Фермиони
Фермиони су честице које подлежу Паулијевом принципу искључења, што подразумева да у датом систему не постоје два идентична фермиона која се истовремено налазе у потпуно истом стању. Расподела фермиона у систему описана је Ферми-Дираковом статистиком, а таласна функција која описује кватно стање у ком се фермион може налазити је антисиметрична. Све елементарне честице се према спину могу поделити на фермионе и бозоне. Фермиони су честице чији спин има полуцелу вредност , а бозони су честице целог спина и описани су Бозе-Ајнштајновом статистиком и који су описани симетричном таласном функцијом.[1] Фермиони су назив добили по италијанском физичару Енрику Фермију.[2] Фермионске елементарне честице се деле на кваркове и лептоне. Најпознатија фермионска честица је електрон.
На пример спин је лептона и кваркова једнак броју 1/2. Они се подвргавају се Паулијевом начелу искључења. Честице сложене од непарног броја елементарних фермиона такође су фермиони (на пример протон, неутрон, атомска језгра трицијума ³H, језгра хелијума 3He, језгра угљеника 13C), а честице сачињене од парног броја фермиона су бозони (на пример језгра деутеријума 2H, језгра хелијума 4He, језгра угљеника 12C).[3] Сва позната материја данашњег свемира састављена је од фермиона: бариона и лептона.[4]
Фермион | Знак | Античестица | Електрични набој Q/e | Спин | Маса мировања (MeV/c2) |
---|---|---|---|---|---|
електрон | e- | e+ | -1 | 1/2 | 0,5 |
мион | ν- | ν+ | -1 | 1/2 | 106 |
тауон | τ- | τ+ | -1 | 1/2 | 1,78 |
електронски неутрино | νe | νe | 0 | 1/2 | < 2,2 |
мионски неутрино | νμ | νμ | 0 | 1/2 | < 1,7 |
тауски неутрино | ντ | ντ | 0 | 1/2 | < 15,5 |
протон | p | p | +1 | 1/2 | 938,3 |
неутрон | n | n | 0 | 1/2 | 939,6 |
Кваркови и лептони
[уреди | уреди извор]Занимљива је чињеница да попис свих елементарних честица које изграђују сву материју у свемиру једноставно стане на један лист папира. Према стандардном моделу тих елементарних честица има укупно 12. Оне су подијељене у две групе честица које се називају кваркови и лептони. Постоји 6 кваркова и 6 лептона (једним именом се називају фермиони).
Кваркови | Лептони |
---|---|
Горњи (u – енг. up) | Електрон (e-) |
Доњи (d – енг. down) | Електронски неутрино (𝜈𝑒) |
Чаробни (c – енг. charm) | Мион (𝜇−) |
Страни (s – енг. strange) | Мионски неутрино (𝜈𝜇) |
Вршни (t – енг. top) | Тауон (𝜏) |
Дубински (b – енг. bottom) | Тау неутрино (𝜈𝜏) |
Познато је да је електрон један од градитеља атома и честица која је одговорна за електричну струју у електричном проводнику. Електрон је елементарна честица што значи да нема унутрашњу подструктуру. Свих 12 честица у таблици горе сматрају се елементарним честицама. Изненађујуће је то да се протон и неутрон не спомињу у тој табели.
Сва материја сачињена је од атома, сваки атом је сачињен од негативно наелектрисаних електрона који круже око малог, тешке, позитивно наелектрисаног атомске језгре. С друге стране, језгра атома се састоји од протона, који имају позитиван електрични набој, и неутрона, који су без набоја. Ако је износ набоја протона исти као и код електрона (али супротног предзнака), неутрални атом садржи једнак број протона у језгру и електрона у орбити. Број неутрона је обично исти као и број протона, мада може бити мало другачији дајући тако различите изотопе атома.
