Извод

Из Википедије, слободне енциклопедије
График функције, нацртан црном, и тангентна линија те функције, нацртана црвеном. Нагиб тангенте према x-оси је једнак изводу функције у означеној тачки.

У математичкој анализи, грани математике, извод је мера како (колико брзо) функција мења своје вредности када јој се улазне вредности мењају. Извод криве у некој тачки представља коефицијент правца тангенте дате криве у тој тачки.

Извод функције f(x) у тачки a се дефинише као:

f'(x)|_{x=a}=\lim_{\Delta x \to 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}

уколико лимес постоји. Иначе, извод можемо схватити и као линеарни оператор.

Поступак проналажења извода функције се назива диференцијацијом. Диференцијација процес обратан у односу на интеграљење.

Коришћење извода за цртање графика функција[уреди]

У свакој тачки, извод је нагиб тангенте на криву. Црвена права је увек тангента плаве криве; њен нагиб је извод.

Изводи су користан алат за испитивање графика функција. Све тачке унутар домена реалних функција које представљају локалне екстремуме имају за први извод нулу. Међутим, нису све критичне тачке локални екстремуми; на пример f (x) = x3 има критичну тачку у x = 0, али нема ни локални максимум, ни локални минимум у овој тачки.

Други извод функције се може користити за испитивање конвексности функције. Превојне тачке (тачке у којима функција прелази из конвексног у конкавни облик) имају за други извод нулу.

Геометријска интерпретација извода[уреди]

Ако је функција f диференцијабилна у тачки x0, онда ће коефицијент правца тангенте криве y = f (x) у тачки T ( x0f (x0) ), бити једнака tg α = f ' (x0), где је α угао који тангента заклапа са позитивним делом x-осе, а једначина исте тангенте ће гласити:

y - y0 = f ' (x0) · ( x − x0 ),

где је y0 = f (x0).

Једначина нормале у датој тачки Т ће бити:

y −y0 = −1/f ' (x0) · ( xx0 )

Други извод и изводи вишег реда[уреди]

Други извод се дефинише као извод првог извода:

f''(x)|_{x=a}= (f'(x)|_{x=a})'\,


Слично важи и за сваки следећи извод:

f'''(x)|_{x=a}= (f''(x)|_{x=a})'\,
f^{(n)} (x)|_{x=a}= (f^{(n-1)} (x)|_{x=a})'\,

Види још[уреди]

Литература[уреди]

  • Душан Аднађевић, Зоран Каделбург: Математичка анализа 1, Студентски трг, Београд, 1995.