Фармакологија — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Грана биологије која се бави лековима}}
'''Фармакологија''' (грч. '''φάρμακον''' - [[лек]], [[отров]]; '''λόγος''' - наука) је грана [[медицина|медицине]] која проучава [[лек]]ове<ref name="Goodman_Gilman">{{GoodmanGilman11th}}</ref>, њихове [[физика|физичке]] и [[хемија|хемијске]] карактеристике<ref name="CRC">{{RubberBible87th}}</ref><ref name="Merck13th">{{Merck13th}}</ref>, примену у лечењу, у [[фармакотерапија|фармакотерапији]], као и [[метаболизам]] лека.<ref name="Lehninger">{{Lehninger4th}}</ref>
{{infobox
Слободно се може рећи да се она бави узајамним дејствима лековитих супстанци и живог организма с основним циљем да се унапреди лечење болесног човека. Поред тога што је значајна за медицину, значајна је и за [[фармација|фармацију]] те представља и једну од кључних додирних тачака медицине са фармацијом.
| abovestyle = background:violet;
Њену основу чине [[фармакокинетика]] која изучава дејство организма на лек и хемијске промене лека и [[фармакодинамика]] која се бави деловањем лека на организам.
| above = Фармакологија
| image =[[File:Constant tempertature bath for isolated organs Wellcome M0013241.jpg|250px]]
| caption = Дијаграмски приказ купке за органе која се користи за проучавање дејства изолованих ткива.
| label1 = MeSH Unique ID
| data1 = [https://www.ncbi.nlm.nih.gov/mesh/68010600 D010600]
}}

'''Фармакологија''' (грч. '''φάρμακον''' - [[лек]], [[отров]]; '''λόγος''' - наука) је грана [[медицина|медицине]], [[biology|биологије]] и [[pharmaceutical sciences|фармацеутских наука]] која проучава дејство [[лек]]ова,<ref>{{cite journal | vauthors = Vallance P, Smart TG | title = The future of pharmacology | journal = British Journal of Pharmacology | volume = 147 Suppl 1 | issue = S1 | pages = S304–7 | date = January 2006 | pmid = 16402118 | pmc = 1760753 | doi = 10.1038/sj.bjp.0706454 }}</ref><ref name="Goodman_Gilman">{{GoodmanGilman11th}}</ref>, њихове [[физика|физичке]] и [[хемија|хемијске]] карактеристике<ref name="CRC">{{RubberBible87th}}</ref><ref name="Merck13th">{{Merck13th}}</ref>, примену у лечењу, у [[фармакотерапија|фармакотерапији]], као и [[метаболизам]] лека.<ref name="Lehninger">{{Lehninger4th}}</ref> Слободно се може рећи да се она бави узајамним дејствима лековитих супстанци и живог организма с основним циљем да се унапреди лечење болесног човека. Поред тога што је значајна за медицину, значајна је и за [[фармација|фармацију]] те представља и једну од кључних додирних тачака медицине са фармацијом. Њену основу чине [[фармакокинетика]] која изучава дејство организма на лек и хемијске промене лека и [[фармакодинамика]] која се бави деловањем лека на организам.

== Етимологија ==
{{rut}}
The word ''pharmacology'' is derived from [[Ancient Greek|Greek]] {{lang|grc|[[wiktionary:φάρμακον|φάρμακον]]}}, ''pharmakon'', "drug, [[poison]]" and {{lang|grc|[[wiktionary:-λογία|-λογία]]}}, ''[[wiktionary:-logia|-logia]]'' "study of", "knowledge of"<ref>{{cite web | url = http://www.etymonline.com/index.php?term=pharmacy | title = Pharmacy (n.) | work = Online Etymology Dictionary }}</ref><ref>{{cite web | url = http://www.etymonline.com/index.php?term=pharmacology | title = Pharmacology | work = Online Etymology Dictionary }}</ref> (cf. the [[Pharmacy#Etymology|etymology of ''pharmacy'']]). Pharmakon is related to [[pharmakos]], the ritualistic sacrifice or exile of a human [[scapegoat]] or victim in [[Ancient Greek religion]].

The modern term ''pharmacon'' is used more broadly than the term ''[[drug]]'' because it includes [[endogenous]] substances, and biologically active substances which are not used as drugs. Typically it includes pharmacological [[agonists]] and [[Receptor_antagonist|antagonists]], but also [[enzyme]] inhibitors (such as [[monoamine oxidase]] inhibitors). <ref>{{cite journal | pmid =8877846 |title = Interlaboratory study of log P determination by shake-flask and potentiometric methods | volume=14 | issue=11 | date=Aug 1996 | pages=1405–13|last1 = Takács-Novák |first1 = K. |last2 = Avdeef |first2 = A. |journal = Journal of Pharmaceutical and Biomedical Analysis |doi = 10.1016/0731-7085(96)01773-6 }}</ref>

== Историја ==

{{multiple image
| align = <!-- right (default), left, center, none -->
| direction = vertical
| background color = <!-- box background -->
| width = 250px
| caption_align = <!-- left (default), center, right -->

<!-- Header -->
| header_background =
| header_align = <!-- center (default), left, right -->
| header =

<!--image 1-->
| image1 = Raw_opium.jpg
| width1 = 250px
| alt1 =
| link1 =
| thumbtime1 =
| caption1 = Naturally derived [[opium]] from [[Papaver somniferum|opium poppies]] has been used as a drug since before 1100 BCE.<ref name="Kritikos">{{cite journal|title=The early history of the poppy and opium| vauthors = Kritikos PG, Papadaki SP |journal=Journal of the Archaeological Society of Athens|date=January 1, 1967}}</ref>
| image2 = Morphin_-_Morphine.svg
| width2 = 250px
| alt2 =
| link2 =
| thumbtime2 =
| caption2 = Opium's major active constituent, [[morphine]], was first isolated in 1804 and is now known to act as an [[opioid agonist]].<ref name=Luch2009>{{cite book |url = https://books.google.com/books?id=MtOiLVWBn8cC&pg=PA20 |page = 20 |title = Molecular, clinical and environmental toxicology | veditors = Luch A |publisher = Springer |year = 2009 |isbn = 978-3-7643-8335-0 }}</ref><ref>{{cite journal | first = Friedrich | last = Sertürner | date = 1805 | url = https://books.google.com/books?id=8A09AAAAcAAJ&pg=PA229 | title = Untitled letter to the editor | archive-url = https://web.archive.org/web/20160817101928/https://books.google.com/books?id=8A09AAAAcAAJ&pg=PA229 | archive-date=17 August 2016 | journal = Journal der Pharmacie für Aerzte, Apotheker und Chemisten (Journal of Pharmacy for Physicians, Apothecaries, and Chemists) | volume = 13 | pages = 229–243 }}; see especially "III. Säure im Opium" (acid in opium), pp. 234–235, and "I. Nachtrag zur Charakteristik der Säure im Opium" (Addendum on the characteristics of the acid in opium), pp. 236–241.</ref>
| footer_background =
| footer_align =
| footer =
}}

