living taxa or fossils, and represent the "end" or the present time in an evolutionary lineage. A phylogenetic diagram can be rooted or unrooted. A rooted tree diagram indicates the hypothetical common ancestor of the tree. An unrooted tree diagram (a network) makes no assumption about the ancestral line, and does not show the origin or "root" of the taxa in question or the direction of inferred evolutionary transformations.[3]

In addition to their use for inferring phylogenetic patterns among taxa, phylogenetic analyses are often employed to represent relationships among genes or individual organisms. Such uses have become central to understanding biodiversity, evolution, ecology, and genomes. In February 2021, scientists reported sequencing DNA from a mammoth that was over a million years old, the oldest DNA sequenced to date.[4][5] Phylogenetics is part of systematics.

Istorija

The term "phylogeny" derives from the German Phylogenie, introduced by Haeckel in 1866,[6] and the Darwinian approach to classification became known as the "phyletic" approach.[7]

Timeline of key points

Branching tree diagram from Heinrich Georg Bronn's work (1858)
Phylogenetic tree suggested by Haeckel (1866)
  • 14th century, lex parsimoniae (parsimony principle), William of Ockam, English philosopher, theologian, and Franciscan friar, but the idea actually goes back to Aristotle, precursor concept
  • 1763, Bayesian probability, Rev. Thomas Bayes,[8] precursor concept
  • 18th century, Pierre Simon (Marquis de Laplace), perhaps first to use ML (maximum likelihood), precursor concept
  • 1809, evolutionary theory, Philosophie Zoologique, Jean-Baptiste de Lamarck, precursor concept, foreshadowed in the 17th century and 18th century by Voltaire, Descartes, and Leibniz, with Leibniz even proposing evolutionary changes to account for observed gaps suggesting that many species had become extinct, others transformed, and different species that share common traits may have at one time been a single race,[9] also foreshadowed by some early Greek philosophers such as Anaximander in the 6th century BC and the atomists of the 5th century BC, who proposed rudimentary theories of evolution[10]
  • 1837, Darwin's notebooks show an evolutionary tree[11]
  • 1843, distinction between homology and analogy (the latter now referred to as homoplasy), Richard Owen, precursor concept
  • 1858, Paleontologist Heinrich Georg Bronn (1800–1862) published a hypothetical tree to illustrating the paleontological "arrival" of new, similar species following the extinction of an older species. Bronn did not propose a mechanism responsible for such phenomena, precursor concept.[12]
  • 1858, elaboration of evolutionary theory, Darwin and Wallace,[13] also in Origin of Species by Darwin the following year, precursor concept
  • 1866, Ernst Haeckel, first publishes his phylogeny-based evolutionary tree, precursor concept
  • 1893, Dollo's Law of Character State Irreversibility,[14] precursor concept
  • 1912, ML recommended, analyzed, and popularized by Ronald Fisher, precursor concept
  • 1921, Tillyard uses term "phylogenetic" and distinguishes between archaic and specialized characters in his classification system[15]
  • 1940, term "clade" coined by Lucien Cuénot
  • 1949, Jackknife resampling, Maurice Quenouille (foreshadowed in '46 by Mahalanobis and extended in '58 by Tukey), precursor concept
  • 1950, Willi Hennig's classic formalization[16]
  • 1952, William Wagner's groundplan divergence method[17]
  • 1953, "cladogenesis" coined[18]
  • 1960, "cladistic" coined by Cain and Harrison[19]
