Геохемија — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Science that applies chemistry to analyze geological systems}}{{рут}}
Под називом '''геохемија''' подразумева се изучавање састава [[Земља|Земље]] и других планета, хемијских процеса и реакција које су одговорне за састав стена и тла, као и кружење (миграција) материје и енергије које транспортују Земљине хемијске компоненте у времену и простору, и њихову интеракцију са хидросфером и атмосфером.

У оквиру [[географија|географије]], ''геохемија'' се проучава као гранична дисциплина, на међи са [[хемија|хемијом]].
Под називом '''геохемија''' подразумева се изучавање састава [[Земља|Земље]] и других планета, хемијских процеса и реакција које су одговорне за састав стена и тла, као и кружење (миграција) материје и енергије које транспортују Земљине хемијске компоненте у времену и простору, и њихову интеракцију са хидросфером и атмосфером.<ref name=Albarede/>{{rp|1}} У оквиру [[географија|географије]], ''геохемија'' се проучава као гранична дисциплина, на међи са [[хемија|хемијом]]. The realm of geochemistry extends beyond the [[Earth]], encompassing the entire [[Solar System]],<ref name=cosmo/> and has made important contributions to the understanding of a number of processes including [[mantle convection]], the formation of [[planet]]s and the origins of [[granite]] and [[basalt]].<ref name=Albarede/>{{rp|1}} It is an integrated field of chemistry and [[geology]].


Најважнија поља геохемије су:
Најважнија поља геохемије су:
Ред 10: Ред 11:


Сматра се да је да је Виктор Годшмит отац модерне геохемије, основне идеје је развио у серији публикација од 1922-ге под називом -{„Geochemische Verteilungsgesetze der Elemente“}-.
Сматра се да је да је Виктор Годшмит отац модерне геохемије, основне идеје је развио у серији публикација од 1922-ге под називом -{„Geochemische Verteilungsgesetze der Elemente“}-.

== Историја ==
[[File:Victorgoldschmidt0006MA8633570-0001.jpg|thumb|[[Виктор Голдшмит]] (1909)]]

The term ''geochemistry'' was first used by the Swiss-German chemist [[Christian Friedrich Schönbein]] in 1838: "a comparative geochemistry ought to be launched, before geochemistry can become geology, and before the mystery of the genesis of our planets and their inorganic matter may be revealed."<ref name=Buildingbridges>{{cite book |first=Helge|last=Kragh|chapter=From geochemistry to cosmochemistry: The origin of a scientific discipline, 1915–1955 |title= Chemical Sciences in the 20th Century: Bridging Boundaries|editor-last= Reinhardt|editor-first= Carsten|date= 2008|publisher= John Wiley & Sons|isbn= 978-3-527-30271-0|pages= 160–192 |url=https://books.google.com/books?id=gIOK5EUm5ysC}}</ref> However, for the rest of the century the more common term was "chemical geology", and there was little contact between [[geologist]]s and [[chemist]]s.<ref name=Buildingbridges/>

Geochemistry emerged as a separate discipline after major laboratories were established, starting with the [[United States Geological Survey]] (USGS) in 1884, which began systematic surveys of the chemistry of rocks and minerals. The chief USGS chemist, [[Frank Wigglesworth Clarke]], noted that the elements generally decrease in abundance as their atomic weights increase, and summarized the work on elemental abundance in ''The Data of Geochemistry''.<ref name=Buildingbridges/><ref name=McSween>{{cite book|last1=McSween, Jr.|first1=Harry Y.|last2=Richardson|first2=Steven M.|last3=Uhle|first3=Maria E.|title=Geochemistry pathways and processes|date=2003|publisher=Columbia University|location=New York|isbn=9780231509039|edition=2nd}}</ref>{{rp|2}}

The composition of [[meteorites]] was investigated and compared to terrestrial rocks as early as 1850. In 1901, [[Oliver C. Farrington]] hypothesised that, although there were differences, the relative abundances should still be the same.<ref name=Buildingbridges/> This was the beginnings of the field of [[cosmochemistry]] and has contributed much of what we know about the formation of the Earth and the Solar System.<ref name="Cornell">{{cite book |title= Geochemistry (Unpublished)|last= White|first= William M.|page= 1|url= http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML|access-date=14 March 2012}}</ref>

