Атомски часовник

Из Википедије, слободне енциклопедије
Атомски сат
Атомски сат с интегралним колом (NIST)

Атомски сат је врста сата који користи стандардну резонантну фреквенцију атома као бројач. Рани атомски сатови били су мејзери (апарати који производе кохерентне електромагнетне таласе) с додатном опремом. Данашњи најбољи стандарди атомске фреквенције (или сатови) су засновани на много напреднијој физици која укључује хладне атоме и атомске изворе.

Националне агенције за стандарде одређују тачност од 10-9 секунди на дан и прецизност једнаку фреквенцији радио трансмитера који покреће мејзер. Сатови одржавају континуирану и стабилну временску скалу, Међународно атомско време (TAI). За цивилну употребу користи се друга временска скала, Координисано универзално време (UTC). UTC је произашло из TAI-а, али је синхронизован сменом дана и ноћи заснованом на астрономским посматрањима.

Први атомски сат направљен је 1949. у америчком Националном бироу за стандарде (NBS). Први прецизан атомски сат, заснован на променама атома цезијума-133, направио је Луис Есен 1955. у Националној физичкој лабораторији у Уједињеном Краљевству. На основу њега настала је међународно призната дефиниција секунде заснована на атомском времену.

У августу 2004. научници Националног института за стандарде и технологију (NIST) приказали су атомски сат са интегралним колом. Тај сат је био сто пута мањи од осталих. Такође се тврдило да му је довољно само 75 mW, тако да је могао бити напајан батеријом.

Модерни радио сатови су повезани с атомским сатовима и омогућују врло тачно време уз коришћење јевтине опреме; радио сатови, међутим нису довољно прецизни за научни рад.

Како ради атомски сат[уреди]

Фреквентни мејзери користе коморе јонизованог гаса, још чешће цезијума, јер је цезијум елемент који се користи у званичним међународним дефиницијама секунде.

Од 1967, Међународни систем јединица мере (SI) дефинише секунду као 9.192.631,770 циклуса радијације која одговара размени између два новоа енергије атома цесијум-133. Ова дефиниција је одредила цезијумов осцилатор (који се често назива атомски сат) као примарни стандард за мерење времена и фреквенције. Друге физичке мере, као што су волт и метар, ослањају се на дефиницију секунде у својим сопственим дефиницијама.

Срце атомског сата је микроталасна комора које садржи јонизован гас, подесиви микроталасни радио осцилатор и контролер који подешава осцилатор на тачну фреквенцију апсорпционих карактеристика дефинисаних понашањем појединих атома.

Микроталасни трансмитер испуњава комору стандардним радио таласом. Када се радио фреквенција упари с суперфином транзицијом фреквенције цезијума, атоми цезијума апсорбују радио-таласе и емитују светлост. Радио-таласи терају електроне даље од језгра. Када електрони буду поново привучени супротним пуњењем језгра, електрони вијугају пре него се сместе на нову локацију. Ово кретање изазива светлост, које је талас наизменичног електрицитета и магнетизма.

Фото ћелија региструје светлост. Када светлост постане тамнија, јер је побуђена фреквенција другачија од праве резонантне фреквенције, електроника између фото ћелије и радио трансмитера подешава фреквенцију радио трансмитера.

Ово подешавање процеса је најсложенији део сата. Подешавање покушава да елиминише нежељене споредне ефекте, као што су фреквенције других транзиција електрона, деформација у квантним пољима и ефекти температуре у механизму. На пример: фреквенција радио-таласа може намерно бити синусоидно подешена навише или наниже да би генерисала модулисани сигнал у фото ћелији. Сигнал из фото ћелије тада може бити демодулисан да би направио повратну спрегу која контролише дуготрајне отклоне у радио фреквенцији. На тај начин, ултра-прецизне квантне механичке карактеристике атомске транзиције цезијума могу да се користе за подешавање микроталасног осцилатора на исту фреквенцију (изузев мале количине изазване експериманталном грешком). У пракси, механизам повратне спреге и контроле је много сложенији него што је описано. Када се сат први пут покрене, потребно је мало времена да се подеси.

Историјска прецизност атомских сатова (NIST).

Бројач мери таласе које производи радио трансмитер. Рачунар очитава бројач и конвертује бројеве на сличан начин као дигитални сат.

Велики број других атомских сатова користи се за друге намене. Рубидијумски сатови су популарни због своје мале цене, малих димензија (комерцијални стандарди су 400 cm³ ) и краткорочне стабилности. Они се користе у многим комерцијалним, преносним и авионским уређајима. Воднични мејзери (често произведени у Русији) имају супериорну краткорочну стабилност, али мању дугорочну прецизност.

Животни век стандарда је важан практичан проблем. Модерне рубидијумске стандардне цеви трају више од десет година, а коштају око 50 долара. Цезијумске цеви трају око седам година и коштају око 35.000 долара. Хидрогенске цеви имају неограничен век трајања.

Истраживања[уреди]

Многа истраживања усмерена су да се направе мањи, јефтинији, прецизнији и поузданији сатови. Ови циљеви су често међусобно сукобљени.

Многа садашња истраживања усмерена су на разне начине хватања јона. Теоријски, један електомагнетски заустављен јон може да се посматра у врло дугом периоду, чиме се повећава прецизност сата, а истовремено смањује величина сата и потрошња енергије.

У пракси, сатови с једним јоном имају слабу краткорочну прецизност, јер се јон много креће. Савремена истраживања користе ласерско хлађење јона, с оптичким резонаторима да би повећали краткорочну стабилност. Највећи део тешкоћа односи се на елиминисање температурних и механичких ефеката у резонаторима и ласерима. Ни један ласер није за ширу употребу. Резултат је да је комора за јоне врло мала, али је пратећа опрема још увек гломазна.

Неки истраживачи развили су сатове с различитом геометријом комора за јоне. Линеарни облаци јона обично имају бољу краткорочну прецизност од једног јона.

Најразвијенији системи користе меркуријумове јоне. Неки истраживачи експериментишу с другим јонима. Посебан изотоп итербијум има посебно прецизну резонантну фреквенцију. Стронцијум има суперфину транзицију која није тако прецизна, али се може подесити солидним ласерима. Можда ће то довести до врло јевтиног, дуготрајног, компактног атомског сата.

Спољашње везе[уреди]

Викиостава
Викимедијина остава има још мултимедијалних датотека везаних за: Атомски часовник