  • 1963, first attempt to use ML (maximum likelihood) for phylogenetics, Edwards and Cavalli-Sforza[20]
  • 1965
    • Camin-Sokal parsimony, first parsimony (optimization) criterion and first computer program/algorithm for cladistic analysis both by Camin and Sokal[21]
    • character compatibility method, also called clique analysis, introduced independently by Camin and Sokal (loc. cit.) and E. O. Wilson[22]
  • 1966
    • English translation of Hennig[23]
    • "cladistics" and "cladogram" coined (Webster's, loc. cit.)
  • 1969
    • dynamic and successive weighting, James Farris[24]
    • Wagner parsimony, Kluge and Farris[25]
    • CI (consistency index), Kluge and Farris[25]
    • introduction of pairwise compatibility for clique analysis, Le Quesne[26]
  • 1970, Wagner parsimony generalized by Farris[27]
  • 1971
    • first successful application of ML to phylogenetics (for protein sequences), Neyman[28]
    • Fitch parsimony, Fitch[29]
    • NNI (nearest neighbour interchange), first branch-swapping search strategy, developed independently by Robinson[30] and Moore et al.
    • ME (minimum evolution), Kidd and Sgaramella-Zonta[31] (it is unclear if this is the pairwise distance method or related to ML as Edwards and Cavalli-Sforza call ML "minimum evolution")
  • 1972, Adams consensus, Adams[32]
  • 1976, prefix system for ranks, Farris[33]
  • 1977, Dollo parsimony, Farris[34]
  • 1979
    • Nelson consensus, Nelson[35]
    • MAST (maximum agreement subtree)((GAS)greatest agreement subtree), a consensus method, Gordon[36]
    • bootstrap, Bradley Efron, precursor concept[37]
  • 1980, PHYLIP, first software package for phylogenetic analysis, Felsenstein
  • 1981
    • majority consensus, Margush and MacMorris[38]
    • strict consensus, Sokal and Rohlf[39]
    • first computationally efficient ML algorithm, Felsenstein[40]
  • 1982
    • PHYSIS, Mikevich and Farris
    • branch and bound, Hendy and Penny[41]
  • 1985
    • first cladistic analysis of eukaryotes based on combined phenotypic and genotypic evidence Diana Lipscomb[42]
    • first issue of Cladistics
    • first phylogenetic application of bootstrap, Felsenstein[43]
    • first phylogenetic application of jackknife, Scott Lanyon[44]
  • 1986, MacClade, Maddison and Maddison
  • 1987, neighbor-joining method Saitou and Nei[45]
  • 1988, Hennig86 (version 1.5), Farris
    • Bremer support (decay index), Bremer[46]
  • 1989
    • RI (retention index), RCI (rescaled consistency index), Farris[47]
    • HER (homoplasy excess ratio), Archie[48]
  • 1990
    • combinable components (semi-strict) consensus, Bremer[49]
    • SPR (subtree pruning and regrafting), TBR (tree bisection and reconnection), Swofford and Olsen[50]
  • 1991
    • DDI (data decisiveness index), Goloboff[51][52]
    • first cladistic analysis of eukaryotes based only on phenotypic evidence, Lipscomb
  • 1993, implied weighting Goloboff[53]
  • 1994, reduced consensus: RCC (reduced cladistic consensus) for rooted trees, Wilkinson[54]
  • 1995, reduced consensus RPC (reduced partition consensus) for unrooted trees, Wilkinson[55]
  • 1996, first working methods for BI (Bayesian Inference)independently developed by Li,[56] Mau,[57] and Rannala and Yang[58] and all using MCMC (Markov chain-Monte Carlo)
  • 1998, TNT (Tree Analysis Using New Technology), Goloboff, Farris, and Nixon
  • 1999, Winclada, Nixon
  • 2003, symmetrical resampling, Goloboff[59]
  • 2004,2005, symmilarity metric (using an approximation to Kolmogorov complexity) or NCD (normalized compression distance), Li et al.,[60] Cilibrasi and Vitanyi.[61]

