FMO3

С Википедије, слободне енциклопедије
FMO3
Identifikatori
AlijasiFMO3
Spoljašnji IDOMIM: 136132 MGI: 1100496 HomoloGene: 128199 GeneCards: FMO3
EC number1.14.13.148
Obrazac RNK izražavanja


More reference expression data
Ortolozi
VrsteČovekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001002294
NM_006894
NM_001319173
NM_001319174

NM_008030

RefSeq (protein)

NP_001002294
NP_001306102
NP_001306103
NP_008825

NP_032056

Location (UCSC)n/aChr 1: 162.78 – 162.81 Mb
PubMed search[2][3]
Wikidata
View/Edit HumanView/Edit Mouse

Monooksigenaza koja sadrži flavin 3 (FMO3), takođe poznata kao dimetilanilinska monooksigenaza [N-oksid-formirajuća] 3 i trimetilaminska monooksigenaza, flavoproteinski je enzim (EC 1.14.13.148) koji je kod ljudi koriran FMO3 genom.[4][5][6][7] Ovaj enzim katalizuje sledeću hemijsku reakciju:[7]

N,N,N-trimetilamin + NADPH + H+ + O2 N,N,N-trimetilamin N-oksid + NADP+ + H2O

FMO3 je glavni izoenzim monooksigenaze koja sadrži flavin koja je izražena u jetri odraslih osoba.[7][8][9] Ljudski FMO3 enzim katalizuje nekoliko tipova reakcija, uključujući: N-oksigenaciju primarnih, sekundarnih, i tercijarnih amina;[8][10] S-oksigenaciju nukleofilnih jedinjenja koja sadrže sumpor;[8][10] i 6-metilhidroksilaciju DMXAA.[8][11]

FMO3 je primarni enzim kod ljudi koji katalizuje N-oksidaciju trimetilamina u trimetilamin N-oksid;[7][9] FMO1 takođe N-oksigeniše trimetilamin, mada u znatno manjoj meri od FMO3.[12][13] Genetičke deficijencije FMO3 enzima uzrokuju primarnu trimetilaminuriju, takođe poznatu kao "sindrom ribljeg zadaha".[7][14] FMO3 isto tako učestvuje u metabolizmu mnogih ksenobiotika (i.e., egzogenih jedinjenja koja nisu normalno prisutn u telu),[8][9] kao što je oksidativna deaminacija amfetamina.[8][15][16]

Ligandi[уреди | уреди извор]

Spisak ljudskih FMO3 supstrata, inhibitora, pobu]ivača, i aktivatora
FMO3 substrati FMO3 inhibitori FMO3 pobuđivači FMO3 aktivatori
Endogeni biomolekuli
Značajni egogeni ksenobiotici
Simbol označava umerenu do kompletne selektivnosti za FMO3 relativno na druge FMO izoenzime.

Vidi još[уреди | уреди извор]

Reference[уреди | уреди извор]

