Полиедар

Из Википедије, слободне енциклопедије

Полиедар је геометријско тело омеђено са четири или више многоуглова (који се називају стране или пљосни полиедра) и коме су ивице дужи. Сама реч је настала као сложеница речи поли (πολυς), што значи много, и речи едрон (εδρον), што значи база, површ, седиште.[1]

Полиедарска површ[уреди]

Скуп површи многоуглова таквих да је свака страница сваког многоугла уједно и страница још само једног многоугла, образују затворену површ која се назива полиедарска површ. Део геометријског простора који ограничава (затворена) полиедарска површ је унутрашњост полиедарске површи.

Унија полиедарске површи и њене унутрашњости је полиедар.

  • Површи многоуглова, од којих се састоји полиедарска површ, називају се стране (или пљосни) полиедра, а странице тих многоуглова називају се ивице полиедарске површи и полиедра.
  • Рогљеви које образују стране полиедра са једним заједничким теменом су рогљеви полиедра, а врхови тих рогљева су темена полиедра.
  • Свака дуж која спаја два темена полиедра, а не припада ниједној страни полиедра представља дијагоналу полиедра.
  • Свака раван коју одређују три темена полиедра и не садржи ниједну страну полиедра представља дијагоналну раван полиедра.

Подела полиедра[уреди]

Полиедри могу бити конвексни и неконвексни-конкавни.

  • Полиедар је конвексан уколико свака дуж која спаја његове две произвољне тачке припада том полиедру, у супротном случају полиедар је неконвексан односно конкаван.

Конвексни Полиедри[уреди]

  • Конвексан полиедар лежи само са једне стране равни сваке своје стране.
  • Конвексан полиедар се може представити као пресек коначног броја полупростора одређених равнима његових страна.

Регуларни полиедри[уреди]

Полиедар чије су све стране регуларни подударни многоуглови и чији су сви рогљеви подударни назива се регуларан полиедар.

Конвексни регуларни полиедри - Платонова тела[уреди]

Конвексни регуларни полиедри су познати под називом Платонова тела. Њихове стране су подударни правилни многоуглови, а рогљеви су међусобно подударни и конвексни. То значи да су све стране једног полиедра правилни многоуглови са истим бројем n међусобно једнаких страница и у темену сваког рогља се сустиче исти број k тих многоуглова.

Дуални полиедри[уреди]

У геометрији полиедри се посматрају у паровима. Сваком полиедру одговара дуални полиедар који настаје метаморфозом датог полиедра у којој:

  • сваком темену полазног полиедра одговара страна новог полиедра
  • свакој страни полазног полиедра одговара теме новог полиедра
  • свакој ивици полазног полиедра одговара ивица новог полиедра.

Особине[уреди]

  • Страна прелази у теме новог полиедра, а њено теме у страну која садржи то теме.
  • Теме прелази у страну новог полиедра, а свака страна чије је то теме у теме те стране.
  • Ивица која спаја два темена прелази у заједничку ивицу две одговарајуће стране новог полиедра.
  • Заједничка ивица две суседне стране полиедра прелази у ивицу која спаја одговарајућа темена новог полиедра.
  • Свака страна полиедра је полигон са одређеним бројем својих темена. Метаморфозом полигон прелази у теме, а његова темена у стране новог полиедра чије је то теме, односно страни одовара рогаљ.
  • Свако теме полиедра је теме једног његовог рогља. Теме прелази у страну, а стране полиедра које се сустичу у том темену (стране рогља) у темена која припадају тој страни новог полиедра.
  • Дуални полиедар дуалног полиедра је полазни полиедар.

Дуални полиедри – Платонова тела[уреди]

Стране конвексног регуларног полиедра типа {n, k} су правилни полигони са n темена. Страна се пресликава у теме новог полиедра a, а њена темена у стране новог полиедра које се сустичу у том темену. Добија се рогаљ са n страна.

Темена конвексног регуларног полиедра типа су {n, k} су темена подударних рогљева са k страна. Теме рогља прелази у страну, а његове стране (односно стране полиедра које се сустичу у том темену) у k темена те стране новог полиедра.

  • Дуални полиедар конвексног регуларног полиедра типа {n, k} је конвексни регуларни полиедар типа {k, n}.