In the early 20th century, [[Max von Laue]] and [[William L. Bragg]] showed that X-ray scattering could be used to determine the structures of crystals. In the 1920s and 1930s, [[Victor Goldschmidt]] and associates at the [[University of Oslo]] applied these methods to many common minerals and formulated a set of rules for how elements are grouped. Goldschmidt published this work in the series ''Geochemische Verteilungsgesetze der Elemente'' [Geochemical Laws of the Distribution of Elements].<ref name=McSween/>{{rp|2}}<ref>{{cite book|last1=Mason|first1=Brian|title=Victor Moritz Goldschmidt : father of modern geochemistry|date=1992|publisher=Geochemical Society|location=San Antonio, Tex.|isbn=0-941809-03-X}}</ref>

== Потпоља ==
Some subfields of geochemistry are:<ref>{{cite web|title=Welcome to GPS Geochemistry|url=http://web.gps.caltech.edu/options/geochemistry/|website=GPS Research Program|publisher=California Institute of Technology|access-date=2 October 2017}}</ref>
*[[Aqueous geochemistry]] studies the role of various elements in watersheds, including [[copper]], [[sulfur]], [[Mercury (element)|mercury]], and how elemental fluxes are exchanged through atmospheric-terrestrial-aquatic interactions.<ref>{{cite book|last1=Langmuir|first1=Donald|title=Aqueous environmental geochemistry|date=1997|publisher=Prentice Hall|location=Upper Saddle River, N.J.|isbn=9780023674129}}</ref>
*[[Biogeochemistry]] is the field of study focusing on the effect of life on the chemistry of the Earth.<ref>{{cite book|last1=Schlesinger|first1=William H.|last2=Bernhardt|first2=Emily S.|title=Biogeochemistry : an analysis of global change|date=2013|publisher=Academic Press|isbn=9780123858740|edition=Third}}</ref>{{rp|3}}
*[[Cosmochemistry]] includes the analysis of the distribution of elements and their isotopes in the [[universe|cosmos]].<ref name=cosmo>{{cite book|last1=McSween, Jr|first1=Harry Y.|last2=Huss|first2=Gary R.|title=Cosmochemistry|date=2010|publisher=Cambridge University Press|isbn=9781139489461}}</ref>{{rp|1}}
*[[Isotope geochemistry]] involves the determination of the relative and absolute concentrations of the [[chemical element|element]]s and their [[isotope]]s in the Earth and on Earth's surface.<ref>{{cite book|last1=Kendall|first1=Carol|author-link1=Carol Kendall (scientist)|last2=Caldwell|first2=Eric A.|chapter=Chapter 2: Fundamentals of Isotope Geochemistry|title=Isotope Tracers in Catchment Hydrology |editor-last1=Kendall|editor-first1=C.|editor-link1=Carol Kendall (scientist)|editor-last2=McDonnell|editor-first2=J. J.|date=1998|publisher=Elsevier Science|location=Amsterdam|pages=51–86|chapter-url=https://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html|access-date=3 October 2017}}</ref>
*[[Organic geochemistry]], the study of the role of processes and compounds that are derived from living or once-living organisms.<ref>{{cite book|last1=Killops|first1=Stephen D.|last2=Killops|first2=Vanessa J.|title=Introduction to Organic Geochemistry|date=2013|publisher=John Wiley & Sons|isbn=9781118697207}}</ref>
*[[Photogeochemistry]] is the study of light-induced chemical reactions that occur or may occur among natural components of the Earth's surface.<ref>{{cite journal | pmc = 5307419 | pmid=28246525 | doi=10.1186/s12932-017-0039-y | volume=18 | title=A survey of photogeochemistry | journal=Geochem Trans | page=1 | last1 = Doane | first1 = TA| year=2017 }}</ref>
*[[Regional geochemistry]] includes applications to environmental, hydrological and mineral exploration studies.<ref>{{cite journal|last1=Garrett|first1=R.G.|last2=Reimann|first2=C.|last3=Smith|first3=D.B.|last4=Xie|first4=X.|title=From geochemical prospecting to international geochemical mapping: a historical overview: Table 1|journal=Geochemistry: Exploration, Environment, Analysis|date=November 2008|volume=8|issue=3–4|pages=205–217|doi=10.1144/1467-7873/08-174|s2cid=130836294}}</ref>