The origins of [[clinical pharmacology]] date back to the [[Middle Ages]], with [[pharmacognosy]] and [[Avicenna]]'s ''[[The Canon of Medicine]]'', [[Peter of Spain (author)|Peter of Spain]]'s ''Commentary on Isaac'', and [[John of St Amand]]'s ''Commentary on the Antedotary of Nicholas''.<ref>{{cite journal | vauthors = Brater DC, Daly WJ | title = Clinical pharmacology in the Middle Ages: principles that presage the 21st century | journal = Clinical Pharmacology and Therapeutics | volume = 67 | issue = 5 | pages = 447–50 | date = May 2000 | pmid = 10824622 | doi = 10.1067/mcp.2000.106465 | s2cid = 45980791 }}</ref> Early pharmacology focused on [[herbalism]] and natural substances, mainly plant extracts. Medicines were compiled in books called [[pharmacopoeia]]s. [[Crude drug]]s have been used since prehistory as a preparation of substances from natural sources. However, the [[active ingredient]] of crude drugs are not purified and the substance is adulterated with other substances.

In the 17th century, the English physician [[Nicholas Culpeper]] translated and used pharmacological texts. Culpeper detailed plants and the conditions they could treat. In the 18th century, much of clinical pharmacology was established by the work of [[William Withering]].<ref>{{cite book | first = Mannfred A. | last = Hollinger | date = 2003 | url = https://books.google.com/books?id=bx-WfLwrVH8C&pg=PA4 | title = Introduction to pharmacology | publisher = [[CRC Press]] | page = 4 | isbn = 0-415-28033-8 }}</ref> Pharmacology as a scientific discipline did not further advance until the mid-19th century amid the great biomedical resurgence of that period.<ref name="rang2006">{{cite journal | vauthors = Rang HP | title = The receptor concept: pharmacology's big idea | journal = British Journal of Pharmacology | volume = 147 Suppl 1 | issue = S1 | pages = S9-16 | date = January 2006 | pmid = 16402126 | pmc = 1760743 | doi = 10.1038/sj.bjp.0706457 }}</ref> Before the second half of the nineteenth century, the remarkable potency and specificity of the actions of drugs such as [[morphine]], [[quinine]] and [[digitalis]] were explained vaguely and with reference to extraordinary chemical powers and affinities to certain organs or tissues.<ref name="AHM2002">{{cite journal | vauthors = Maehle AH, Prüll CR, Halliwell RF | s2cid = 205479063 | title = The emergence of the drug receptor theory | journal = Nature Reviews. Drug Discovery | volume = 1 | issue = 8 | pages = 637–41 | date = August 2002 | pmid = 12402503 | doi = 10.1038/nrd875 }}</ref> The first pharmacology department was set up by [[Rudolf Buchheim]] in 1847, in recognition of the need to understand how therapeutic drugs and poisons produced their effects.<ref name="rang2006" /> Subsequently, the first [[Department of Pharmacology at University College London, 1905 – 2007|pharmacology department]] in [[England]] was set up in 1905 at [[University College London]].

Pharmacology developed in the 19th century as a biomedical science that applied the principles of scientific experimentation to therapeutic contexts.<ref name="rang">{{cite book|title=Pharmacology| vauthors = Rang HP, Dale MM, Ritter JM, Flower RJ |publisher=[[Elsevier]]|year=2007|isbn=978-0-443-06911-6|location=[[China]]}}</ref> The advancement of research techniques propelled pharmacological research and understanding. The development of the [[organ bath]] preparation, where tissue samples are connected to recording devices, such as a [[myograph]], and physiological responses are recorded after drug application, allowed analysis of drugs' effects on tissues. The development of the [[ligand binding assay]] in 1945 allowed quantification of the [[affinity constant|binding affinity]] of drugs at chemical targets.<ref name=MWP2>{{cite book|title=Ligand-binding assays development, validation, and implementation in the drug development arena|year=2009|publisher=John Wiley & Sons|location=Hoboken, N.J.|isbn=978-0470541494|editor1=Masood N. Khan |editor2=John W. Findlay }}</ref> Modern pharmacologists use techniques from [[genetics]], [[molecular biology]], [[biochemistry]], and other advanced tools to transform information about molecular mechanisms and targets into therapies directed against disease, defects or pathogens, and create methods for preventive care, diagnostics, and ultimately [[personalized medicine]].

== Подела ==
== Подела ==
Фармакологијом као медицинском дисциплином се баве фармаколози. Међу њеним поддисциплинама су:
Фармакологијом као медицинском дисциплином се баве фармаколози. Међу њеним поддисциплинама су:
Ред 13: Ред 66:
* ''[[посологија]]'' - дозирање лекова
* ''[[посологија]]'' - дозирање лекова
* ''[[фармакогнозија]]'' - добијање лекова из биљака
* ''[[фармакогнозија]]'' - добијање лекова из биљака

=== Systems of the body ===
[[Image:Pharmacologyprism.jpg|thumb|250px|A variety of topics involved with pharmacology, including [[neuropharmacology]], renal pharmacology, human [[metabolism]], intracellular metabolism, and intracellular regulation.]]

