Тополошки простор
Тополошки простори су математичке структуре које омогућавају формалну дефиницију појмова као што су конвергенција, повезаност и непрекидност. Они се јављају у практично свим гранама модерне математике. Грана математике која проучава саме тополошке просторе се назива топологија.[1][2][3]
Тополошки простор је најопштији тип математичког простора[4][5][6] који омогућава дефинисање граница, континуитета и повезаности.[7][8] Уобичајени типови тополошких простора укључују еуклидске просторе,[9] метричке просторе[10] и многострукости.
Дефиниција
[уреди | уреди извор]Тополошки простор је уређени пар скупа X и колекције подскупова од X (подскуп партитивног скупа X) у ознаци , који задовољавају следеће особине:
- празан скуп и X налазе се у .
- унија свих колекција скупова из је такође скуп у .
- пресек сваке коначне колекције скупова из је такође у .
Колекција се назива топологијом над X. Елементи скупа X се обично називају тачкама, мада могу бити произвољни математички објекти. Тополошки простор у коме су тачке представљене неким функцијама, назива се функционални или функцијски простор.
Скупови у су отворен скупови, а њихови комплементи у X су затворени скупови. Произвољни подскуп од X може бити отворен, затворен, и отворен и затворен истовремено или нити отворен, нити затворен.
Покривач скупа X је скуп подскупова у X такав да њихова унија даје цео скуп X. Покривач скупа је отворен, ако се састоји од отворених скупова.[11]
Околина тачке x је сваки скуп који садржи отворен скуп у којем се налази x. Систем околине на x се састоји од свих околина од x. Топологију може да одреди скуп аксиома које се тичу свих система околина.
- Специјални тополошки простори у зависности од топологије :
- Тривијална топологија је топологија коју чине само произвољан скуп X и колекција = {, X} која се састоји од само два обавезна подскупа који морају да је чине по дефиницији тополошког простора, од празног и целог скупа.
- Дискретна топологија је топологија која се састоји од произвољног скупа X и колекције = P(X), која је највећи могући подскуп партитивног скупа од X, тј. овде је топологија цео партитивни скуп од X.
- Код бесконачних скупова, када је нпр. X = и колекција је једнака унији свих коначних подскупова целих бројева и целог скупа , овако формирани уређени пар није тополошки простор, јер није топологија, пошто постоје бесконачни скупови елемената из Х који се не налазе у .
Еквивалентне дефиниције
[уреди | уреди извор]Осим наведене дефиниције, еквивалентни тополошки простор се може дефинисати и преко затворених скупова:
Тополошки простор је уређени пар скупа X и колекције подскупова од X који задовољавају следеће аксиоме:
- Празан скуп и X су у .
- Пресек сваке колекције скупова из је такође у .
- унија сваког пара скупова из је такође у .
Еквивалентност дефиниција тополошког простора преко отворених и затворених скупова се добија преко де Морганових закона, када аксиоме које дефинишу отворене скупове постају аксиоме које дефинишу затворене скупове:
- Празан скуп и X су затворени.
- Пресек сваке колекције затворених скупова је такође затворен.
- Унија сваког пара затворених скупова је такође затворена.
По овој дефиницији тополошког простора, скупови у топологији су затворени скупови, а њихови комплементи у X су отворени скупови.
Још један начин за дефинисање тополошког простора је коришћењем аксиома затворености Куратовског, које дефинишу затворене скупове као фиксне тачке оператора над партитивним скупом од X.
Поређење топологија
[уреди | уреди извор]Над истим скупом може постојати више топологија тако да граде различите тополошке просторе.
Топологија је грубља (мања, слабија) од , односно, топологија је финија (већа, јача) од топологије ако важи да је сваки скуп из топологије истовремено садржан у топологији . Овакво поређење топологија се записује: > .
Доказ који се ослања само на постојање одређених отворених скупова ће уједно важити и на финијој топологији, и слично, доказ који се ослања само на то да одређени скупови нису отворени ће важити и на свакој грубљој топологији.