== Хемијски елементи ==
The building blocks of materials are the [[chemical element]]s. These can be identified by their [[atomic number]] Z, which is the number of [[proton]]s in the [[Atomic nucleus|nucleus]]. An element can have more than one value for N, the [[neutron number|number of neutrons]] in the nucleus. The sum of these is the [[mass number]], which is roughly equal to the [[atomic mass]]. Atoms with the same atomic number but different neutron numbers are called [[isotope]]s. A given isotope is identified by a letter for the element preceded by a superscript for the mass number. For example, two common isotopes of [[chlorine]] are <sup>35</sup>Cl and <sup>37</sup>Cl. There are about 1700 known combinations of Z and N, of which only about 260 are stable. However, most of the unstable isotopes do not occur in nature. In geochemistry, stable isotopes are used to trace chemical pathways and reactions, while radioactive isotopes are primarily used to date samples.<ref name=McSween/>{{rp|13–17}}

The chemical behavior of an atom – its [[Chemical affinity|affinity for other elements]] and the type of [[chemical bond|bonds]] it forms – is determined by the arrangement of electrons in [[Atomic orbital|orbitals]], particularly the outermost ([[valence electron|valence]]) electrons. These arrangements are reflected in the position of elements in the [[periodic table]].<ref name=McSween/>{{rp|13–17}} Based on position, the elements fall into the broad groups of [[alkali metal]]s, [[alkaline earth metal]]s, [[transition metal]]s, semi-metals (also known as [[metalloid]]s), [[halogen]]s, [[noble gas]]es, [[lanthanide]]s and [[actinide]]s.<ref name=McSween/>{{rp|20–23}}

Another useful classification scheme for geochemistry is the [[Goldschmidt classification]], which places the elements into four main groups. ''Lithophiles'' combine easily with oxygen. These elements, which include [[sodium|Na]], [[potassium|K]], [[silicon|Si]], [[aluminum|Al]], [[titanium|Ti]], [[magnesium|Mg]] and [[calcium|Ca]], dominate in the [[Earth's crust]], forming [[silicate]]s and other oxides. ''Siderophile'' elements ([[iron|Fe]], [[cobalt|Co]], [[nickel|Ni]], [[platinum|Pt]], [[rhenium|Re]], [[osmium|Os]]) have an affinity for [[iron]] and tend to concentrate in the [[Earth's core|core]]. ''Chalcophile'' elements ([[copper|Cu]], [[silver|Ag]], [[zinc|Zn]], [[lead|Pb]], [[sulfur|S]]) form [[sulfide]]s; and ''atmophile'' elements ([[oxygen|O]], [[nitrogen|N]], [[hydrogen|H]] and noble gases) dominate the atmosphere. Within each group, some elements are [[refractory]], remaining stable at high temperatures, while others are [[Volatility (chemistry)|volatile]], evaporating more easily, so heating can separate them.<ref name=Albarede>{{cite book|last1=Albarède|first1=Francis|title=Geochemistry : an introduction|date=2007|publisher=Cambridge Univ. Press|location=Cambridge|isbn=9780521891486|edition=5th|others=Translated from the French.}}</ref>{{rp|17}}<ref name=McSween/>{{rp|23}}

== Диференцирање и мешање ==
The chemical composition of the Earth and other bodies is determined by two opposing processes: differentiation and mixing. In the Earth's [[mantle (geology)|mantle]], differentiation occurs at [[mid-ocean ridge]]s through [[partial melting]], with more refractory materials remaining at the base of the [[lithosphere]] while the remainder rises to form [[basalt]]. After an oceanic plate descends into the mantle, [[convection]] eventually mixes the two parts together. [[Erosion]] differentiates [[granite]], separating it into [[clay]] on the ocean floor, [[sandstone]] on the edge of the continent, and dissolved minerals in ocean waters. [[Metamorphism]] and [[anatexis]] (partial melting of crustal rocks) can mix these elements together again. In the ocean, biological organisms can cause chemical differentiation, while dissolution of the organisms and their wastes can mix the materials again.<ref name=Albarede/>{{rp|23&ndash;24}}