  1. ^ а б в GRCm38: Ensembl release 89: ENSMUSG00000026691 - Ensembl, May 2017
  2. ^ „Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  3. ^ „Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  4. ^ Shephard EA, Dolphin CT, Fox MF, Povey S, Smith R, Phillips IR (1993). „Localization of genes encoding three distinct flavin-containing monooxygenases to human chromosome 1q”. Genomics. 16 (1): 85—9. PMID 8486388. doi:10.1006/geno.1993.1144. 
  5. ^ Dolphin CT, Riley JH, Smith RL, Shephard EA, Phillips IR (1998). „Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA”. Genomics. 46 (2): 260—7. PMID 9417913. doi:10.1006/geno.1997.5031. 
  6. ^ „Entrez Gene: FMO3 flavin containing monooxygenase 3”. 
  7. ^ а б в г д ђ е ж з и ј к л „Trimethylamine monooxygenase (Homo sapiens)”. BRENDA. Technische Universität Braunschweig. 2016. Приступљено 18. 09. 2016. „trimethylaminuria (fish-odor syndrome) is associated with defective hepatic N-oxidation of dietary-derived trimethylamine catalyzed by flavin-containing monooxygenase ... FMO3 deficiency results in trimethylaminuria or the fish-like odour syndrome ... isozyme FMO3 regulates the conversion of N,N,N-trimethylamine into its N-oxide and hence controls the release of volatile N,N,N-trimethylamine from the individual 
  8. ^ а б в г д ђ е ж з и ј к л љ м н њ о п р с т ћ у ф Krueger SK, Williams DE (2005). „Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism”. Pharmacol. Ther. 106 (3): 357—387. PMC 1828602Слободан приступ. PMID 15922018. doi:10.1016/j.pharmthera.2005.01.001. „A second precaution with respect to predicting FMO enzyme substrate specificity is that factors other than size and charge must play a role, but these parameters are not well understood. An example is the high selectivity observed with human FMO3, compared to the other FMO enzymes, in the N-oxygenation of the important constitutive substrate trimethylamine (Lang et al., 1998). ... The most efficient human FMO in phenethylamine N-oxygenation is FMO3, the major FMO present in adult human liver; the Km is between 90 and 200 μM (Lin & Cashman, 1997b). ... Of particular significance for this review is that individuals homozygous for certain FMO3 allelic variants (e.g., null variants) also demonstrate impaired metabolism toward other FMO substrates including ranitidine, nicotine, thio-benzamide, and phenothiazine derivatives (Table 4; Cashman et al., 1995, 2000; Kang et al., 2000; Cashman, 2002; Park et al., 2002; Lattard et al., 2003a, 2003b). ... The metabolic activation of ethionamide by the bacterial FMO is the same as the mammalian FMO activation of thiobenzamide to produce hepatotoxic sulfinic and sulfinic acid metabolites. Not surprisingly, Dr. Ortiz de Montellano’s laboratory and our own have found ethionamide to be a substrate for human FMO1, FMO2, and FMO3 (unpublished observations). 
    Table 5: N-containing drugs and xenobiotics oxygenated by FMO
    Table 6: S-containing drugs and xenobiotics oxygenated by FMO
    Table 7: FMO activities not involving S- or N-oxygenation
  9. ^ а б в г д ђ е ж з Hisamuddin IM, Yang VW (2007). „Genetic polymorphisms of human flavin-containing monooxygenase 3: implications for drug metabolism and clinical perspectives”. Pharmacogenomics. 8 (6): 635—643. PMC 2213907Слободан приступ. PMID 17559352. doi:10.2217/14622416.8.6.635. „Other drug substrates have been used for both in vitro and in vivo analyses. ... FMO3 is the most abundantly expressed FMO in the adult human liver [12]. Its structure and function and the implications of its polymorphisms have been widely studied [8,12,13]. This enzyme has a wide substrate specificity, including the dietary-derived tertiary amines trimethylamine, tyramine and nicotine; commonly used drugs including cimetidine, ranitidine, clozapine, methimazole, itopride, ketoconazole, tamoxifen and sulindac sulfide; and agrichemicals, such as organophosphates and carbamates [14–22]. 