Непрекидне функције
[уреди | уреди извор]За функцију између два тополошка простора се каже да је непрекидна ако је инверзна слика сваког отвореног скупа отворена.
Хомеоморфизам је бијекција која је непрекидна и чији је и инверз такође непрекидан. За два простора се каже да су хомеоморфна ако постоји хомеоморфизам између њих. Са гледишта топологије, хомеоморфни простори су у суштини идентични.
Види још
[уреди | уреди извор]Референце
[уреди | уреди извор]- ^ Croom, Fred H. (1989), Principles of Topology, Saunders College Publishing, ISBN 978-0-03-029804-2
- ^ Aleksandrov, P.S. (1969) [1956], „Chapter XVIII Topology”, Ур.: Aleksandrov, A.D.; Kolmogorov, A.N.; Lavrent'ev, M.A., Mathematics / Its Content, Methods and Meaning (2nd изд.), The M.I.T. Press
- ^ Richeson, D. (2008), Euler's Gem: The Polyhedron Formula and the Birth of Topology, Princeton University Press
- ^ Carlson, Kevin (2. 8. 2012). „Difference between 'space' and 'mathematical structure'?”. Stack Exchange.
- ^ Bourbaki, Nicolas (1994). Elements of the history of mathematics. Masson (original), Springer (translation). ISBN 978-3-540-64767-6. doi:10.1007/978-3-642-61693-8.
- ^ Gray, Jeremy (1989). Ideas of Space: Euclidean, Non-Euclidean and Relativistic (second изд.). Clarendon Press. ISBN 978-0198539353.
- ^ Schubert 1968, p. 13
- ^ Sutherland, W. A. (1975). Introduction to metric and topological spaces. Oxford [England]: Clarendon Press. ISBN 0-19-853155-9. OCLC 1679102.
- ^ Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd изд.). New York: Dover. „"Schläfli ... discovered them before 1853 -- a time when Cayley, Grassman and Möbius were the only other people who had ever conceived of the possibility of geometry in more than three dimensions."”
- ^ Čech, Eduard (1969). Point Sets. Academic Press. ISBN 0121648508.
- ^ Хилбертови простори и групе, Милан Дамњановић, приступљено: 17.10.2014.
Литература
[уреди | уреди извор]- Armstrong, M. A.; Основна топологија (Basic Topology), Springer; прво издање (1. мај, 1997). Armstrong, M. A. (мај 1997). Basic Topology. Springer. ISBN 978-0-387-90839-7. .
- Bredon, Glen E., Топологија и геометрија (Topology and Geometry) (Текстови из математике, постдипломске студије), Springer; (17. октобар 1997). Bredon, Glen E. (24. 6. 1993). Topology and Geometry (1st изд.). Springer. ISBN 978-0-387-97926-7. .
- Fulton, William, Алгебарска топологија (Algebraic Topology), (Текстови из математике, постдипломске студије), Springer; прво издање (5. септембар, 1997). Fulton, William (5. 9. 1997). Algebraic Topology: A First Course. Springer. ISBN 978-0-387-94327-5. .
- Lipschutz, Seymour; Schaum's Outline of General Topology, McGraw-Hill; прво издање (1. јун, 1968). Lipschutz, Seymour (1965). Schaum's Outline of General Topology. McGraw Hill Professional. ISBN 978-0-07-037988-6..
- Munkres, James; Топологија (Topology), Prentice Hall; друго издање (28. децембар, 1999). Munkres, James R. (2000). Topology. Prentice Hall, Incorporated. ISBN 978-0-13-181629-9..
- Runde, Volker; Укус топологије (универзитетски текст) A Taste of Topology (Universitext), Springer; прво издање (6. јул, 2005). Runde, Volker (7. 12. 2007). A Taste of Topology. Springer. ISBN 978-0-387-25790-7. .
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 978-0-486-43479-7.
- Ryszard Engelking, General Topology, Heldermann Verlag, Sigma Series in Pure Mathematics, December (1989) ISBN 3-88538-006-4.
- Breitenberger, E. (2006). „Johann Benedict Listing”. Ур.: James, I.M. History of Topology. North Holland. ISBN 978-0-444-82375-5.