=== Фракционисање ===
{{See also|magmatic differentiation}}
A major source of differentiation is [[fractionation]], an unequal distribution of elements and isotopes. This can be the result of chemical reactions, [[Phase transition|phase changes]], kinetic effects, or [[radioactivity]].<ref name=Albarede/>{{rp|2&ndash;3}}
On the largest scale, ''[[planetary differentiation]]'' is a physical and chemical separation of a planet into chemically distinct regions. For example, the terrestrial planets formed iron-rich cores and silicate-rich mantles and crusts.<ref>{{cite book|last1=McSween, Jr.|first1=Harry Y.|last2=Huss|first2=Gary R.|title=Cosmochemistry|date=2010|publisher=Cambridge University Press|isbn=9781139489461}}</ref>{{rp|218}} In the Earth's mantle, the primary source of chemical differentiation is [[partial melting]], particularly near mid-ocean ridges.<ref>{{cite book|last1=Olson|first1=Gerald Schubert ; Donald L. Turcotte ; Peter|title=Mantle convection in the earth and planets|date=2001|publisher=Cambridge Univ. Press|location=Cambridge|isbn=9780521798365}}</ref>{{rp|68,153}} This can occur when the solid is heterogeneous or a [[solid solution]], and part of the melt is separated from the solid. The process is known as ''equilibrium'' or ''batch'' melting if the solid and melt remain in equilibrium until the moment that the melt is removed, and ''fractional'' or ''Rayleigh'' melting if it is removed continuously.<ref>{{cite book|last1=Wilson|first1=Marjorie|title=Igneous petrogenesis|date=2007|publisher=Springer|location=Dordrecht|isbn=9789401093880}}</ref>

[[Isotopic fractionation]] can have mass-dependent and mass-independent forms. Molecules with heavier isotopes have lower [[Zero-point energy|ground state energies]] and are therefore more stable. As a result, chemical reactions show a small isotope dependence, with heavier isotopes preferring species or compounds with a higher oxidation state; and in phase changes, heavier isotopes tend to concentrate in the heavier phases.<ref name=Kendall>{{cite book|last1=Kendall|first1=Carol|author-link1=Carol Kendall (scientist)|last2=Caldwell|first2=Eric A.|chapter=Chapter 2: Fundamentals of Isotope Geochemistry|editor-last1=Kendall|editor-first1=Carol|editor-last2=McDonnell|editor-first2=J. J.|title=Isotope tracers in catchment hydrology|date=2000|publisher=Elsevier|location=Amsterdam|isbn=9780444501554|pages=51&ndash;86|chapter-url=http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html|access-date=24 October 2017}}</ref> Mass-dependent fractionation is largest in light elements because the difference in masses is a larger fraction of the total mass.<ref name=Hoefs>{{cite journal|last1=Hoefs|first1=Jochen|title=Isotope fractionation processes of selected elements|journal=Stable Isotope Geochemistry|date=2015|pages=47&ndash;134|doi=10.1007/978-3-319-19716-6_2|isbn=978-3-319-19715-9}}</ref>{{rp|47}}

Ratios between isotopes are generally compared to a standard. For example, sulfur has four stable isotopes, of which the two most common are <sup>32</sup>S and <sup>34</sup>S.<ref name=Hoefs/>{{rp|98}} The ratio of their concentrations, {{math|''R''{{=}}<sup>34</sup>S/<sup>32</sup>S}}, is reported as
:<math>\delta{}^{34}\mathrm{S} = 1000\left(\frac{R}{R_\mathrm{s}}-1\right),</math>
where {{math|''R''<sub>s</sub>}} is the same ratio for a standard. Because the differences are small, the ratio is multiplied by 1000 to make it parts per thousand (referred to as parts per mil). This is represented by the symbol {{math|‰}}.<ref name=Kendall/>{{rp|55}}

==== Равнотежа ====
''[[Equilibrium fractionation]]'' occurs between chemicals or phases that are in equilibrium with each other. In equilibrium fractionation between phases, heavier phases prefer the heavier isotopes. For two phases A and B, the effect can be represented by the factor
:<math> a_\mathrm{A-B} = \frac{R_\mathrm{A}}{R_\mathrm{B}}. </math>
In the liquid-vapor phase transition for water, {{math|''a''<sub>l-v</sub>}} at 20 degrees [[Celsius]] is 1.0098 for <sup>18</sup>O and 1.084 for <sup>2</sup>H. In general, fractionation is greater at lower temperatures. At 0&nbsp;°C, the factors are 1.0117 and 1.111.<ref name=Kendall/>{{rp|59}}

==== Кинетика ====
When there is no equilibrium between phases or chemical compounds, ''[[kinetic fractionation]]'' can occur. For example, at interfaces between liquid water and air, the forward reaction is enhanced if the humidity of the air is less than 100% or the water vapor is moved by a wind. Kinetic fractionation generally is enhanced compared to equilibrium fractionation and depends on factors such as reaction rate, reaction pathway and bond energy. Since lighter isotopes generally have weaker bonds, they tend to react faster and enrich the reaction products.<ref name=Kendall/>{{rp|60}}