Pharmacology can also focus on specific [[Human body#Systems|systems]] comprising the body. Divisions related to bodily systems study the effects of drugs in different systems of the body. These include [[neuropharmacology]], in the [[central nervous system|central]] and [[peripheral nervous system]]s; [[immune system|immunopharmacology]] in the immune system. Other divisions include [[Circulatory system|cardiovascular]], [[renal system|renal]] and [[endocrine system|endocrine]] pharmacology. [[Psychopharmacology]] is the study of the use of drugs that affect the [[psyche (psychology)|psyche]], mind and behavior (e.g. antidepressants) in treating mental disorders (e.g. depression).<ref>{{Cite web|title=Psychopharmacology {{!}} Psychology Today International|url=https://www.psychologytoday.com/intl/basics/psychopharmacology|access-date=2020-07-23|website=www.psychologytoday.com}}</ref><ref>{{Cite web|title=What is Psychopharmacology|url=https://ascpp.org/resources/information-for-patients/what-is-psychopharmacology/|access-date=2020-07-23|website=ascpp.org}}</ref> It incorporates approaches and techniques from neuropharmacology, animal behavior and behavioral neuroscience, and is interested in the behavioral and neurobiological mechanisms of action of psychoactive drugs. The related field of [[neuropsychopharmacology]] focuses on the effects of drugs at the overlap between the nervous system and the psyche.

[[Pharmacometabolomics]], also known as pharmacometabonomics, is a field which stems from [[metabolomics]], the quantification and analysis of [[metabolites]] produced by the body.<ref name="daouk-weinshilboum2008" /><ref name="daouk-weinshilboum2014" /> It refers to the direct measurement of [[metabolites]] in an individual's bodily fluids, in order to predict or evaluate the [[metabolism]] of [[pharmaceutical]] compounds, and to better understand the pharmacokinetic profile of a drug.<ref name="daouk-weinshilboum2008" /><ref name="daouk-weinshilboum2014" /> Pharmacometabolomics can be applied to measure [[metabolite]] levels following the administration of a drug, in order to monitor the effects of the drug on metabolic pathways. [[Pharmacomicrobiomics]] studies the effect of microbiome variations on drug disposition, action, and toxicity.<ref>{{cite journal | vauthors = Rizkallah MR, Saad R, Aziz RK | title = The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. | journal = Current Pharmacogenomics and Personalized Medicine | date = September 2010 | volume = 8 | issue = 3 | pages = 182–93 | doi = 10.2174/187569210792246326 }}</ref> Pharmacomicrobiomics is concerned with the interaction between drugs and the gut [[Microbiome of humans|microbiome]]. [[Pharmacogenomics]] is the application of genomic technologies to [[drug discovery]] and further characterization of drugs related to an organism's entire genome. For pharmacology regarding individual genes, [[pharmacogenetics]] studies how genetic variation gives rise to differing responses to drugs. [[Pharmacoepigenetics]] studies the underlying [[Epigenetics|epigenetic]] marking patterns that lead to variation in an individual's response to medical treatment.<ref>{{cite journal | vauthors = Gomez A, Ingelman-Sundberg M | title = Pharmacoepigenetics: its role in interindividual differences in drug response | journal = Clinical Pharmacology and Therapeutics | volume = 85 | issue = 4 | pages = 426–30 | date = April 2009 | pmid = 19242404 | doi = 10.1038/clpt.2009.2 | s2cid = 39131071 }}</ref>

===Clinical practice and drug discovery===
[[File:Toxicology Research at FDA (NCTR 1193) (6009043040).jpg|thumb|right|250px|A toxicologist working in a lab.]]

Pharmacology can be applied within clinical sciences. [[Clinical pharmacology]] is the application of pharmacological methods and principles in the study of drugs in humans.<ref>{{cite web|url=https://www.ascpt.org/Resources/Knowledge-Center/What-is-Clinical-Pharmacology|title=What is Clinical Pharmacology?|website=ascpt.org|accessdate=31 October 2021}}</ref> An example of this is posology, which is the study of how medicines are dosed.<ref>{{cite web|url=https://www.pharmamad.com/posology/|title=Posology, Factors Influencing Dose, Calculation of Doses|date=23 January 2019|accessdate=31 October 2021|website=pharmamad.com}}</ref>

Pharmacology is closely related to [[toxicology]]. Both pharmacology and toxicology are scientific disciplines that focus on understanding the properties and actions of chemicals.<ref name="pharmtox">{{cite web|url=https://www.pharmtox.utoronto.ca/science-pharmacology-toxicology|title=The Science of Pharmacology & Toxicology |publisher=Faculty of Medicine, University of Toronto|access-date=July 16, 2019}}</ref> However, pharmacology emphasizes the therapeutic effects of chemicals, usually drugs or compounds that could become drugs, whereas toxicology is the study of chemical's adverse effects and risk assessment.<ref name="pharmtox" />