- Kelley, John L. (1975). General Topology. Springer-Verlag. ISBN 978-0-387-90125-1.
- Brown, Ronald (2006). Topology and Groupoids. Booksurge. ISBN 978-1-4196-2722-4.
- Wacław Sierpiński, General Topology, Dover Publications, (2000) ISBN 0-486-41148-6
- Pickover, Clifford A. (2006). The Möbius Strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology. Thunder's Mouth Press. ISBN 978-1-56025-826-1.
- Gemignani, Michael C. (1990) [1967], Elementary Topology (2nd изд.), Dover Publications Inc., ISBN 978-0-486-66522-1
- Bourbaki, Nicolas, Elements of mathematics, Hermann (original), Addison-Wesley (translation)
- Bourbaki, Nicolas (1968), Elements of mathematics: Theory of sets, Hermann (original), Addison-Wesley (translation)
- Eisenbud, David; Harris, Joe (2000), The Geometry of Schemes, Springer-Verlag, ISBN 978-0-387-98638-8, doi:10.1007/b97680.
- Gowers, Timothy; Barrow-Green, June; Leader, Imre, ур. (2008), The Princeton Companion to Mathematics, Princeton University Press, ISBN 978-0-691-11880-2
- Itô, Kiyosi, ур. (1993), Encyclopedic dictionary of mathematics (second изд.), Mathematical society of Japan (original), MIT press (translation)
- Anton, Howard (1987), Elementary Linear Algebra (5th изд.), New York: Wiley, ISBN 0-471-84819-0
- Artin, Emil (1988) [1957], Geometric Algebra, Wiley Classics Library, New York: John Wiley & Sons Inc., стр. x+214, ISBN 0-471-60839-4, MR 1009557, doi:10.1002/9781118164518
- Ball, W.W. Rouse (1960) [1908]. A Short Account of the History of Mathematics (4th изд.). Dover Publications. ISBN 0-486-20630-0.
- Berger, Marcel (1987), Geometry I, Berlin: Springer, ISBN 3-540-11658-3
- Aldrovandi, Ruben; Pereira, José Geraldo (2017), An Introduction to Geometrical Physics (2nd изд.), Hackensack, New Jersey: World Scientific, стр. 20, ISBN 978-981-3146-81-5, MR 3561561
- Arkhangel'skii, A. V.; Pontryagin, L. S. (1990), General Topology I: Basic Concepts and Constructions Dimension Theory, Encyclopaedia of Mathematical Sciences, Springer, ISBN 3-540-18178-4
- Bryant, Victor (1985). Metric spaces: Iteration and application. Cambridge University Press. ISBN 0-521-31897-1.
- Buldygin, V. V.; Kozachenko, Yu. V. (2000), Metric Characterization of Random Variables and Random Processes, Translations of Mathematical Monographs, 188, Providence, Rhode Island: American Mathematical Society, стр. 129, ISBN 0-8218-0533-9, MR 1743716, doi:10.1090/mmono/188
- Burago, Dmitri; Burago, Yuri; Ivanov, Sergei (2001). A course in metric geometry. Providence, RI: American Mathematical Society. ISBN 0-8218-2129-6.
- Cohen, Andrew R.; Vitányi, Paul M. B. (2012), „Normalized compression distance of multisets with applications”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (8): 1602—1614, PMC 4566858 , PMID 26352998, arXiv:1212.5711 , doi:10.1109/TPAMI.2014.2375175
- Deza, Michel Marie; Laurent, Monique (1997), Geometry of Cuts and Metrics, Algorithms and Combinatorics, 15, Springer-Verlag, Berlin, стр. 27, ISBN 3-540-61611-X, MR 1460488, doi:10.1007/978-3-642-04295-9
- Fraigniaud, P.; Lebhar, E.; Viennot, L. (2008), „The inframetric model for the internet”, 2008 IEEE INFOCOM - The 27th Conference on Computer Communications, стр. 1085—1093, CiteSeerX 10.1.1.113.6748 , ISBN 978-1-4244-2026-1, S2CID 5733968, doi:10.1109/INFOCOM.2008.163
- Gromov, Mikhael (2007). Metric structures for Riemannian and non-Riemannian spaces. Boston: Birkhäuser. ISBN 978-0-8176-4582-3.