Biological fractionation is a form of kinetic fractionation since reactions tend to be in one direction. Biological organisms prefer lighter isotopes because there is a lower energy cost in breaking energy bonds. In addition to the previously mentioned factors, the environment and species of the organism can have a large effect on the fractionation.<ref name=Kendall/>{{rp|70}}

== Види још ==
* [[Петрологија]]

== Референце ==
{{reflist|}}


== Литература ==
== Литература ==
{{refbegin|2}} -{
{{refbegin|}}
* Holland, H.D., & Turekian, K.K. (2004). [http://www.sciencedirect.com/science/referenceworks/9780080437514 ''Treatise on Geochemistry'']. 9 Volumes. Elsevier
* Marshall, C., & Fairbridge, R. (2006). [http://www.springer.com/east/home/generic/search/results?SGWID=5-40109-22-33650945-0 ''Encyclopedia of Geochemistry'']. {{ISBN|978-1-4020-4496-0}}. Berlin: Springer.
* Marshall, C., & Fairbridge, R. (2006). [http://www.springer.com/east/home/generic/search/results?SGWID=5-40109-22-33650945-0 ''Encyclopedia of Geochemistry'']. {{ISBN|978-1-4020-4496-0}}. Berlin: Springer.
* Bernard Gunn: [http://www.Geokem.com ''The Geochemistry of Igneous Rocks'']
* Bernard Gunn: [http://www.Geokem.com ''The Geochemistry of Igneous Rocks'']
* Gunter Faure (1986). ''Principles of Isotope Geology'', John Wiley & Sons. {{ISBN|978-0-471-86412-7}}
* Gunter Faure (1986). ''Principles of Isotope Geology'', John Wiley & Sons. {{ISBN|978-0-471-86412-7}}
* {{cite book|last1=Faure|first1=Gunter|author1-link=Gunter Faure|last2=Mensing|first2=Teresa M.|title=Isotopes : principles and applications|date=2005|publisher=Wiley|location=New Jersey|isbn=0471384372|edition=3rd}}
* H.R. Rollinson (1993), ''Using Geochemical Data: evaluation, presentation, interpretation'' (Longman). {{ISBN|978-0-582-06701-1}}.
* {{cite book|editor-last1=Holland|editor-first1=H.D.|editor-last2=Turekian|editor-first2=K.K.|title=Treatise on geochemistry|date=2003|publisher=Elsevier Science|location=Oxford|isbn=978-0-08-043751-4|edition=1st}}
* W.M. White: ''Geochemistry'' ([http://www.imwa.info/geochemistry Free Download])
* {{cite book|editor-last1=Marshall|editor-first1=C.P.|editor-last2=Fairbridge|editor-first2=R.W.|title=Geochemistry|date=2006|publisher=SpringerLink|location=Berlin|isbn=1-4020-4496-8}}
}- {{refend}}
* {{cite web|last1=Natural Environment Research Council|title=Geochemistry data model|url=http://www.earthdatamodels.org/designs/geochemistry_BGS.html|website=EarthDataModels.org|access-date=9 October 2017}}
== Види још ==
* {{cite book|last1=Rollinson|first1=Hugh R.|title=Using geochemical data : evaluation, presentation, interpretation|date=1996|publisher=Longman|location=Harlow|isbn=978-0-582-06701-1|edition=Repr.}}
* [[Петрологија]]
* {{cite book |title= Geochemistry (Unpublished)|last= White|first= William M.|page= 1|url= http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML|access-date=14 March 2012}}

{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{портал|Физичка хемија}}
{{Commonscat|Geochemistry}}
{{Commonscat|Geochemistry}}
* [http://www.usgs.gov/science/science.php?term=437 -{Geochemistry}-]
* [http://www.usgs.gov/science/science.php?term=437 -{Geochemistry}-]
* [http://www.Geokem.com ''The Geochemistry of Igneous Rocks''] (Gunn Interactive Ltd.)