Vidi još

Reference

  1. ^ Liddell, Henry George; Scott, Robert; Jones, Henry Stuart (1968). A Greek-English lexicon (9 изд.). Oxford: Clarendon Press. стр. 1961. 
  2. ^ „phylogeny”. Biology online. Приступљено 2013-02-15. 
  3. ^ „Phylogenetic Trees”. www.cs.tau.ac.il. Приступљено 2019-04-27. 
  4. ^ Hunt, Katie (17. 2. 2021). „World's oldest DNA sequenced from a mammoth that lived more than a million years ago”. CNN News. Приступљено 17. 2. 2021. 
  5. ^ Callaway, Ewen (25. 2. 2021). „Million-year-old mammoth genomes shatter record for oldest ancient DNA”. Nature. 590 (7847): 537—538. Bibcode:2021Natur.590..537C. doi:10.1038/d41586-021-00436-xСлободан приступ. 
  6. ^ Harper, Douglas (2010). „Phylogeny”. Online Etymology Dictionary. 
  7. ^ Stuessy 2009.
  8. ^ Bayes, Mr; Price, Mr (1763). „An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S”. Philosophical Transactions of the Royal Society of London. 53: 370—418. doi:10.1098/rstl.1763.0053Слободан приступ. 
  9. ^ Strickberger, Monroe. 1996. Evolution, 2nd. ed. Jones & Bartlett.
  10. ^ The Theory of Evolution, Teaching Company course, Lecture 1
  11. ^ Darwin's Tree of Life Архивирано 13 март 2014 на сајту Wayback Machine
  12. ^ Archibald, J. David (2008). „Edward Hitchcock's Pre-Darwinian (1840) 'Tree of Life'”. Journal of the History of Biology. 42 (3): 561—92. CiteSeerX 10.1.1.688.7842Слободан приступ. PMID 20027787. S2CID 16634677. doi:10.1007/s10739-008-9163-y. 
  13. ^ Darwin, Charles; Wallace, Alfred (1858). „On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection”. Journal of the Proceedings of the Linnean Society of London. Zoology. 3 (9): 45—62. doi:10.1111/j.1096-3642.1858.tb02500.xСлободан приступ. 
  14. ^ Dollo, Louis. 1893. Les lois de l'évolution. Bull. Soc. Belge Géol. Paléont. Hydrol. 7: 164–66.
  15. ^ Tillyard, R. J (2012). „A New Classification of the Order Perlaria”. The Canadian Entomologist. 53 (2): 35—43. doi:10.4039/Ent5335-2. 
  16. ^ Hennig, Willi (1950). Grundzüge einer Theorie der Phylogenetischen Systematik [Basic features of a theory of phylogenetic systematics] (на језику: немачки). Berlin: Deutscher Zentralverlag. OCLC 12126814. 
  17. ^ Wagner, Warren Herbert (1952). „The fern genus Diellia: structure, affinities, and taxonomy”. University of California Publications in Botany. 26 (1–6): 1—212. OCLC 4228844. 
  18. ^ Webster's 9th New Collegiate Dictionary
  19. ^ Cain, A. J; Harrison, G. A (2009). „Phyletic Weighting”. Proceedings of the Zoological Society of London. 135 (1): 1—31. doi:10.1111/j.1469-7998.1960.tb05828.x. 
  20. ^ "The reconstruction of evolution" in „Abstracts of Papers”. Annals of Human Genetics. 27 (1): 103—5. 1963. doi:10.1111/j.1469-1809.1963.tb00786.x. 
  21. ^ Camin, Joseph H; Sokal, Robert R (1965). „A Method for Deducing Branching Sequences in Phylogeny”. Evolution. 19 (3): 311—26. S2CID 20957422. doi:10.1111/j.1558-5646.1965.tb01722.xСлободан приступ. 
  22. ^ Wilson, Edward O (1965). „A Consistency Test for Phylogenies Based on Contemporaneous Species”. Systematic Zoology. 14 (3): 214—20. JSTOR 2411550. doi:10.2307/2411550. 
  23. ^ Hennig. W. (1966). Phylogenetic systematics. Illinois University Press, Urbana.
  24. ^ Farris, James S (1969). „A Successive Approximations Approach to Character Weighting”. Systematic Zoology. 18 (4): 374—85. JSTOR 2412182. doi:10.2307/2412182. 