==== Drug discovery ====

[[Drug discovery]] is the field of study concerned with creating new drugs. It encompasses the subfields of [[drug design]] and [[Drug development|development]].<ref name="sd">{{cite web|url=https://www.sciencedirect.com/topics/nursing-and-health-professions/drug-development/|accessdate=31 October 2021|title=Drug Development|date=2013|website=sciencedirect.com}}</ref> Drug discovery starts with drug design, which is the [[invention|inventive]] process of finding new drugs.<ref name="isbn0-415-...">{{cite book | last1 = Madsen | first1 = Ulf | last2 = Krogsgaard-Larsen | first2 = Povl | last3 = Liljefors | first3 = Tommy V | title = Textbook of Drug Design and Discovery | publisher = Taylor & Francis | location = Washington, DC | year = 2002 | isbn = 978-0-415-28288-8 }}</ref> In the most basic sense, this involves the design of molecules that are complementary in [[shape]] and [[electric charge|charge]] to a given biomolecular target.<ref>{{cite web|url=https://www.chem.uwec.edu/Chem491_W09/Topic7-2.pdf|title=Introduction to Drug Design|accessdate=31 October 2021}}</ref> After a [[lead compound]] has been identified through drug discovery, drug development involves bringing the drug to the market.<ref name="sd"/> Drug discovery is related to [[pharmacoeconomics]], which is the sub-discipline of [[health economics]] that considers the value of drugs<ref>{{cite journal | vauthors = Mueller C, Schur C, O'Connell J | title = Prescription drug spending: the impact of age and chronic disease status | journal = American Journal of Public Health | volume = 87 | issue = 10 | pages = 1626–9 | date = October 1997 | pmid = 9357343 | pmc = 1381124 | doi = 10.2105/ajph.87.10.1626 }}</ref><ref>{{cite journal | vauthors = Arnold RJ, Ekins S | s2cid = 23088517 | title = Time for cooperation in health economics among the modelling community | journal = PharmacoEconomics | volume = 28 | issue = 8 | pages = 609–13 | year = 2010 | pmid = 20513161 | doi = 10.2165/11537580-000000000-00000 }}</ref> Pharmacoeconomics evaluates the cost and benefits of drugs in order to guide optimal healthcare resource allocation.<ref>{{cite web|url=https://www.sciencedirect.com/topics/nursing-and-health-professions/pharmacoeconomics|title=Pharmacoeconomics - an overview|accessdate=31 October 2021|website=sciencedirect.com}}</ref> The techniques used for the [[Drug discovery|discovery]], [[Pharmaceutical formulation|formulation]], manufacturing and quality control of drugs discovery is studied by [[pharmaceutical engineering]], a branch of [[engineering]].<ref>{{cite journal| vauthors = Reklaitis GV, Khinast J, Muzzio F |date=November 2010|title=Pharmaceutical engineering science—New approaches to pharmaceutical development and manufacturing|journal=Chemical Engineering Science|volume=65|issue=21|pages=iv–vii|doi=10.1016/j.ces.2010.08.041}}</ref> [[Safety pharmacology]] specialises in detecting and investigating potential undesirable effects of drugs.<ref>{{Cite journal|last=Hite|first=Mark|date=2016-06-25|title=Safety Pharmacology Approaches|url=https://journals.sagepub.com/doi/10.1080/109158197227332|journal=International Journal of Toxicology|language=en|volume=16|pages=23–32|doi=10.1080/109158197227332|s2cid=71986376}}</ref>{{AI4 | image = Drug discovery cycle.svg | annotations = | align = right | image-width = 300 | width = 300 | height = 225 | alt = Drug discovery cycle schematic | caption =The drug discovery cycle.}}
[[Drug development|Development of medication]] is a vital concern to [[medicine]], but also has strong [[economical]] and [[political]] implications. To protect the [[consumer]] and prevent abuse, many governments regulate the manufacture, sale, and administration of medication. In the [[United States]], the main body that regulates pharmaceuticals is the [[Food and Drug Administration]]; they enforce [[Technical standard|standards]] set by the [[United States Pharmacopoeia]]. In the [[European Union]], the main body that regulates pharmaceuticals is the [[European Medicines Agency|EMA]], and they enforce standards set by the [[European Pharmacopoeia]].

The metabolic stability and the reactivity of a library of candidate drug compounds have to be assessed for drug metabolism and toxicological studies. Many methods have been proposed for quantitative predictions in drug metabolism; one example of a recent computational method is SPORCalc.<ref>{{cite journal | vauthors = Smith J, Stein V | title = SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design | journal = Computational Biology and Chemistry | volume = 33 | issue = 2 | pages = 149–59 | date = April 2009 | pmid = 19157988 | doi = 10.1016/j.compbiolchem.2008.11.002 }}</ref> A slight alteration to the chemical structure of a medicinal compound could alter its medicinal properties, depending on how the alteration relates to the structure of the substrate or receptor site on which it acts: this is called the structural activity relationship (SAR). When a useful activity has been identified, chemists will make many similar compounds called analogues, to try to maximize the desired medicinal effect(s). This can take anywhere from a few years to a decade or more, and is very expensive.<ref name="ReviseALChem">{{cite book|title=Revise A2 Chemistry|last1=Newton|first1=David| first2 = Alasdair | last2 = Thorpe | first3 = Chris | last3 = Otter |publisher=[[Heinemann Educational Publishers]]|year=2004|isbn=0-435-58347-6|pages=1}}</ref> One must also determine how safe the medicine is to consume, its stability in the human body and the best form for delivery to the desired organ system, such as tablet or aerosol. After extensive testing, which can take up to six years, the new medicine is ready for marketing and selling.<ref name="ReviseALChem" />

=== Wider contexts ===
Pharmacology can be studied in relation to wider contexts than the physiology of individuals. For example, [[pharmacoepidemiology]] concerns the variations of the effects of drugs in or between populations, it is the bridge between [[clinical pharmacology]] and [[epidemiology]].<ref>{{Cite book|last=Ritter, James|title=Rang and Dale's pharmacology|others=Flower, R. J. (Rod J.), 1945-, Henderson, Graeme,, Loke, Yoon Kong,, MacEwan, David J.,, Rang, H. P.|year=2020|isbn=978-0-7020-8060-9|edition=Ninth|location=Edinburgh|oclc=1081403059}}</ref><ref>{{Cite book|title=Textbook of pharmacoepidemiology|date=2013|publisher=Wiley Blackwell|others=Strom, Brian L., Kimmel, Stephen E., Hennessy, Sean.|isbn=978-1-118-34484-2|edition=Second|location=Chichester, West Sussex, UK|pages=21–23|oclc=826123173}}</ref> [[Pharmacoenvironmentology]] or environmental pharmacology is the study of the effects of used pharmaceuticals and personal care products (PPCPs) on the environment after their elimination from the body.<ref>{{cite journal | vauthors = Rahman SZ, Khan RA, Gupta V, Uddin M | title = Pharmacoenvironmentology--a component of pharmacovigilance | journal = Environmental Health | volume = 6 | issue = 1 | pages = 20 | date = July 2007 | pmid = 17650313 | pmc = 1947975 | doi = 10.1186/1476-069X-6-20 }}</ref> Human health and ecology are intimately related so environmental pharmacology studies the environmental effect of drugs and [[pharmaceuticals and personal care products in the environment]].<ref>{{Cite journal|last1=Jena|first1=Monalisa|last2=Mishra|first2=Archana|last3=Maiti|first3=Rituparna|date=2019-03-26|title=Environmental pharmacology: source, impact and solution|url=http://www.degruyter.com/view/j/reveh.2019.34.issue-1/reveh-2018-0049/reveh-2018-0049.xml|journal=Reviews on Environmental Health|volume=34|issue=1|pages=69–79|doi=10.1515/reveh-2018-0049|pmid=30854834|s2cid=73725468|issn=2191-0308}}</ref>