Као што се пре веровало да је атом основна грађевна јединица материје, а затим је откривено да се састоји од још елементарнијих честица: електрона, протона и неутрона, исто тако се сада зна да протони и неутрони нису елементарне честице, али електрон је био и остао елементаран. Протони и неутрони су сачињени од комбинације горњих и доњих кваркова. Будући да имају унутрашњу подструктуру, не могу се сматрати елементарним честицама. Протон се састоји од два горња и једног доњег кварка, а неутрон од два доња и једног горњег кварка. То се може приказати на следећи начин:
Будући да протон носи електрични набој, неки од кваркова такође морају бити наелектрисани. Међутим, исти кваркови, само у другој комбинацији, постоје и унутар неутрона који је без набоја. Због тога се набоји кваркова морају сабрати у комбинацији која чини протон, а поништити у комбинацији која чини неутрон. Ако се означи набој горњег кварка са 𝑄𝑢 и набој доњег кварка са 𝑄𝑑, добија се следеће:
Ове две једначине су једноставне за решавање, узимајући у обзир да су набоји горњег и доњег кварка редом:
Треба само напоменути да је у горњим једначинама кориштен договор која поставља да набој протона износи +1, док у стандардним јединицама приближно износи 1,6∙10−19 C (кулон). Овај набој протона назива се још и елементарним набојем и означава се словом 𝑒.
До открића кваркова, физичари су сматрали да електрични набој може бити само целобројни умножак елементарног набоја. Тако електрон има електрични набој −𝑒, преотон +𝑒, језгро хелијума +2𝑒 и тако даље. Кваркови, зависно од врсте, имају само део елементарног набоја: +2/3𝑒 или −1/3𝑒. Али, будући да кваркови не постоје самостално, већ долазе увек у комбинацији два или три кварка, у природи никад није запажено постојање честице с набојем мањим од једног елементарног набоја. Честице састављене од 3 кварка називају се барионима, док се мезонима називају честице које се састоје од парног броја кваркова и антикваркова. У доњој таблици, која показује начин на који су кваркови груписани у генерације, сви кваркови у првом ретку имају набој +2/3, а у другом ретку −1/3. Ово груписање кваркова у генерације строго прати поредак којим су кваркови откривени.
Прва генерација | Друга генерација | Трећа генерација | |
---|---|---|---|
+𝟐/𝟑 | Горњи (u) | Чаробни (c) | Вршни (t) |
-1/𝟑 | Доњи (d) | Страни (s) | Дубински (b) |
Сва материја у свемиру састоји се од атома, дакле од протона и неутрона, стога су горњи и доњи кваркови највише заступљени кваркови у свемиру. Остали кваркови су пуно масивнији (маса кваркова расте како се иде од прве према другој и трећој генерацији) и пуно рјеђи. Међутим, раније у еволуцији свемира материја је била далеко енергичнија, стога су масивнији кваркови били много чешћи и имали су значајну улогу у реакцијама које су се догодиле.
Од лептона најпознатији је електрон, стога су лептони највише и проучавани будући да се својства електрона оглегају у миону и тауону. Ова три лептона имају исти електрични набој и мало тога, осим масе, разликује електрон од миона и тауона. Једина очита разлика је у томе што се мион и тауон могу распадати на друге честице (из прве и друге генерације лептона и њихове античестице), док је електрон стабилна честица.
Доња таблица приказује груписање лептона у 3 генерације. Исто као и код кваркова, маса лептона се повећава како се иде према вишој генерацији, барем што се тиче првог реда у таблици.
Остала 3 лептона се називају неутрини, јер су електрично неутрални. Треба напоменути да није исто рећи, на пример, да је неутрон без набоја и да је неутрон неутралан. Неутрон се састоји од 3 кварка и сваки од њих носи електрични набој који се у коначном збиру поништи. Неутрини, за разлику од неутрона, су елементарне честице. Као такве нису грађене од других елементарнијих компоненти – они су истински неутрални. Стога, да би се разликовале такве честице од оних којима се набоји компоненти поништавају, може се рећи за неутрине (и сличне честице) да су неутрални, а за неутроне (и честице сличне њима) да су без набоја. Према стандардном моделу сматра се да су неутрини честице без масе, иако резултати експеримента Супер-Камиоканде (М. Кошиба) у Јапану дају назнаку да би неутрини ипак могли имати изузетно малу, али коначну масу. Будући да су неутрини без масе и неутрални, то им ускраћује било какво физичко постојање. Међутим, неутрини имају енергију и та их енергија чини стварнима.