{{Гране хемије}}
{{Клица-геол}}

{{Геологија}}
{{Геологија}}
{{Хемија}}
{{нормативна контрола}}
{{нормативна контрола}}
{{портал бар|Физичка хемија}}


[[Категорија:Геохемија|*]]
[[Категорија:Геохемија|*]]

Верзија на датум 11. октобар 2021. у 19:20

Под називом геохемија подразумева се изучавање састава Земље и других планета, хемијских процеса и реакција које су одговорне за састав стена и тла, као и кружење (миграција) материје и енергије које транспортују Земљине хемијске компоненте у времену и простору, и њихову интеракцију са хидросфером и атмосфером.[1]:1 У оквиру географије, геохемија се проучава као гранична дисциплина, на међи са хемијом. The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System,[2] and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt.[1]:1 It is an integrated field of chemistry and geology.

Најважнија поља геохемије су:

  1. Геохемија изотопа: Одређивање релативних и апсолитних концентрација хемијских елемената и њихових изотопа у земљи и на њој.
  2. Проучавање дистрибуције и кретања елемената у различитим деловима земље (у кори, мантлу, хидросфери итд.) и у минералима са циљем да се утврди скривени систем дистрибуције и кретања.
  3. Космохемија: Анализа дистрибуције елемената и њихових изотопа у свемиру.
  4. Органска геохемија: Наука о улози процеса и састава који су настали од живих организама или оних који су некада живели.
  5. Примена у студијама заштите животне средине, хидролошким и и минералошким проучавањима.

Сматра се да је да је Виктор Годшмит отац модерне геохемије, основне идеје је развио у серији публикација од 1922-ге под називом „Geochemische Verteilungsgesetze der Elemente“.

Историја

Виктор Голдшмит (1909)

The term geochemistry was first used by the Swiss-German chemist Christian Friedrich Schönbein in 1838: "a comparative geochemistry ought to be launched, before geochemistry can become geology, and before the mystery of the genesis of our planets and their inorganic matter may be revealed."[3] However, for the rest of the century the more common term was "chemical geology", and there was little contact between geologists and chemists.[3]

Geochemistry emerged as a separate discipline after major laboratories were established, starting with the United States Geological Survey (USGS) in 1884, which began systematic surveys of the chemistry of rocks and minerals. The chief USGS chemist, Frank Wigglesworth Clarke, noted that the elements generally decrease in abundance as their atomic weights increase, and summarized the work on elemental abundance in The Data of Geochemistry.[3][4]:2

The composition of meteorites was investigated and compared to terrestrial rocks as early as 1850. In 1901, Oliver C. Farrington hypothesised that, although there were differences, the relative abundances should still be the same.[3] This was the beginnings of the field of cosmochemistry and has contributed much of what we know about the formation of the Earth and the Solar System.[5]

In the early 20th century, Max von Laue and William L. Bragg showed that X-ray scattering could be used to determine the structures of crystals. In the 1920s and 1930s, Victor Goldschmidt and associates at the University of Oslo applied these methods to many common minerals and formulated a set of rules for how elements are grouped. Goldschmidt published this work in the series Geochemische Verteilungsgesetze der Elemente [Geochemical Laws of the Distribution of Elements].[4]:2[6]

Потпоља

Some subfields of geochemistry are:[7]

  • Aqueous geochemistry studies the role of various elements in watersheds, including copper, sulfur, mercury, and how elemental fluxes are exchanged through atmospheric-terrestrial-aquatic interactions.[8]
  • Biogeochemistry is the field of study focusing on the effect of life on the chemistry of the Earth.[9]:3
  • Cosmochemistry includes the analysis of the distribution of elements and their isotopes in the cosmos.[2]:1
  • Isotope geochemistry involves the determination of the relative and absolute concentrations of the elements and their isotopes in the Earth and on Earth's surface.[10]
  • Organic geochemistry, the study of the role of processes and compounds that are derived from living or once-living organisms.[11]
  • Photogeochemistry is the study of light-induced chemical reactions that occur or may occur among natural components of the Earth's surface.[12]
  • Regional geochemistry includes applications to environmental, hydrological and mineral exploration studies.[13]

Хемијски елементи

The building blocks of materials are the chemical elements. These can be identified by their atomic number Z, which is the number of protons in the nucleus. An element can have more than one value for N, the number of neutrons in the nucleus. The sum of these is the mass number, which is roughly equal to the atomic mass. Atoms with the same atomic number but different neutron numbers are called isotopes. A given isotope is identified by a letter for the element preceded by a superscript for the mass number. For example, two common isotopes of chlorine are 35Cl and 37Cl. There are about 1700 known combinations of Z and N, of which only about 260 are stable. However, most of the unstable isotopes do not occur in nature. In geochemistry, stable isotopes are used to trace chemical pathways and reactions, while radioactive isotopes are primarily used to date samples.[4]:13–17