  25. ^ а б Kluge, A. G; Farris, J. S (1969). „Quantitative Phyletics and the Evolution of Anurans”. Systematic Biology. 18 (1): 1—32. doi:10.1093/sysbio/18.1.1. 
  26. ^ Quesne, Walter J. Le (1969). „A Method of Selection of Characters in Numerical Taxonomy”. Systematic Zoology. 18 (2): 201—205. JSTOR 2412604. doi:10.2307/2412604. 
  27. ^ Farris, J. S (1970). „Methods for Computing Wagner Trees”. Systematic Biology. 19: 83—92. doi:10.1093/sysbio/19.1.83. 
  28. ^ Neyman, Jerzy (1971). „Molecular studies of evolution: a source of novel statistical problems”. Statistical Decision Theory and Related Topics. стр. 1—27. ISBN 978-0-12-307550-5. doi:10.1016/B978-0-12-307550-5.50005-8. 
  29. ^ Fitch, W. M (1971). „Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology”. Systematic Biology. 20 (4): 406—16. JSTOR 2412116. doi:10.1093/sysbio/20.4.406. 
  30. ^ Robinson, D.F (1971). „Comparison of labeled trees with valency three”. Journal of Combinatorial Theory, Series B. 11 (2): 105—19. doi:10.1016/0095-8956(71)90020-7Слободан приступ. 
  31. ^ Kidd, K. K; Sgaramella-Zonta, L. A (1971). „Phylogenetic analysis: Concepts and methods”. American Journal of Human Genetics. 23 (3): 235—52. PMC 1706731Слободан приступ. PMID 5089842. 
  32. ^ Adams, E. N (1972). „Consensus Techniques and the Comparison of Taxonomic Trees”. Systematic Biology. 21 (4): 390—397. doi:10.1093/sysbio/21.4.390. 
  33. ^ Farris, James S (1976). „Phylogenetic Classification of Fossils with Recent Species”. Systematic Zoology. 25 (3): 271—282. JSTOR 2412495. doi:10.2307/2412495. 
  34. ^ Farris, J. S (1977). „Phylogenetic Analysis Under Dollo's Law”. Systematic Biology. 26: 77—88. doi:10.1093/sysbio/26.1.77. 
  35. ^ Nelson, G (1979). „Cladistic Analysis and Synthesis: Principles and Definitions, with a Historical Note on Adanson's Familles Des Plantes (1763-1764)”. Systematic Biology. 28: 1—21. doi:10.1093/sysbio/28.1.1. 
  36. ^ Gordon, A. D (1979). „A Measure of the Agreement between Rankings”. Biometrika. 66 (1): 7—15. JSTOR 2335236. doi:10.1093/biomet/66.1.7. 
  37. ^ Efron B. (1979). Bootstrap methods: another look at the jackknife. Ann. Stat. 7: 1–26.
  38. ^ Margush, T; McMorris, F (1981). „Consensus-trees”. Bulletin of Mathematical Biology. 43 (2): 239. doi:10.1016/S0092-8240(81)90019-7. 
  39. ^ Sokal, Robert R; Rohlf, F. James (1981). „Taxonomic Congruence in the Leptopodomorpha Re-Examined”. Systematic Zoology. 30 (3): 309. JSTOR 2413252. doi:10.2307/2413252. 
  40. ^ Felsenstein, Joseph (1981). „Evolutionary trees from DNA sequences: A maximum likelihood approach”. Journal of Molecular Evolution. 17 (6): 368—76. Bibcode:1981JMolE..17..368F. PMID 7288891. S2CID 8024924. doi:10.1007/BF01734359. 
  41. ^ Hendy, M.D; Penny, David (1982). „Branch and bound algorithms to determine minimal evolutionary trees”. Mathematical Biosciences. 59 (2): 277. doi:10.1016/0025-5564(82)90027-X. 
  42. ^ Lipscomb, Diana (1985). „The Eukaryotic Kingdoms”. Cladistics. 1 (2): 127—40. S2CID 84151309. doi:10.1111/j.1096-0031.1985.tb00417.x. 
  43. ^ Felsenstein, J (1985). „Confidence limits on phylogenies: an approach using the bootstrap”. Evolution. 39 (4): 783—791. JSTOR 2408678. PMID 28561359. doi:10.2307/2408678. 
  44. ^ Lanyon, S. M (1985). „Detecting Internal Inconsistencies in Distance Data”. Systematic Biology. 34 (4): 397—403. CiteSeerX 10.1.1.1000.3956Слободан приступ. doi:10.1093/sysbio/34.4.397. 