Прва генерација | Друга генерација | Трећа генерација | |
---|---|---|---|
−𝟏 | Електрон (𝑒−) | Мион (𝜇−) | Тауон (𝜏−) |
𝟎 | Електронски неутрино (𝜈𝑒) | Мионски неутрино (𝜈𝜇) | Тау неутрино (𝜈𝜏) |
Лептони, за разлику од кваркова, постоје у природи као засебне честице. Доња таблица показује где је све могуће наћи лептони у природи. Електрон је врло позната честица и његова својства су успостављена у основама физике. Његов партнер, електронски неутрино, је мање познат али једнако чест у природи. У великом броју га производе неки радиоактивни процеси и средишња језгра нуклеарних реактора, док је Сунце највећи произвођач. Приближно 1012 електронских неутрина прође кроз наше тело сваке секунде, већина настала у нуклеарним реакцијама које се одвијају у језгру Сунца. Будући да јако ретко међуделују с материјом велики број неутрина који прође кроз наше тело не чини никакву штету.
Лептони друге генерације су ређи, али се могу наћи у природи. Мионе је лако произвести у лабораторијским експериментима. Осим по маси, врло су слични електронима. Због велике масе су нестабилни, те се распадају на електроне и неутрина. Једноставно се могу проматрати у експериментима са космичким зрацима.
Прва генерација | Друга генерација | Трећа генерација |
---|---|---|
Електрон: - налази се у атомима; - важан у електричној струји; - настаје бета-распадом. |
Мион: - настаје у великом броју ударом космичких зрака о горње слојеве атмосфере. |
Тауон: - до сада виђен само у лабораторијама. |
Електронски неутрино: - настаје бета-распадом. |
Мионски неутрино: - настаје у нуклеарним реакторима, - настаје ударом космичких зрака о горње слојеве атмосфере. |
Тау неутрино: - до сада виђен само у лабораторијама. |
Чланови треће генерације нису виђени у никаквим природним процесима, барем не у овом стадију еволуције свемира. Много раније, када је свемир био топлији и када су честице имале далеко више енергије, лептони треће генерације су често настајали у природним реакцијама. То је међутим било пре неколико милијарди година. Данас се тауон може посматрати само у лабораторијским огледима, док тау неутрино није директно виђен у експериментима већ се његово присуство може закључити из одређених реакција.[5]
Види још
[уреди | уреди извор]Референце
[уреди | уреди извор]- ^ Weiner, Richard M. (4. 3. 2013). „Spin-statistics-quantum number connection and supersymmetry”. Physical Review D. 87 (5): 055003—05. Bibcode:2013PhRvD..87e5003W. ISSN 1550-7998. S2CID 118571314. arXiv:1302.0969 . doi:10.1103/physrevd.87.055003.
- ^ Notes on Dirac's lecture Developments in Atomic Theory at Le Palais de la Découverte, 6 December 1945, UKNATARCHI Dirac Papers BW83/2/257889. See note 64 on page 331 in "The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom" by Graham Farmelo
- ^ Fermion, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, pristupljeno 3. veljače 2020.
- ^ T. Morii; C. S. Lim; S. N. Mukherjee (1. 1. 2004). The Physics of the Standard Model and Beyond. World Scientific. ISBN 978-981-279-560-1.
- ^ Svetlana Veselinović: "Elementarne čestice", [2], završni rad, Sveučilište Josipa Jurja Strossmayera u Osijeku, Osijek 2014, pristupljeno 27. siječnja 2020.
Литература
[уреди | уреди извор]- B.A. Schumm (2004). Deep Down Things: The Breathtaking Beauty of Particle Physics. Johns Hopkins University Press. ISBN 978-0-8018-7971-5.
- „The Standard Model of Particle Physics Interactive Graphic”.
- I. Aitchison; A. Hey (2003). Gauge Theories in Particle Physics: A Practical Introduction. Institute of Physics. ISBN 978-0-585-44550-2.
- W. Greiner; B. Müller (2000). Gauge Theory of Weak Interactions. Springer. ISBN 978-3-540-67672-0.
- G.D. Coughlan; J.E. Dodd; B.M. Gripaios (2006). The Ideas of Particle Physics: An Introduction for Scientists. Cambridge University Press.
- D.J. Griffiths (1987). Introduction to Elementary Particles. John Wiley & Sons. ISBN 978-0-471-60386-3.
- G.L. Kane (1987). Modern Elementary Particle Physics. Perseus Books. ISBN 978-0-201-11749-3.
- T.P. Cheng; L.F. Li (2006). Gauge theory of elementary particle physics. Oxford University Press. ISBN 978-0-19-851961-4. Highlights the gauge theory aspects of the Standard Model.