The chemical behavior of an atom – its affinity for other elements and the type of bonds it forms – is determined by the arrangement of electrons in orbitals, particularly the outermost (valence) electrons. These arrangements are reflected in the position of elements in the periodic table.[4]:13–17 Based on position, the elements fall into the broad groups of alkali metals, alkaline earth metals, transition metals, semi-metals (also known as metalloids), halogens, noble gases, lanthanides and actinides.[4]:20–23

Another useful classification scheme for geochemistry is the Goldschmidt classification, which places the elements into four main groups. Lithophiles combine easily with oxygen. These elements, which include Na, K, Si, Al, Ti, Mg and Ca, dominate in the Earth's crust, forming silicates and other oxides. Siderophile elements (Fe, Co, Ni, Pt, Re, Os) have an affinity for iron and tend to concentrate in the core. Chalcophile elements (Cu, Ag, Zn, Pb, S) form sulfides; and atmophile elements (O, N, H and noble gases) dominate the atmosphere. Within each group, some elements are refractory, remaining stable at high temperatures, while others are volatile, evaporating more easily, so heating can separate them.[1]:17[4]:23

Диференцирање и мешање

The chemical composition of the Earth and other bodies is determined by two opposing processes: differentiation and mixing. In the Earth's mantle, differentiation occurs at mid-ocean ridges through partial melting, with more refractory materials remaining at the base of the lithosphere while the remainder rises to form basalt. After an oceanic plate descends into the mantle, convection eventually mixes the two parts together. Erosion differentiates granite, separating it into clay on the ocean floor, sandstone on the edge of the continent, and dissolved minerals in ocean waters. Metamorphism and anatexis (partial melting of crustal rocks) can mix these elements together again. In the ocean, biological organisms can cause chemical differentiation, while dissolution of the organisms and their wastes can mix the materials again.[1]:23–24

Фракционисање

A major source of differentiation is fractionation, an unequal distribution of elements and isotopes. This can be the result of chemical reactions, phase changes, kinetic effects, or radioactivity.[1]:2–3 On the largest scale, planetary differentiation is a physical and chemical separation of a planet into chemically distinct regions. For example, the terrestrial planets formed iron-rich cores and silicate-rich mantles and crusts.[14]:218 In the Earth's mantle, the primary source of chemical differentiation is partial melting, particularly near mid-ocean ridges.[15]:68,153 This can occur when the solid is heterogeneous or a solid solution, and part of the melt is separated from the solid. The process is known as equilibrium or batch melting if the solid and melt remain in equilibrium until the moment that the melt is removed, and fractional or Rayleigh melting if it is removed continuously.[16]

Isotopic fractionation can have mass-dependent and mass-independent forms. Molecules with heavier isotopes have lower ground state energies and are therefore more stable. As a result, chemical reactions show a small isotope dependence, with heavier isotopes preferring species or compounds with a higher oxidation state; and in phase changes, heavier isotopes tend to concentrate in the heavier phases.[17] Mass-dependent fractionation is largest in light elements because the difference in masses is a larger fraction of the total mass.[18]:47

Ratios between isotopes are generally compared to a standard. For example, sulfur has four stable isotopes, of which the two most common are 32S and 34S.[18]:98 The ratio of their concentrations, R=34S/32S, is reported as

where Rs is the same ratio for a standard. Because the differences are small, the ratio is multiplied by 1000 to make it parts per thousand (referred to as parts per mil). This is represented by the symbol .[17]:55

Равнотежа

Equilibrium fractionation occurs between chemicals or phases that are in equilibrium with each other. In equilibrium fractionation between phases, heavier phases prefer the heavier isotopes. For two phases A and B, the effect can be represented by the factor

In the liquid-vapor phase transition for water, al-v at 20 degrees Celsius is 1.0098 for 18O and 1.084 for 2H. In general, fractionation is greater at lower temperatures. At 0 °C, the factors are 1.0117 and 1.111.[17]:59

Кинетика

When there is no equilibrium between phases or chemical compounds, kinetic fractionation can occur. For example, at interfaces between liquid water and air, the forward reaction is enhanced if the humidity of the air is less than 100% or the water vapor is moved by a wind. Kinetic fractionation generally is enhanced compared to equilibrium fractionation and depends on factors such as reaction rate, reaction pathway and bond energy. Since lighter isotopes generally have weaker bonds, they tend to react faster and enrich the reaction products.[17]:60

