Радиоактивност

Из Википедије, слободне енциклопедије
Radioactive.svg

Радиоактивност је спонтани процес у којем се атомско језгро, емитујући једну или више честица или кваната електромагнетног зрачења, преображава у друго језгро. Првобитно није била позната природа зрачења него се збирно говорило о радијацији па је ова појава „распада“ језгра названа радиоактивност, а језгра која емитују честице или зрачење радиоактивна језгра или, исправније радиоактивни изотопи. Распадом почетног језгра, које се назива и језгро родитељ, настаје ново језгро, потомак, које може да има редни број Z и/или масени број A различит од језгра родитеља. Радиоактивни распад карактерише се врстом и енергијом емитоване радијације и временом полураспада. У природи се јављају алфа-распад, бета--распад, гама-распад и спонтана фисија. При алфа-распаду радиоактивна језгра емитују језгра хелијумових атома 4He++. Код бета--распада, из језгра се емитују електрон и антинеутрино, а код гама-распада језгро зрачи електромагнетне таласе (фотоне) велике енергије. У лабораторији могу да се добију и језгра која се распадају на бројне начине (видети таблицу доле), на пример, емитујући позитроне и неутрина (бета+-распад) или код којих долази до К-захвата.

Историја открића радиоактивности[уреди]

Природну радиоактивност открио је крајем XIX века француски физичар Анри Бекерел. Трудећи се да установи узрок фосфоресценције неких материјала (што је и његов отац, такође физичар, проучавао), Бекерел је на фотографску плочу умотану у црни папир поставио кристал уранијумове соли и онда све излагао сунчевој светлости(Фосфоресцентни материјали сами по себи емитују електромагнетно зрачење видљивог светла). Након развијања фотографске плоче показало се да је она била “осветљена”, дакле, уранијумова со је емитовала зрачење које може да прође кроз црни папир и да дејствује на фотографску плочу. Бекерел је сматрао да уранијумова со зрачи под дејством сунчеве светлости. А онда, једног дана, због облачности, одустао је од експеримента, и фото плочу умотану у црни папир одложио, а преко ње и уранијумску со. После неколико дана ипак је развио плочу и на велико изненађење, установио да је и она јако озрачена. Исправно је закључио да уранијумова со, без спољашњег утицаја, дакле спонтано, емитује зрачење које пролази кроз хартију и изазива зацрњење фото плоче. Марија Кири је ову појаву назвала радиоактивност. Ернест Радефорд је први открио да се радиоактивни распад може описати математичком експоненцијалном функцијом, и такође да многи радиоактивни распади резултују у трансмутацији једног елемента у други. Марија Кири је заједно с Пјером Киријем проучавала радиоактивност и других уранијумових једињења, нпр. руде пехбленде (која се углавном састоји од уранил оксида U3О8). М. Кири је утврдила да је зрачење много јаче и да није пропорционално количини уранијума. Претпоставила је да руда пехбленде садржи малу количину неког елемента који много јаче зрачи. Коришћењем обичних хемијских поступака за раздвајање елемената, П. и М. Кири изоловали су полонијум и радијум. Радијум је изолован после дугог и стрпљивог прерађивања једне тоне руде пехбленде из које је већ био извађен уранијум. Издвојене су најпре мале количине радијума у облику радијум-хлорида, а 1910. године електролизом је добијен и чист радијум. Отприлике у исто време М. Кири и Г. Шмит открили су, независно, да су и торијумова једињења радиоактивна. Затим су А. Дебијерн и Ф. Гизел у уранијумским минералима нашли још један радиоактивни елемент - актинијум. После ових првих открића, систематским испитивањима, откривено је да у природи постоји четрдесетак радиоактивних елемената.

Основне особине[уреди]

Приказ продирности (штетности) за различите врсте зрака.

Радиоактивно зрачење продире кроз различите материјале, а такође може и да јонизује средину кроз коју пролази. Проучавајући продорну моћ зрачења која емитује уранијум, Радерфорд је утврдио да постоје две врсте зрачења (алфа и бета). Алфа-зрачење лакше се апсорбује од бета- али више јонизује средину кроз коју пролази. Алфа и бета зраци различито скрећу у магнетском пољу, на основу чега је закључено да је реч о честицама супротног наелетрисања и различите масе. Трећи облик природне радиоактивности (гама-зрачење) открио је П. Вилар утврдивши да оно не скреће у магнетском пољу, а да се одликује изузетном продорношћу.

Процес радиоактивног распада је егзотерман, дакле праћен ослобађањем енергије. Енергијски биланс радиоактивног распада најлакше је одредити помоћу Ајнштајнове релације за однос масе и енергије


где је Е енергија еквивалентна маси m, а c брзина светлости у вакууму. У складу са тиме енергија Е која се ослобађа при радиоактивном распаду једнака је:



где су Мr маса родитеља, Мp маса потомка и Me масе мировања емитованих честица. Дакле, ослобођена енергија (кинетичка и електромагнетна) једнака је разлици у маси између језгра родитеља и свих производа његовог распада.