- Heinonen, Juha (2001). Lectures on analysis on metric spaces. New York: Springer. ISBN 0-387-95104-0.
- Heinonen, Juha (24. 1. 2007). „Nonsmooth calculus”. Bulletin of the American Mathematical Society. 44 (2): 163—232. doi:10.1090/S0273-0979-07-01140-8 .
- Helemskii, A. Ya. (2006), Lectures and Exercises on Functional Analysis, Translations of Mathematical Monographs, 233, Providence, Rhode Island: American Mathematical Society, стр. 14, ISBN 978-0-8218-4098-6, MR 2248303, doi:10.1090/mmono/233
- Pascal Hitzler; Anthony Seda (19. 4. 2016). Mathematical Aspects of Logic Programming Semantics. CRC Press. ISBN 978-1-4398-2962-2.
- Lawvere, F. William (децембар 1973). „Metric spaces, generalized logic, and closed categories”. Rendiconti del Seminario Matematico e Fisico di Milano. 43 (1): 135—166. S2CID 1845177. doi:10.1007/BF02924844.
- Margalit, Dan; Thomas, Anne (2017). „Office Hour 7. Quasi-isometries”. Office hours with a geometric group theorist. Princeton University Press. стр. 125—145. ISBN 978-1-4008-8539-8. JSTOR j.ctt1vwmg8g.11.
- Шаблон:Narici Beckenstein Topological Vector Spaces
- Ó Searcóid, Mícheál (2006). Metric spaces. London: Springer. ISBN 1-84628-369-8.
- Papadopoulos, Athanase (2014). Metric spaces, convexity, and non-positive curvature (Second изд.). Zürich, Switzerland: European Mathematical Society. ISBN 978-3-03719-132-3.
- Rolewicz, Stefan (1987). Functional Analysis and Control Theory: Linear Systems. Springer. ISBN 90-277-2186-6.
- Rudin, Walter (1976). Principles of Mathematical Analysis (Third изд.). New York. ISBN 0-07-054235-X. OCLC 1502474.
- Smyth, M. (1987), „Quasi uniformities: reconciling domains with metric spaces”, Ур.: Main, M.; Melton, A.; Mislove, M.; Schmidt, D., 3rd Conference on Mathematical Foundations of Programming Language Semantics, Lecture Notes in Computer Science, 298, Springer-Verlag, стр. 236—253, doi:10.1007/3-540-19020-1_12
- Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978]. Counterexamples in Topology. Dover. ISBN 978-0-486-68735-3. MR 507446.
- Vitányi, Paul M. B. (2011). „Information distance in multiples”. IEEE Transactions on Information Theory. 57 (4): 2451—2456. S2CID 6302496. arXiv:0905.3347 . doi:10.1109/TIT.2011.2110130.
- Väisälä, Jussi (2005). „Gromov hyperbolic spaces” (PDF). Expositiones Mathematicae. 23 (3): 187—231. MR 2164775. doi:10.1016/j.exmath.2005.01.010 .
- Vickers, Steven (2005). „Localic completion of generalized metric spaces, I”. Theory and Applications of Categories. 14 (15): 328—356. MR 2182680. Архивирано из оригинала 26. 04. 2021. г. Приступљено 27. 06. 2023.
- Xia, Qinglan (2008). „The geodesic problem in nearmetric spaces”. Journal of Geometric Analysis. 19 (2): 452—479. S2CID 17475581. arXiv:0807.3377 . doi:10.1007/s12220-008-9065-4.
- Xia, Q. (2009). „The geodesic problem in quasimetric spaces”. Journal of Geometric Analysis. 19 (2): 452—479. S2CID 17475581. arXiv:0807.3377 . doi:10.1007/s12220-008-9065-4.
Спољашње везе
[уреди | уреди извор]- Тополошки простори на сајту PlanetMath, приступљено: 17. октобар 2014.