Biological fractionation is a form of kinetic fractionation since reactions tend to be in one direction. Biological organisms prefer lighter isotopes because there is a lower energy cost in breaking energy bonds. In addition to the previously mentioned factors, the environment and species of the organism can have a large effect on the fractionation.[17]:70

Види још

Референце

  1. ^ а б в г д Albarède, Francis (2007). Geochemistry : an introduction. Translated from the French. (5th изд.). Cambridge: Cambridge Univ. Press. ISBN 9780521891486. 
  2. ^ а б McSween, Jr, Harry Y.; Huss, Gary R. (2010). Cosmochemistry. Cambridge University Press. ISBN 9781139489461. 
  3. ^ а б в г Kragh, Helge (2008). „From geochemistry to cosmochemistry: The origin of a scientific discipline, 1915–1955”. Ур.: Reinhardt, Carsten. Chemical Sciences in the 20th Century: Bridging Boundaries. John Wiley & Sons. стр. 160—192. ISBN 978-3-527-30271-0. 
  4. ^ а б в г д ђ McSween, Jr., Harry Y.; Richardson, Steven M.; Uhle, Maria E. (2003). Geochemistry pathways and processes (2nd изд.). New York: Columbia University. ISBN 9780231509039. 
  5. ^ White, William M. Geochemistry (Unpublished). стр. 1. Приступљено 14. 3. 2012. 
  6. ^ Mason, Brian (1992). Victor Moritz Goldschmidt : father of modern geochemistry. San Antonio, Tex.: Geochemical Society. ISBN 0-941809-03-X. 
  7. ^ „Welcome to GPS Geochemistry”. GPS Research Program. California Institute of Technology. Приступљено 2. 10. 2017. 
  8. ^ Langmuir, Donald (1997). Aqueous environmental geochemistry. Upper Saddle River, N.J.: Prentice Hall. ISBN 9780023674129. 
  9. ^ Schlesinger, William H.; Bernhardt, Emily S. (2013). Biogeochemistry : an analysis of global change (Third изд.). Academic Press. ISBN 9780123858740. 
  10. ^ Kendall, Carol; Caldwell, Eric A. (1998). „Chapter 2: Fundamentals of Isotope Geochemistry”. Ур.: Kendall, C.; McDonnell, J. J. Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier Science. стр. 51—86. Приступљено 3. 10. 2017. 
  11. ^ Killops, Stephen D.; Killops, Vanessa J. (2013). Introduction to Organic Geochemistry. John Wiley & Sons. ISBN 9781118697207. 
  12. ^ Doane, TA (2017). „A survey of photogeochemistry”. Geochem Trans. 18: 1. PMC 5307419Слободан приступ. PMID 28246525. doi:10.1186/s12932-017-0039-y. 
  13. ^ Garrett, R.G.; Reimann, C.; Smith, D.B.; Xie, X. (новембар 2008). „From geochemical prospecting to international geochemical mapping: a historical overview: Table 1”. Geochemistry: Exploration, Environment, Analysis. 8 (3–4): 205—217. S2CID 130836294. doi:10.1144/1467-7873/08-174. 
  14. ^ McSween, Jr., Harry Y.; Huss, Gary R. (2010). Cosmochemistry. Cambridge University Press. ISBN 9781139489461. 
  15. ^ Olson, Gerald Schubert ; Donald L. Turcotte ; Peter (2001). Mantle convection in the earth and planets. Cambridge: Cambridge Univ. Press. ISBN 9780521798365. 
  16. ^ Wilson, Marjorie (2007). Igneous petrogenesis. Dordrecht: Springer. ISBN 9789401093880. 
  17. ^ а б в г д Kendall, Carol; Caldwell, Eric A. (2000). „Chapter 2: Fundamentals of Isotope Geochemistry”. Ур.: Kendall, Carol; McDonnell, J. J. Isotope tracers in catchment hydrology. Amsterdam: Elsevier. стр. 51–86. ISBN 9780444501554. Приступљено 24. 10. 2017. 
  18. ^ а б Hoefs, Jochen (2015). „Isotope fractionation processes of selected elements”. Stable Isotope Geochemistry: 47–134. ISBN 978-3-319-19715-9. doi:10.1007/978-3-319-19716-6_2. 

Литература

Спољашње везе