  10. ^ а б в г д Cashman JR (2000). „Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism”. Curr. Drug Metab. 1 (2): 181—191. PMID 11465082. „Human FMO3 N-oxygenates primary, secondary and tertiary amines whereas human FMO1 is only highly efficient at N-oxygenating tertiary amines. Both human FMO1 and FMO3 S-oxygenate a number of nucleophilic sulfur-containing substrates and in some cases, does so with great stereoselectivity. ... For amines with smaller aromatic substituents such as phenethylamines, often these compounds are efficiently N-oxygenated by human FMO3. ... (S)-Nicotine N-1'-oxide formation can also be used as a highly stereoselective probe of human FMO3 function for adult humans that smoke cigarettes. Finally, cimetidine S-oxygenation or ranitidine N-oxidation can also be used as a functional probe of human FMO3. With the recent observation of human FMO3 genetic polymorphism and poor metabolism phenotype in certain human populations, variant human FMO3 may contribute to adverse drug reactions or exaggerated clinical response to certain medications. 
  11. ^ а б Zhou S, Kestell P, Paxton JW (2002). „6-methylhydroxylation of the anti-cancer agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by flavin-containing monooxygenase 3”. Eur J Drug Metab Pharmacokinet. 27 (3): 179—183. PMID 12365199. „Only FMO3 formed 6-OH-MXAA at a similar rate to that in cDNA-expressed cytochromes P-450 (CYP)1A2. The results of this study indicate that human FMO3 has the capacity to form 6-OH-MXAA, but plays a lesser important role for this reaction than CYP1A2 that has been demonstrated to catalyse 6-OH-MXAA formation. 
  12. ^ Tang WH, Hazen SL (2014). „The contributory role of gut microbiota in cardiovascular disease”. J. Clin. Invest. 124 (10): 4204—4211. PMC 4215189Слободан приступ. PMID 25271725. doi:10.1172/JCI72331. „In recent studies each of the FMO family members were cloned and expressed, to determine which possessed synthetic capacity to use TMA as a substrate to generate TMAO. FMO1, FMO2, and FMO3 were all capable of forming TMAO, though the specific activity of FMO3 was at least 10-fold higher than that the other FMOs (54). Further, FMO3 overexpression in mice significantly increased plasma TMAO levels, while silencing FMO3 decreased TMAO levels (54). In both humans and mice, hepatic FMO3 expression was observed to be reduced in males compared with females (25, 54) and could be induced by dietary bile acids through a mechanism that involves FXR (54). 
  13. ^ Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards PA, Hazen SL, Lusis AJ (2013). „Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation”. Cell Metab. 17 (1): 49—60. PMC 3771112Слободан приступ. PMID 23312283. doi:10.1016/j.cmet.2012.12.011. „Circulating trimethylamine-N-oxide (TMAO) levels are strongly associated with atherosclerosis. We now examine genetic, dietary, and hormonal factors regulating TMAO levels. We demonstrate that two flavin mono-oxygenase family members, FMO1 and FMO3, oxidize trimethylamine (TMA), derived from gut flora metabolism of choline, to TMAO. Further, we show that FMO3 exhibits 10-fold higher specific activity than FMO1. 
  14. ^ Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (1997). „Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome”. Nat. Genet. 17 (4): 491—4. PMID 9398858. doi:10.1038/ng1297-491. 
  15. ^ Glennon RA (2013). „Phenylisopropylamine stimulants: amphetamine-related agents”. Ур.: Lemke TL, Williams DA, Roche VF, Zito W. Foye's principles of medicinal chemistry (7th изд.). Philadelphia, USA: Wolters Kluwer Health/Lippincott Williams & Wilkins. стр. 646—648. ISBN 9781609133450. Приступљено 11. 09. 2015. „The simplest unsubstituted phenylisopropylamine, 1-phenyl-2-aminopropane, or amphetamine, serves as a common structural template for hallucinogens and psychostimulants. Amphetamine produces central stimulant, anorectic, and sympathomimetic actions, and it is the prototype member of this class (39). ... The phase 1 metabolism of amphetamine analogs is catalyzed by two systems: cytochrome P450 and flavin monooxygenase. 
  16. ^ а б в Cashman JR, Xiong YN, Xu L, Janowsky A (1999). „N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication”. J. Pharmacol. Exp. Ther. 288 (3): 1251—1260. PMID 10027866. 
  17. ^ а б в г д Robinson-Cohen C, Newitt R, Shen DD, Rettie AE, Kestenbaum BR, Himmelfarb J, Yeung CK (2016). „Association of FMO3 Variants and Trimethylamine N-Oxide Concentration, Disease Progression, and Mortality in CKD Patients”. PLoS ONE. 11 (8): e0161074. PMC 4981377Слободан приступ. PMID 27513517. doi:10.1371/journal.pone.0161074. „TMAO is generated from trimethylamine (TMA) via metabolism by hepatic flavin-containing monooxygenase isoform 3 (FMO3). ... FMO3 catalyzes the oxidation of catecholamine or catecholamine-releasing vasopressors, including tyramine, phenylethylamine, adrenaline, and noradrenaline [32, 33]. 

Literatura[уреди | уреди извор]

Spoljašnje veze[уреди | уреди извор]