Пређи на садржај

Teorija reprezentacije — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
(нема разлике)

Верзија на датум 30. децембар 2019. у 07:19

Teorija reprezentacije proučava kako algebarske strukture „deluju” na objekte. Najjednostavniji primeri su kako simetrije pravilnih poligona, koje se sastoje od refleksija i rotacija, transformišu poligon.

Teorija reprezentacije je grana matematike koja proučava apstraktne algebarske strukture predstavljajući njihove elemente kao linearne transformacije vektorskih prostora,[1] i proučava module za ove apstraktne algebarske strukture.[2][3] In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and its algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication.[4][5]

Representation theory is a useful method because it reduces problems in abstract algebra to problems in linear algebra, a subject that is well understood.[6] Furthermore, the vector space on which a group (for example) is represented can be infinite-dimensional, and by allowing it to be, for instance, a Hilbert space, methods of analysis can be applied to the theory of groups.[7][8] Representation theory is also important in physics because, for example, it describes how the symmetry group of a physical system affects the solutions of equations describing that system.[9]

Representation theory is pervasive across fields of mathematics for two reasons. First, the applications of representation theory are diverse:[10] in addition to its impact on algebra, representation theory:

Second, there are diverse approaches to representation theory. The same objects can be studied using methods from algebraic geometry, module theory, analytic number theory, differential geometry, operator theory, algebraic combinatorics and topology.[14]

The success of representation theory has led to numerous generalizations. One of the most general is in category theory.[15] The algebraic objects to which representation theory applies can be viewed as particular kinds of categories, and the representations as functors from the object category to the category of vector spaces.[5] This description points to two obvious generalizations: first, the algebraic objects can be replaced by more general categories; second, the target category of vector spaces can be replaced by other well-understood categories.

Definicije i koncepti

Let V be a vector space over a field F.[6] For instance, suppose V is Rn or Cn, the standard n-dimensional space of column vectors over the real or complex numbers, respectively. In this case, the idea of representation theory is to do abstract algebra concretely by using n × n matrices of real or complex numbers.

There are three main sorts of algebraic objects for which this can be done: groups, associative algebras and Lie algebras.[16][5]

This generalizes to any field F and any vector space V over F, with linear maps replacing matrices and composition replacing matrix multiplication: there is a group GL(V,F) of automorphisms of V, an associative algebra EndF(V) of all endomorphisms of V, and a corresponding Lie algebra gl(V,F).

Reference

  1. ^ „The Definitive Glossary of Higher Mathematical Jargon — Mathematical Representation”. Math Vault (на језику: енглески). 2019-08-01. Приступљено 2019-12-09. 
  2. ^ Classic texts on representation theory include Curtis & Reiner (1962) and Serre (1977). Other excellent sources are Fulton & Harris (1991) and Goodman & Wallach (1998).
  3. ^ „representation theory in nLab”. ncatlab.org. Приступљено 2019-12-09. 
  4. ^ For the history of the representation theory of finite groups, see Lam (1998). For algebraic and Lie groups, see Borel (2001).
  5. ^ а б в Etingof, Pavel; Golberg, Oleg; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex; Vaintrob, Dmitry; Yudovina, Elena (10. 1. 2011). „Introduction to representation theory” (PDF). www-math.mit.edu. Приступљено 2019-12-09. 
  6. ^ а б There are many textbooks on vector spaces and linear algebra. For an advanced treatment, see Kostrikin & Manin (1997).
  7. ^ Sally & Vogan 1989.
  8. ^ Teleman, Constantin (2005). „Representation Theory” (PDF). math.berkeley.edu. Приступљено 2019-12-09. 
  9. ^ Sternberg 1994.
  10. ^ Lam 1998, стр. 372.
  11. ^ Folland 1995.
  12. ^ Goodman & Wallach 1998, Olver 1999, Sharpe 1997.
  13. ^ Borel & Casselman 1979, Gelbart 1984.
  14. ^ See the previous footnotes and also Borel (2001).
  15. ^ Simson, Skowronski & Assem 2007.
  16. ^ Fulton & Harris 1991, Simson, Skowronski & Assem 2007, Humphreys 1972.

Literatura

Spoljašnje veze