Drugs may also have ethnocultural importance, so [[ethnopharmacology]] studies the ethnic and cultural aspects of pharmacology.<ref name="int-soc-ethnopharm">{{Cite web|title=International Society for Ethnopharmacology|url=https://ethnopharmacology.org/|access-date=2021-02-04|website=International Society for Ethnopharmacology|language=en-US}}</ref>

=== Emerging fields ===
[[Photopharmacology]] is an emerging approach in [[medicine]] in which drugs are activated and deactivated with [[light]]. The energy of light is used to change for shape and chemical properties of the drug, resulting in different biological activity.<ref>{{cite journal | vauthors = Ricart-Ortega M, Font J, Llebaria A | s2cid = 76664855 | title = GPCR photopharmacology | journal = Molecular and Cellular Endocrinology | volume = 488 | pages = 36–51 | date = May 2019 | pmid = 30862498 | doi = 10.1016/j.mce.2019.03.003 | url = http://www.sciencedirect.com/science/article/pii/S0303720719300796 | hdl = 10261/201805 | hdl-access = free }}</ref> This is done to ultimately achieve control when and where drugs are active in a reversible manner, to prevent [[side effect]]s and pollution of drugs into the environment.<ref>{{cite journal | vauthors = Velema WA, Szymanski W, Feringa BL | title = Photopharmacology: beyond proof of principle | journal = Journal of the American Chemical Society | volume = 136 | issue = 6 | pages = 2178–91 | date = February 2014 | pmid = 24456115 | doi = 10.1021/ja413063e | url = https://www.rug.nl/research/portal/files/13153399/ja_2013_13063e_photopharma_revised.pdf | hdl = 11370/d6714f52-c2c8-4e48-b345-238e98bcc776 | hdl-access = free }}</ref><ref>{{cite journal | vauthors = Broichhagen J, Frank JA, Trauner D | title = A roadmap to success in photopharmacology | journal = Accounts of Chemical Research | volume = 48 | issue = 7 | pages = 1947–60 | date = July 2015 | pmid = 26103428 | doi = 10.1021/acs.accounts.5b00129 }}</ref>


== Види још ==
== Види још ==
Ред 27: Ред 109:


== Референце ==
== Референце ==
{{reflist|2}}
{{reflist|refs=
<ref name=daouk-weinshilboum2008>{{cite journal | vauthors = Kaddurah-Daouk R, Kristal BS, Weinshilboum RM | title = Metabolomics: a global biochemical approach to drug response and disease | journal = Annual Review of Pharmacology and Toxicology | volume = 48 | pages = 653–83 | year = 2008 | pmid = 18184107 | doi = 10.1146/annurev.pharmtox.48.113006.094715 }}</ref>
<ref name=daouk-weinshilboum2014>{{cite journal | vauthors = Kaddurah-Daouk R, Weinshilboum RM | title = Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology | journal = Clinical Pharmacology and Therapeutics | volume = 95 | issue = 2 | pages = 154–67 | date = February 2014 | pmid = 24193171 | doi = 10.1038/clpt.2013.217 | s2cid = 22649568 }}</ref>
}}


== Литература ==
== Литература ==
{{refbegin|}}
* {{cite book|url=https://books.google.com/books?id=Y9bsUpefYW0C&pg=PA51|title=Textbook of Receptor Pharmacology, Second Edition|last1=Foreman|first1=John C.|last2=Johansen|first2=Torben|last3=Gibb|first3=Alasdair J. |publisher=CRC Press|year=2009|isbn=9781439887578}}
* {{cite book|title=Goodman and Gilman's The Pharmacological Basis of Therapeutics |edition=12 |url=https://en.wikipedia.org/wiki/Goodman_%26_Gilman%27s_The_Pharmacological_Basis_of_Therapeutics|year=2011|first1=Laurence |last1=Brunton |editor1-last=Brunton |editor1-first=L. L. |editor2-last=Chabner |editor2-first=Bruce |editor3-last=Knollmann |editor3-first=Björn C. |isbn=978-0-07-162442-8|location=New York |publisher=McGraw-Hill }}
* {{cite book|title=Lippincott Illustrated Reviews: Pharmacology|first1=Karen|last1=Whalen |year=2014}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Pharmacology}}
{{Commonscat|Pharmacology}}
* [http://www.aspet.org American Society for Pharmacology and Experimental Therapeutics]
{{-}}
* [http://www.bps.ac.uk British Pharmacological Society]
* [http://www.ich.org/ International Conference on Harmonisation]
* [http://www.usp.org US Pharmacopeia]
* [http://www.iuphar.org International Union of Basic and Clinical Pharmacology]
* [http://www.iuphar-db.org IUPHAR Committee on Receptor Nomenclature and Drug Classification]
* [http://www.guidetopharmacology.org/ IUPHAR/BPS Guide to Pharmacology]


{{Фармакологија}}
{{Фармакологија}}

Верзија на датум 25. децембар 2021. у 03:14

Фармакологија
Дијаграмски приказ купке за органе која се користи за проучавање дејства изолованих ткива.
MeSH Unique IDD010600

Фармакологија (грч. φάρμακον - лек, отров; λόγος - наука) је грана медицине, биологије и фармацеутских наука која проучава дејство лекова,[1][2], њихове физичке и хемијске карактеристике[3][4], примену у лечењу, у фармакотерапији, као и метаболизам лека.[5] Слободно се може рећи да се она бави узајамним дејствима лековитих супстанци и живог организма с основним циљем да се унапреди лечење болесног човека. Поред тога што је значајна за медицину, значајна је и за фармацију те представља и једну од кључних додирних тачака медицине са фармацијом. Њену основу чине фармакокинетика која изучава дејство организма на лек и хемијске промене лека и фармакодинамика која се бави деловањем лека на организам.