Нумеричке карактеристике Платонових тела[уреди]

Карактеристика полиедра:

  • n – број темена (страница) стране полиедра
  • k – број страна које се сустичу у истом темену
  • T – број темена полиедра
  • S – број страна полиедра
  • I – број ивица полиедра

Диедар чине две суседне стране са заједничком ивицом која представља ивицу диедра. Сви диедрални углови једног Платоновог тела су међусобно једнаки. Диедрални угао се очитава у равни нормалној на ивицу диедра.

Тетраедар (види анимацију)
Размотана фигура тетраедра

Платонова тела - тетраедар[уреди]

  • 4 темена
  • 6 ивица
  • 4 стране
  • Диедрални угао: 70.53°

Формуле[уреди]

Површина
Запремина
Полупречник описане сфере
Полупречник уписане сфере
Висина
Угао између ивице и површи
Угао између две површи

Платонова тела – хексаедар[уреди]

Коцка
  • 8 темена
  • 12 ивица
  • 6 страна
  • Диедрални угао: 90°

Формуле[уреди]

Важнији елементи коцке
Површина
Запремина
Мала дијагонала[2]
Велика дијагонала
Полупречник уписане сфере
Полупречник описане сфере

Платонова тела – октаедар[уреди]

Октаедар
  • 6 темена
  • 12 ивица
  • 8 страна
  • Диедрални угао: 109.47°

Формуле[уреди]

Површина
Запремина
Полупречник описане
сфере
Полупречник уписане
сфере

Платонова тела – додекаедар[уреди]

Додекаедар
  • 20 темена
  • 30 ивица
  • 12 страна
  • Диедрални угао: 116.56°

Формуле[уреди]

Површина
Запремина
Полупречник уписане
сфере
Полупречник описане
сфере

Платонова тела – икосаедар[уреди]

Икосаедар
  • 12 темена
  • 30 ивица
  • 20 страна
  • Диедрални угао: 138.19°

Формуле[уреди]

Површина
Запремина
Полупречник уписане
сфере
Полупречник описане
сфере

Изометрија полиедра[уреди]

Узајамно једнозначно пресликавање f: T1 → T2 полиедара (тела) T1, T2 у коме долази до очувања метрике односно очувања растојања између тачака је изометрично пресликавање или изометрија. Геометријске трансформације: транслација, ротација, рефлексија и њихова композиција (узастопно извођење) у произвољном поретку и произвољном броју су изометричне трансформације.

Симетрије полиедра[уреди]

Изометрично пресликавање f : T → T полиедара T у самог себе је симетрија. Група симетрија сваког полиедра садржи све могуће ротације и све могуће рефлексије које полиедар пресликавају у самог себе. Композиција симетрија једног полиедра (у произвољном поретку) је такође једна симетрија из групе свих могућих симетрија тог полиедра.

Референце[уреди]

  1. Lakatos, I.; Proofs and refutations: The logic of mathematical discovery (2nd Ed.), CUP, 1977.
  2. Некада се мала дијагонала обележава са d, а велика са D. Овде је мала обележена са d1, а велика са d2, да би се избегла вишезначност са теменом D.

Литература[уреди]

Спољашње везе[уреди]

Општа теорија[уреди]

Списак и база података полиедара[уреди]

Слободни софтвер[уреди]

  • A Plethora of Polyhedra – An interactive and free collection of polyhedra in Java. Features includes nets, planar sections, duals, truncations and stellations of more than 300 polyhedra.
  • Hyperspace Star Polytope Slicer - Explorer java applet, includes a variety of 3d viewer options.
  • openSCAD - Free cross-platform software for programmers. Polyhedra are just one of the things you can model. The openSCAD User Manual is also available.
  • OpenVolumeMesh - An open source cross-platform C++ library for handling polyhedral meshes. Developed by the Aachen Computer Graphics Group, RWTH Aachen University.
  • Polyhedronisme - Web-based tool for generating polyhedra models using Conway Polyhedron Notation. Models can be exported as 2D PNG images, or as 3D OBJ or VRML2 files. The 3D files can be opened in CAD software, or uploaded for 3D printing at services such as Shapeways.

Ресурси за прављење физичких модела[уреди]