Ацетилен

Из Википедије, слободне енциклопедије
Acetylene
IUPAC име
Назив по класификацији Етин[1]
Идентификација
CAS регистарски број 74-86-2 YesY
ChemSpider[2] 6086 YesY
КЕГГ[3] C01548
База података биолошки релевантних молекула 27518
СМИЛЕС
InChI
Својства
Молекулска формула C2H2
Моларна маса 26.04 g mol−1
Густина 1,097 g/L = 1,097 kg/m3
Тачка топљења

−80,8 °C, 192,4 K, −113,4 °F (Тројна тачка na 1,27 atm)

Тачка кључања

−84 °C, 189 K, -119 °F (Сублимациона тачка на 1 atm)

Растворљивост у води у малој мери је растворан
pKa 25
Структура
Облик молекула (орбитале и хибридизација) Линеаран
Термохемија
Стандардна енталпија стварања једињења ΔfHo298 +226,88 kJ/mol
Стандардна моларна ентропија So298 201 J·mol−1·K−1
Опасност
NFPA 704
NFPA 704.svg
4
1
3
 
тачка спонтаног паљења 300 °C

 YesY (шта је ово?)   (верификуј)

Уколико није другачије напоменуто, подаци се односе на стандардно стање (25 °C, 100 kPa) материјала

Infobox references

Ацетилен (IUPACов назив: етин) је хемијско једињење формуле C2H2. Најједноставнији је алкин.

Као алкин, ацетилен је незасићен због тога што су два атома угљеника везана троструком везом. Трострука веза угљеник-угљеник даје угљениковим атомима sp хибридне орбитале, постављајући сва четири атома у праву линију, где је угао CCH везе 180°.

Ацетилен је откривен 1836. од стране Едмунда Дејвија који га је окарактерисао као „ново угљениково једињење водоника“. Поново је откривен 1860. од стране француског хемичара Марсолена Бертолоа који му је дао име „ацетилен“. Нобеловац Густаф Дален је ослепљен у експлозији ацетилена.

Добијање[уреди]

Материјали за индустријско добијање ацетилена су калцијум-карбонат (кречњак) и угаљ. Калцијум-карбонат се прво преведе у калцијум-оксид а угаљ у кокс, па напослетку се они једине да би наградили калцијум-карбид и угљен-моноксид:

CaO + 3C → CaC2 + CO

Калцијум-карбид (или калцијум-ацетилид) и вода се мешају различитим методама да би наградили ацетилен и калцијум-хидроксид. Ову реакцију је открио Фридрих Велер 1862. године.

CaC2 + 2H2O → Ca(OH)2 + C2H2

Синтеза калцијум-карбида захтева јако високе температуре, око 2000 степена Целезијуса, па се реакција одиграва у електричном казану. Ова реакција је одиграла важну улогу у револуцији касних 1800-тих година око масивног хидроенергетског пројекта на Нијагариним водопадима.

Ацетилен се исто тако може добити непотпуним сагоревањем метана са кисеоником или крековањем угљоводоника.

Бертело је правио ацетилен од метанола, етанола, етена или етра тако што их је пропуштао као гасове кроз усијале цеви. Бертело је открио да се ацетилен може добити пропуштањем електричне варнице кроз смешу гасова водоника и цијаногена. Правио је ацетилен и синтезом водоника и угљеника.

Реакције[уреди]

  • Изнад 400 °C (673 K) почиње пиролиза ацетилена, што је подоста ниско за угљоводонике. Главни производи су димер винил-ацетилен (C4H4) и бензен. На температурама изнад 900 °C, (1173 K), главни производ је чађ.
  • Помоћу ацетилена, Марселен Бертело је први показао да је могуће да алифатично једињење може да награди ароматично када је загревао ацетилен у стакленој цеви да би добио бензен са примесама толуена. Бертело је оксидовао ацетилен да би добио сирћетну и оксалну киселину. Увидео је да се ацетилен може редуковати у етен и етан.
  • Полимеризација ацетилена са Циглер-Натовим катализатором ствара полиацетилен. Полиацетилен, низ угљеникових атома међу којима се смењују једноструке и двоструке везе био је први органски полупроводник икад откривен; у реакцији са јодом даје изузетно проводан материјал.
  • У Кучеровој реакцији (откривене 1881. од стране Михаила Кучерова)[4] ацетилен се хидратише у ацеталдехид са живином сољу, каква је жива(II)-бромид.
  • Карбиди се добијају од многих металних јона који се помешају са растворима њихових соли. Пар њих, као сребро-карбид или бакар-карбид су експлозиви. Бакар-карбид се добија такође у реакцији са ацетиленом и металним бакром или његовим легурама.

Особине[уреди]

Особина Вредност
Партициони коефицијент[5] (ALogP) 2,0
Растворљивост[6] (logS, log(mol/L)) 1,5
Поларна површина[7] (PSA, Å2) 0,0

Референце[уреди]

  1. ^ Acyclic Hydrocarbons. Rule A-3. Unsaturated Compounds and Univalent Radicals, IUPAC Nomenclature of Organic Chemistry
  2. ^ Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining“. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  3. ^ Joanne Wixon, Douglas Kell (2000). „Website Review: The Kyoto Encyclopedia of Genes and Genomes — KEGG“. Yeast 17 (1): 48–55. DOI:10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H. 
  4. ^ Kutscheroff, M. Ber. Bunsenges. Phys. Chemie 1881, 1540–1542.
  5. ^ Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods“. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o. 
  6. ^ Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices“. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573. 
  7. ^ Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties“. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286. 

Спољашње везе[уреди]