Етимологија

The word pharmacology is derived from Greek φάρμακον, pharmakon, "drug, poison" and -λογία, -logia "study of", "knowledge of"[6][7] (cf. the etymology of pharmacy). Pharmakon is related to pharmakos, the ritualistic sacrifice or exile of a human scapegoat or victim in Ancient Greek religion.

The modern term pharmacon is used more broadly than the term drug because it includes endogenous substances, and biologically active substances which are not used as drugs. Typically it includes pharmacological agonists and antagonists, but also enzyme inhibitors (such as monoamine oxidase inhibitors). [8]

Историја

Naturally derived opium from opium poppies has been used as a drug since before 1100 BCE.[9]
Opium's major active constituent, morphine, was first isolated in 1804 and is now known to act as an opioid agonist.[10][11]

The origins of clinical pharmacology date back to the Middle Ages, with pharmacognosy and Avicenna's The Canon of Medicine, Peter of Spain's Commentary on Isaac, and John of St Amand's Commentary on the Antedotary of Nicholas.[12] Early pharmacology focused on herbalism and natural substances, mainly plant extracts. Medicines were compiled in books called pharmacopoeias. Crude drugs have been used since prehistory as a preparation of substances from natural sources. However, the active ingredient of crude drugs are not purified and the substance is adulterated with other substances.

In the 17th century, the English physician Nicholas Culpeper translated and used pharmacological texts. Culpeper detailed plants and the conditions they could treat. In the 18th century, much of clinical pharmacology was established by the work of William Withering.[13] Pharmacology as a scientific discipline did not further advance until the mid-19th century amid the great biomedical resurgence of that period.[14] Before the second half of the nineteenth century, the remarkable potency and specificity of the actions of drugs such as morphine, quinine and digitalis were explained vaguely and with reference to extraordinary chemical powers and affinities to certain organs or tissues.[15] The first pharmacology department was set up by Rudolf Buchheim in 1847, in recognition of the need to understand how therapeutic drugs and poisons produced their effects.[14] Subsequently, the first pharmacology department in England was set up in 1905 at University College London.

Pharmacology developed in the 19th century as a biomedical science that applied the principles of scientific experimentation to therapeutic contexts.[16] The advancement of research techniques propelled pharmacological research and understanding. The development of the organ bath preparation, where tissue samples are connected to recording devices, such as a myograph, and physiological responses are recorded after drug application, allowed analysis of drugs' effects on tissues. The development of the ligand binding assay in 1945 allowed quantification of the binding affinity of drugs at chemical targets.[17] Modern pharmacologists use techniques from genetics, molecular biology, biochemistry, and other advanced tools to transform information about molecular mechanisms and targets into therapies directed against disease, defects or pathogens, and create methods for preventive care, diagnostics, and ultimately personalized medicine.

Подела

Фармакологијом као медицинском дисциплином се баве фармаколози. Међу њеним поддисциплинама су:

Systems of the body

A variety of topics involved with pharmacology, including neuropharmacology, renal pharmacology, human metabolism, intracellular metabolism, and intracellular regulation.

Pharmacology can also focus on specific systems comprising the body. Divisions related to bodily systems study the effects of drugs in different systems of the body. These include neuropharmacology, in the central and peripheral nervous systems; immunopharmacology in the immune system. Other divisions include cardiovascular, renal and endocrine pharmacology. Psychopharmacology is the study of the use of drugs that affect the psyche, mind and behavior (e.g. antidepressants) in treating mental disorders (e.g. depression).[18][19] It incorporates approaches and techniques from neuropharmacology, animal behavior and behavioral neuroscience, and is interested in the behavioral and neurobiological mechanisms of action of psychoactive drugs. The related field of neuropsychopharmacology focuses on the effects of drugs at the overlap between the nervous system and the psyche.

Pharmacometabolomics, also known as pharmacometabonomics, is a field which stems from metabolomics, the quantification and analysis of metabolites produced by the body.[20][21] It refers to the direct measurement of metabolites in an individual's bodily fluids, in order to predict or evaluate the metabolism of pharmaceutical compounds, and to better understand the pharmacokinetic profile of a drug.[20][21] Pharmacometabolomics can be applied to measure metabolite levels following the administration of a drug, in order to monitor the effects of the drug on metabolic pathways. Pharmacomicrobiomics studies the effect of microbiome variations on drug disposition, action, and toxicity.[22] Pharmacomicrobiomics is concerned with the interaction between drugs and the gut microbiome. Pharmacogenomics is the application of genomic technologies to drug discovery and further characterization of drugs related to an organism's entire genome. For pharmacology regarding individual genes, pharmacogenetics studies how genetic variation gives rise to differing responses to drugs. Pharmacoepigenetics studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.[23]

Clinical practice and drug discovery

A toxicologist working in a lab.

Pharmacology can be applied within clinical sciences. Clinical pharmacology is the application of pharmacological methods and principles in the study of drugs in humans.[24] An example of this is posology, which is the study of how medicines are dosed.[25]

Pharmacology is closely related to toxicology. Both pharmacology and toxicology are scientific disciplines that focus on understanding the properties and actions of chemicals.[26] However, pharmacology emphasizes the therapeutic effects of chemicals, usually drugs or compounds that could become drugs, whereas toxicology is the study of chemical's adverse effects and risk assessment.[26]

Drug discovery

Drug discovery is the field of study concerned with creating new drugs. It encompasses the subfields of drug design and development.[27] Drug discovery starts with drug design, which is the inventive process of finding new drugs.[28] In the most basic sense, this involves the design of molecules that are complementary in shape and charge to a given biomolecular target.[29] After a lead compound has been identified through drug discovery, drug development involves bringing the drug to the market.[27] Drug discovery is related to pharmacoeconomics, which is the sub-discipline of health economics that considers the value of drugs[30][31] Pharmacoeconomics evaluates the cost and benefits of drugs in order to guide optimal healthcare resource allocation.[32] The techniques used for the discovery, formulation, manufacturing and quality control of drugs discovery is studied by pharmaceutical engineering, a branch of engineering.[33] Safety pharmacology specialises in detecting and investigating potential undesirable effects of drugs.[34]Шаблон:AI4 Development of medication is a vital concern to medicine, but also has strong economical and political implications. To protect the consumer and prevent abuse, many governments regulate the manufacture, sale, and administration of medication. In the United States, the main body that regulates pharmaceuticals is the Food and Drug Administration; they enforce standards set by the United States Pharmacopoeia. In the European Union, the main body that regulates pharmaceuticals is the EMA, and they enforce standards set by the European Pharmacopoeia.

