Лапласова трансформација

Из Википедије, слободне енциклопедије

Лапласова трансформација (названа по Пјер-Симон Лапласу) је интегрална трансформација, која дату каузалну функцију f(t) (оригинал) пресликава из временског домена (t = време) у функцију F(s) у комплексном спектралном домену. Лапласова трансформација, иако је добила име у његову част, јер је ову трансформацију користио у свом раду о теорији вероватноће, трансформацију је заправо открио Леонард Ојлер, швајцарски математичар из осамнаестог века.

Појам оригинала[уреди]

Функција t->f(t) назива се оригиналом ако испуњава следеће услове:

1. f је интеграбилна на сваком коначном интервалу t осе
2. за свако t<0, f(t)=0
3. постоје M и s0, тако да је


Дефиниција Лапласове трансформације[уреди]

Функција F(s) је »слика« или лапласова трансформација »оригинала« f(t).

За случај да је добија се једнострана Фуријеова трансформација:

Особине[уреди]

Линеарност[уреди]

Теорема сличности[уреди]

Ако је , тада је , при чему је

Диференцирање оригинала[уреди]

Ако је и , тада је

Диференцирање слике[уреди]

Ако је , тада је , односно индукцијом се потврђује да важи

Интеграција оригинала[уреди]

Ако је и , тада је

Интеграција слике[уреди]

Ако постоји интеграл , тада је

Теорема померања[уреди]

Теорема кашњења[уреди]

Лапласова трансформација конволуције функција[уреди]

Ова особина је позната као Борелова теорема. Напомена: дефиниција конволуције је:

Лапласова трансформација периодичних функција[уреди]

Ако има особину , тада важи

Доказ[уреди]

Одакле следи:

Табела најчешће коришћених Лапласових трансформација[уреди]

Једнострана Лапласова трансформација има смисла само за не-негативне вредности t, стога су све временске функције у табели поможене са Хевисајдовом функцијом.

ID Функција Временски домен
Лапласов s-домен
(фреквентни домен)
Област конвергенције
за каузалне системе
1 идеално кашњење
1a јединични импулс
2 закашњени n-ти степен
са фреквенцијским померањем
2a n-ти степен
(за цео број n)
2a.1 q-ти степен
(за реално q)
2a.2 Хевисајдова функција
2b закашњена Хевисајдова функција
2c рампа функција
2d фреквенцијско померање n-тог реда
2d.1 експоненцијално опадање
3 експоненцијално приближавање
4 синус
5 косинус
6 синус хиперболикус
7 косинус хиперболикус
8 експоненцијално опадајући
синус
9 експоненцијално опадајући
косинус
10 n-ти корен
11 природни логаритам
12 Беселова функција
прве врсте,
реда n

13 модификована Беселова функција
прве врсте,
реда n
14 Беселова функција
друге врсте,
нултог реда
15 модификована Беселова функција
друге врсте,
нултог реда
   
16 функција грешке
Објашњења:

Инверзна Лапласова трансформација[уреди]

У општем случају, оригинал f(t) дате слике F(s) добија се решавањем Бромвичовог интеграла:

где је реални део било ког сингуларитета функције .

С обзиром да се овде интеграли комплексна променљива, потребно је користити методе комплексне математичке анализе. Многи примери инверзне Лапласове трансформације наведени су у табели изнад. У пракси, функције се трансформишу у примере из таблице, на пример разлагањем на просте факторе.

Дискретна Лапласова трансформација[уреди]

За функцију целобројне променљиве њена дискретна Лапласова трансформација се дефинише као:

Конвергенција овог реда зависи од .

Све особине и теореме регуларне Лапласове трансформације имају своје еквиваленте у дискретној Лапласовој трансформацији.

Примена[уреди]

У математици Лапласова трансформација се користи за анализирање линеарних, временски непроменљивих система, као: електричних кола, хармонијских осцилатора, оптичких уређаја и механичких система. Има примене у решавању диференцијалних једначина и теорији вероватноће.

Спољашње везе[уреди]