Јединица за радиоактивност у СИ систему је Бекерел (Bq).

Закон радиоактивног распада[уреди]

Математички модел којим описујемо радиоактивни распад зависи од кључне претпоставке да радиоактивно језгро не „стари“ проласком времена. Самим тим, вероватноћа да дође до радиоактивног распада не расте у току времена, него остаје константна независно од тога колико дуго је језгро постојало. Ова вероватноћа варира у зависности од посматраних језгара. Ипак, за једно посматрано језгро се она никада не мења. У мноштву истих нестабилних језгара се не може тачно знати када ће се које језгро распасти, али је овај радиоактивни распад одређен неком вероватноћом, то јест константом распада (λ). Константа распада зависи само од врсте језгара и на њу не утичу спољашњи услови.

Константа радиоактивног распада је бројно једнака вероватноћи да се једно језгро распадне у јединици времена. Мерна јединица за константу распада је 1s-1.

Ако имамо узорак са N радиоактивних језгара, чија је константа распада λ, за елементарно мало време dt, број радиоактивних језгара ће се смањити за dN:
dN= -λNdt
Ова једначина представља закон радиоактивног распада у диференцијалном облику. Из ње се изводи закон радиоактивног распада који гласи:
N= N0 e^(-λt)
Број радиоактивних језгара се експоненциајлно смањује током времена.

Постоје и друге величине којима се карактерише радиоактивни распад. Једна од тих величина је време полураспада (T).
Време полураспада је време за које се број радиоактивних језгара у неком узорку преполови. Постоји веза између времена полураспада и константе распада:
T= (ln 2)/λ

Величина којом се карактерише брзина распада неког радиоактивног извора се назива активност:
A = λN
Мерна јединица за активност је бекерел (Bq):
Активност од 1 Bq има извор у којем се у једној секунди распадне једно језгро.

Из закона радиоактивног распада следи да активност извора такође експоненцијално опада, заједно са бројем радиоактивних језгара:
A = A0e-λt

Проласком кроз супстанцију, експоненцијално опада интензитет гама зрачења, у зависности од дебљине слоја (d), почетног интензитета (I0) и коефицијента апсорпције зрачења (μ) који зависи од природе супстанције и енергије гама-фотона:
I = I0e-μd


Типови распада[уреди]

Укупно постоје четири радиоактивне фамилије, када је A = 4n, A = 4n+1, A = 4n+2, A = 4n+3. На Земљи данас постоје само три радиоактивна низа који се сви завршавају са оловом, а названи су по елементу од којег низ почиње. A = 4n одговара торијумовом радиоактивном низу, A = 4n+1 је уранијумова фамилија, а A = 4n+2 одговара актинијуму. A = 4n+3 је одговарао нептунијумовој фамилији, али како је њено време полураспада краће од времена постојања наше планете, тај низ се у природи угасио и може се производити само вештачким путем.

Радионуклиди могу да се распадну на неколико различитих начина, што је сумирано у следећој табели. Атомско језгро са позитивним наелектрисањем (атомским бројем) Z и атомском масом A представљено је као (A, Z).

Тип распада Честице учесници Језгро потомак
Распади са емисијом нуклеона:
Алфа-распад Алфа честица (A=4, Z=2) емитована из језгра (A-4, Z-2)
Емисија протона Протон избачен из језгра (A-1, Z-1)
Емисија неутрона Неутрон избачен из језгра (A-1, Z)
Двострука емисија протона Два протона избачена из језгра једновремено (A-2, Z-2)
Спонтана фисија Језгро се распада на два или више мањих језгара и других честица -
Кластерски распад Језгро емитује грозд (кластер) нуклеона, дакле атомско језгро веће од хелијума (A1, Z1) (A-A1, Z-Z1) + (A1,Z1)
Бета распади:
Бета-негативни распад Језгро емитује електрон и антинеутрино (A, Z+1)
Емисија позитрона, или бета-позитивни распад Језгро емитује позитрон и неутрино (A, Z-1)
Захват електрона Језгро захвата орбитални електрон и емитује неутрино - језгро потомак остаје у побуђеном (нестабилном) стању (A, Z-1)
Двоструки бета распад Језгро емитује два електрона и два антинеутрина (A, Z+2)
Двоструки електронски захват Језгро апсорбује два орбитална електрона и емитује два неутрина - језгро потомак остаје у побуђеном и нестабилном стању (A, Z-2)
Електронски захват с емисијом позитрона Језгро захвата један орбитални електрон, емитује позитрон и два неутрина (A, Z-2)
Двострука емисија позитрона Језгро емитује два позитрона и два неутрина (A, Z-2)
Прелази међу стањима у истом језгру:
Гама распад Побуђено језгро емитује фотон високе енергије (гама зрак) (A, Z)
Унутрашња конверзија Побуђено језгро преноси енергију орбиталном електрону који бива избачен из атома (A, Z)

Литература[уреди]

Види још[уреди]

Спољашње везе[уреди]