The metabolic stability and the reactivity of a library of candidate drug compounds have to be assessed for drug metabolism and toxicological studies. Many methods have been proposed for quantitative predictions in drug metabolism; one example of a recent computational method is SPORCalc.[35] A slight alteration to the chemical structure of a medicinal compound could alter its medicinal properties, depending on how the alteration relates to the structure of the substrate or receptor site on which it acts: this is called the structural activity relationship (SAR). When a useful activity has been identified, chemists will make many similar compounds called analogues, to try to maximize the desired medicinal effect(s). This can take anywhere from a few years to a decade or more, and is very expensive.[36] One must also determine how safe the medicine is to consume, its stability in the human body and the best form for delivery to the desired organ system, such as tablet or aerosol. After extensive testing, which can take up to six years, the new medicine is ready for marketing and selling.[36]

Wider contexts

Pharmacology can be studied in relation to wider contexts than the physiology of individuals. For example, pharmacoepidemiology concerns the variations of the effects of drugs in or between populations, it is the bridge between clinical pharmacology and epidemiology.[37][38] Pharmacoenvironmentology or environmental pharmacology is the study of the effects of used pharmaceuticals and personal care products (PPCPs) on the environment after their elimination from the body.[39] Human health and ecology are intimately related so environmental pharmacology studies the environmental effect of drugs and pharmaceuticals and personal care products in the environment.[40]

Drugs may also have ethnocultural importance, so ethnopharmacology studies the ethnic and cultural aspects of pharmacology.[41]

Emerging fields

Photopharmacology is an emerging approach in medicine in which drugs are activated and deactivated with light. The energy of light is used to change for shape and chemical properties of the drug, resulting in different biological activity.[42] This is done to ultimately achieve control when and where drugs are active in a reversible manner, to prevent side effects and pollution of drugs into the environment.[43][44]