- J.F. Donoghue; E. Golowich; B.R. Holstein (1994). Dynamics of the Standard Model. Cambridge University Press. ISBN 978-0-521-47652-2. Highlights dynamical and phenomenological aspects of the Standard Model.
- L. O'Raifeartaigh (1988). Group structure of gauge theories. Cambridge University Press. ISBN 978-0-521-34785-3.
- Nagashima, Yorikiyo (2013). Elementary Particle Physics: Foundations of the Standard Model, Volume 2. Wiley. ISBN 978-3-527-64890-0. 920 pages.
- Schwartz, Matthew D. (2014). Quantum Field Theory and the Standard Model. Cambridge University. ISBN 978-1-107-03473-0. 952 pages.
- Langacker, Paul (2009). The Standard Model and Beyond. CRC Press. ISBN 978-1-4200-7907-4. 670 pages. Highlights group-theoretical aspects of the Standard Model.
- E.S. Abers; B.W. Lee (1973). „Gauge theories”. Physics Reports. 9 (1): 1—141. Bibcode:1973PhR.....9....1A. doi:10.1016/0370-1573(73)90027-6.
- M. Baak; et al. (2012). „The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC”. The European Physical Journal C. 72 (11): 2205. Bibcode:2012EPJC...72.2205B. S2CID 15052448. arXiv:1209.2716 . doi:10.1140/epjc/s10052-012-2205-9.
- Y. Hayato; et al. (1999). „Search for Proton Decay through p → νK+ in a Large Water Cherenkov Detector”. Physical Review Letters. 83 (8): 1529—1533. Bibcode:1999PhRvL..83.1529H. S2CID 118326409. arXiv:hep-ex/9904020 . doi:10.1103/PhysRevLett.83.1529.
- S.F. Novaes (2000). „Standard Model: An Introduction”. arXiv:hep-ph/0001283 .
- D.P. Roy (1999). „Basic Constituents of Matter and their Interactions – A Progress Report”. arXiv:hep-ph/9912523 .
- F. Wilczek (2004). „The Universe Is A Strange Place”. Nuclear Physics B: Proceedings Supplements. 134: 3. Bibcode:2004NuPhS.134....3W. S2CID 28234516. arXiv:astro-ph/0401347 . doi:10.1016/j.nuclphysbps.2004.08.001.
- Georgi, Howard (1999), Lie algebras in particle physics, Perseus Books Group, ISBN 978-0-7382-0233-4.
- Christman, J. Richard (2001), „Colour and Charm” (PDF), www.physnet.org, Project PHYSNET, document MISN-0-283.
- Hawking, Stephen (1998), A Brief History of Time, Bantam Dell Publishing Group, ISBN 978-0-553-10953-5.
- Close, Frank (2007), The New Cosmic Onion, Taylor & Francis, ISBN 978-1-58488-798-0.
- Wu, T.-Y.; Pauchy Hwang, W.-Y. (1991). Relativistic quantum mechanics and quantum fields. World Scientific. стр. 321. ISBN 978-981-02-0608-6.
- Muta, T. (2009). Foundations of Quantum Chromodynamics: An introduction to perturbative methods in gauge theories. Lecture Notes in Physics. 78 (3rd изд.). World Scientific. ISBN 978-981-279-353-9.
- Smilga, A. (2001). Lectures on quantum chromodynamics. World Scientific. ISBN 978-981-02-4331-9.
- Pauli, Wolfgang (1941). „Relativistic Field Theories of Elementary Particles”. Rev. Mod. Phys. 13: 203—32. Bibcode:1941RvMP...13..203P. doi:10.1103/revmodphys.13.203.
- Yang C. N., Mills R. L. (1954). „Conservation of Isotopic Spin and Isotopic Gauge Invariance”. Phys. Rev. 96: 191—195. Bibcode:1954PhRv...96..191Y. doi:10.1103/PhysRev.96.191 .
- Donaldson, Simon K. (1983). „Self-dual connections and the topology of smooth 4-manifolds”. Bull. Amer. Math. Soc. 8 (1): 81—83. MR 0682827. doi:10.1090/S0273-0979-1983-15090-5 .
- Pickering, A. (1984). Constructing Quarks. University of Chicago Press. ISBN 0-226-66799-5.