  45. ^ Saitou, N.; Nei, M. (1987). „The neighbor-joining method: A new method for reconstructing phylogenetic trees”. Molecular Biology and Evolution. 4 (4): 406—25. PMID 3447015. doi:10.1093/oxfordjournals.molbev.a040454Слободан приступ. 
  46. ^ Bremer, Kåre (1988). „The Limits of Amino Acid Sequence Data in Angiosperm Phylogenetic Reconstruction”. Evolution. 42 (4): 795—803. PMID 28563878. S2CID 13647124. doi:10.1111/j.1558-5646.1988.tb02497.x. 
  47. ^ Farris, James S (1989). „The Retention Index and the Rescaled Consistency Index”. Cladistics. 5 (4): 417—419. S2CID 84287895. doi:10.1111/j.1096-0031.1989.tb00573.x. 
  48. ^ Archie, James W (1989). „Homoplasy Excess Ratios: New Indices for Measuring Levels of Homoplasy in Phylogenetic Systematics and a Critique of the Consistency Index”. Systematic Zoology. 38 (3): 253—269. JSTOR 2992286. doi:10.2307/2992286. 
  49. ^ Bremer, Kåre (1990). „Combinable Component Consensus”. Cladistics. 6 (4): 369—372. S2CID 84151348. doi:10.1111/j.1096-0031.1990.tb00551.x. 
  50. ^ D. L. Swofford and G. J. Olsen. 1990. Phylogeny reconstruction. In D. M. Hillis and G. Moritz (eds.), Molecular Systematics, pages 411–501. Sinauer Associates, Sunderland, Mass.
  51. ^ Goloboff, Pablo A (1991). „Homoplasy and the Choice Among Cladograms”. Cladistics. 7 (3): 215—232. S2CID 85418697. doi:10.1111/j.1096-0031.1991.tb00035.x. 
  52. ^ Goloboff, Pablo A (1991). „Random Data, Homoplasy and Information”. Cladistics. 7 (4): 395—406. S2CID 85132346. doi:10.1111/j.1096-0031.1991.tb00046.x. 
  53. ^ Goloboff, Pablo A (1993). „Estimating Character Weights During Tree Search”. Cladistics. 9 (1): 83—91. S2CID 84231334. doi:10.1111/j.1096-0031.1993.tb00209.x. 
  54. ^ Wilkinson, M (1994). „Common Cladistic Information and its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles”. Systematic Biology. 43 (3): 343—368. doi:10.1093/sysbio/43.3.343. 
  55. ^ Wilkinson, Mark (1995). „More on Reduced Consensus Methods”. Systematic Biology. 44 (3): 435—439. JSTOR 2413604. doi:10.2307/2413604. 
  56. ^ Li, Shuying; Pearl, Dennis K; Doss, Hani (2000). „Phylogenetic Tree Construction Using Markov Chain Monte Carlo”. Journal of the American Statistical Association. 95 (450): 493. CiteSeerX 10.1.1.40.4461Слободан приступ. JSTOR 2669394. S2CID 122459537. doi:10.1080/01621459.2000.10474227. 
  57. ^ Mau, Bob; Newton, Michael A; Larget, Bret (1999). „Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods”. Biometrics. 55 (1): 1—12. CiteSeerX 10.1.1.139.498Слободан приступ. JSTOR 2533889. PMID 11318142. doi:10.1111/j.0006-341X.1999.00001.x. 
  58. ^ Rannala, Bruce; Yang, Ziheng (1996). „Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference”. Journal of Molecular Evolution. 43 (3): 304—11. Bibcode:1996JMolE..43..304R. PMID 8703097. S2CID 8269826. doi:10.1007/BF02338839. 
  59. ^ Goloboff, P (2003). „Improvements to resampling measures of group support”. Cladistics. 19 (4): 324—32. S2CID 55516104. doi:10.1111/j.1096-0031.2003.tb00376.x. 
  60. ^ Li, M.; Chen, X.; Li, X.; Ma, B.; Vitanyi, P.M.B. (децембар 2004). „The Similarity Metric”. IEEE Transactions on Information Theory. 50 (12): 3250—3264. S2CID 221927. doi:10.1109/TIT.2004.838101. 
  61. ^ Cilibrasi, R.; Vitanyi, P.M.B. (април 2005). „Clustering by Compression”. IEEE Transactions on Information Theory. 51 (4): 1523—1545. S2CID 911. arXiv:cs/0312044Слободан приступ. doi:10.1109/TIT.2005.844059. 

Literatura

Spoljašnje veze