Види још

Референце

  1. ^ Vallance P, Smart TG (јануар 2006). „The future of pharmacology”. British Journal of Pharmacology. 147 Suppl 1 (S1): S304—7. PMC 1760753Слободан приступ. PMID 16402118. doi:10.1038/sj.bjp.0706454. 
  2. ^ Keith Parker; Laurence Brunton; Goodman, Louis Sanford; Lazo, John S.; Gilman, Alfred (2006). Goodman & Gilman's The Pharmacological Basis of Therapeutics (11. изд.). New York: McGraw-Hill. ISBN 0071422803. 
  3. ^ Lide David R., ур. (2006). CRC Handbook of Chemistry and Physics (87th изд.). Boca Raton, FL: CRC Press. ISBN 978-0-8493-0487-3. 
  4. ^ Susan Budavari, ур. (2001). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (13th изд.). Merck Publishing. ISBN 0911910131. 
  5. ^ David L. Nelson; Michael M. Cox (2005). Principles of Biochemistry (IV изд.). New York: W. H. Freeman. ISBN 0-7167-4339-6. 
  6. ^ „Pharmacy (n.)”. Online Etymology Dictionary. 
  7. ^ „Pharmacology”. Online Etymology Dictionary. 
  8. ^ Takács-Novák, K.; Avdeef, A. (август 1996). „Interlaboratory study of log P determination by shake-flask and potentiometric methods”. Journal of Pharmaceutical and Biomedical Analysis. 14 (11): 1405—13. PMID 8877846. doi:10.1016/0731-7085(96)01773-6. 
  9. ^ Kritikos PG, Papadaki SP (1. 1. 1967). „The early history of the poppy and opium”. Journal of the Archaeological Society of Athens. 
  10. ^ Luch A, ур. (2009). Molecular, clinical and environmental toxicology. Springer. стр. 20. ISBN 978-3-7643-8335-0. 
  11. ^ Sertürner, Friedrich (1805). „Untitled letter to the editor”. Journal der Pharmacie für Aerzte, Apotheker und Chemisten (Journal of Pharmacy for Physicians, Apothecaries, and Chemists). 13: 229—243. Архивирано из оригинала 17. 8. 2016. г. ; see especially "III. Säure im Opium" (acid in opium), pp. 234–235, and "I. Nachtrag zur Charakteristik der Säure im Opium" (Addendum on the characteristics of the acid in opium), pp. 236–241.
  12. ^ Brater DC, Daly WJ (мај 2000). „Clinical pharmacology in the Middle Ages: principles that presage the 21st century”. Clinical Pharmacology and Therapeutics. 67 (5): 447—50. PMID 10824622. S2CID 45980791. doi:10.1067/mcp.2000.106465. 
  13. ^ Hollinger, Mannfred A. (2003). Introduction to pharmacology. CRC Press. стр. 4. ISBN 0-415-28033-8. 
  14. ^ а б Rang HP (јануар 2006). „The receptor concept: pharmacology's big idea”. British Journal of Pharmacology. 147 Suppl 1 (S1): S9—16. PMC 1760743Слободан приступ. PMID 16402126. doi:10.1038/sj.bjp.0706457. 
  15. ^ Maehle AH, Prüll CR, Halliwell RF (август 2002). „The emergence of the drug receptor theory”. Nature Reviews. Drug Discovery. 1 (8): 637—41. PMID 12402503. S2CID 205479063. doi:10.1038/nrd875. 
  16. ^ Rang HP, Dale MM, Ritter JM, Flower RJ (2007). Pharmacology. China: Elsevier. ISBN 978-0-443-06911-6. 
  17. ^ Masood N. Khan; John W. Findlay, ур. (2009). Ligand-binding assays development, validation, and implementation in the drug development arena. Hoboken, N.J.: John Wiley & Sons. ISBN 978-0470541494. 
  18. ^ „Psychopharmacology | Psychology Today International”. www.psychologytoday.com. Приступљено 2020-07-23. 
  19. ^ „What is Psychopharmacology”. ascpp.org. Приступљено 2020-07-23. 
  20. ^ а б Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008). „Metabolomics: a global biochemical approach to drug response and disease”. Annual Review of Pharmacology and Toxicology. 48: 653—83. PMID 18184107. doi:10.1146/annurev.pharmtox.48.113006.094715. 
  21. ^ а б Kaddurah-Daouk R, Weinshilboum RM (фебруар 2014). „Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology”. Clinical Pharmacology and Therapeutics. 95 (2): 154—67. PMID 24193171. S2CID 22649568. doi:10.1038/clpt.2013.217. 
  22. ^ Rizkallah MR, Saad R, Aziz RK (септембар 2010). „The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics.”. Current Pharmacogenomics and Personalized Medicine. 8 (3): 182—93. doi:10.2174/187569210792246326. 
  23. ^ Gomez A, Ingelman-Sundberg M (април 2009). „Pharmacoepigenetics: its role in interindividual differences in drug response”. Clinical Pharmacology and Therapeutics. 85 (4): 426—30. PMID 19242404. S2CID 39131071. doi:10.1038/clpt.2009.2. 
  24. ^ „What is Clinical Pharmacology?”. ascpt.org. Приступљено 31. 10. 2021. 
  25. ^ „Posology, Factors Influencing Dose, Calculation of Doses”. pharmamad.com. 23. 1. 2019. Приступљено 31. 10. 2021. 
  26. ^ а б „The Science of Pharmacology & Toxicology”. Faculty of Medicine, University of Toronto. Приступљено 16. 7. 2019. 
  27. ^ а б „Drug Development”. sciencedirect.com. 2013. Приступљено 31. 10. 2021. 
  28. ^ Madsen, Ulf; Krogsgaard-Larsen, Povl; Liljefors, Tommy V (2002). Textbook of Drug Design and Discovery. Washington, DC: Taylor & Francis. ISBN 978-0-415-28288-8. 
  29. ^ „Introduction to Drug Design” (PDF). Приступљено 31. 10. 2021. 
  30. ^ Mueller C, Schur C, O'Connell J (октобар 1997). „Prescription drug spending: the impact of age and chronic disease status”. American Journal of Public Health. 87 (10): 1626—9. PMC 1381124Слободан приступ. PMID 9357343. doi:10.2105/ajph.87.10.1626. 
  31. ^ Arnold RJ, Ekins S (2010). „Time for cooperation in health economics among the modelling community”. PharmacoEconomics. 28 (8): 609—13. PMID 20513161. S2CID 23088517. doi:10.2165/11537580-000000000-00000. 
  32. ^ „Pharmacoeconomics - an overview”. sciencedirect.com. Приступљено 31. 10. 2021. 
  33. ^ Reklaitis GV, Khinast J, Muzzio F (новембар 2010). „Pharmaceutical engineering science—New approaches to pharmaceutical development and manufacturing”. Chemical Engineering Science. 65 (21): iv—vii. doi:10.1016/j.ces.2010.08.041. 
  34. ^ Hite, Mark (2016-06-25). „Safety Pharmacology Approaches”. International Journal of Toxicology (на језику: енглески). 16: 23—32. S2CID 71986376. doi:10.1080/109158197227332. 
  35. ^ Smith J, Stein V (април 2009). „SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design”. Computational Biology and Chemistry. 33 (2): 149—59. PMID 19157988. doi:10.1016/j.compbiolchem.2008.11.002. 
  36. ^ а б Newton, David; Thorpe, Alasdair; Otter, Chris (2004). Revise A2 Chemistry. Heinemann Educational Publishers. стр. 1. ISBN 0-435-58347-6. 
  37. ^ Ritter, James (2020). Rang and Dale's pharmacology. Flower, R. J. (Rod J.), 1945-, Henderson, Graeme,, Loke, Yoon Kong,, MacEwan, David J.,, Rang, H. P. (Ninth изд.). Edinburgh. ISBN 978-0-7020-8060-9. OCLC 1081403059. 
  38. ^ Textbook of pharmacoepidemiology. Strom, Brian L., Kimmel, Stephen E., Hennessy, Sean. (Second изд.). Chichester, West Sussex, UK: Wiley Blackwell. 2013. стр. 21—23. ISBN 978-1-118-34484-2. OCLC 826123173. 
  39. ^ Rahman SZ, Khan RA, Gupta V, Uddin M (јул 2007). „Pharmacoenvironmentology--a component of pharmacovigilance”. Environmental Health. 6 (1): 20. PMC 1947975Слободан приступ. PMID 17650313. doi:10.1186/1476-069X-6-20. 
  40. ^ Jena, Monalisa; Mishra, Archana; Maiti, Rituparna (2019-03-26). „Environmental pharmacology: source, impact and solution”. Reviews on Environmental Health. 34 (1): 69—79. ISSN 2191-0308. PMID 30854834. S2CID 73725468. doi:10.1515/reveh-2018-0049. 
  41. ^ „International Society for Ethnopharmacology”. International Society for Ethnopharmacology (на језику: енглески). Приступљено 2021-02-04. 
  42. ^ Ricart-Ortega M, Font J, Llebaria A (мај 2019). „GPCR photopharmacology”. Molecular and Cellular Endocrinology. 488: 36—51. PMID 30862498. S2CID 76664855. doi:10.1016/j.mce.2019.03.003. hdl:10261/201805Слободан приступ. 
  43. ^ Velema WA, Szymanski W, Feringa BL (фебруар 2014). „Photopharmacology: beyond proof of principle” (PDF). Journal of the American Chemical Society. 136 (6): 2178—91. PMID 24456115. doi:10.1021/ja413063e. hdl:11370/d6714f52-c2c8-4e48-b345-238e98bcc776Слободан приступ. 
  44. ^ Broichhagen J, Frank JA, Trauner D (јул 2015). „A roadmap to success in photopharmacology”. Accounts of Chemical Research. 48 (7): 1947—60. PMID 26103428. doi:10.1021/acs.accounts.5b00129. 

Литература

Спољашње везе