Мари Гел-Ман — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
мНема описа измене
.
Ред 39: Ред 39:


Подстакнут снажном дечачком радозналошћу и љубављу према природи и математици, он је дипломирао као [[valedictorian|валедикторијан]] у [[Columbia Grammar & Preparatory School|Колумбија граматичкој и припремној школи]] са 14 година, а потом је уписао [[Yale College|Јејл колеџ]] као члан [[Jonathan Edwards College|Џонатан Едвардс колеџа]].<ref name="tnyt" /><ref>{{cite web |url=https://je.yalecollege.yale.edu/about-us/history/notable-alumni |title=Notable Alumni |publisher=[[Jonathan Edwards College]] |accessdate=27. 5. 2019}}</ref> На Јејлу је учествовао на [[William Lowell Putnam Mathematical Competition|Вилијам Лоул Путам математичком такмичењу]] и био је у тиму који је представљао универзитет Јејл (заједно са [[Murray Gerstenhaber|Маријем Герштенхабером]] и [[Henry O. Pollak|Хенријем О. Полаком]]) који је освојио другу награду 1947. године.<ref>{{cite journal |title=The William Lowell Putnam Mathematical Competition |author=G. W. Mackey |journal=[[The American Mathematical Monthly]] |volume=54 |issue=7 |pages=400–3 |year=1947 |jstor=2304390 |doi=10.1080/00029890.1947.11990193 }}</ref>
Подстакнут снажном дечачком радозналошћу и љубављу према природи и математици, он је дипломирао као [[valedictorian|валедикторијан]] у [[Columbia Grammar & Preparatory School|Колумбија граматичкој и припремној школи]] са 14 година, а потом је уписао [[Yale College|Јејл колеџ]] као члан [[Jonathan Edwards College|Џонатан Едвардс колеџа]].<ref name="tnyt" /><ref>{{cite web |url=https://je.yalecollege.yale.edu/about-us/history/notable-alumni |title=Notable Alumni |publisher=[[Jonathan Edwards College]] |accessdate=27. 5. 2019}}</ref> На Јејлу је учествовао на [[William Lowell Putnam Mathematical Competition|Вилијам Лоул Путам математичком такмичењу]] и био је у тиму који је представљао универзитет Јејл (заједно са [[Murray Gerstenhaber|Маријем Герштенхабером]] и [[Henry O. Pollak|Хенријем О. Полаком]]) који је освојио другу награду 1947. године.<ref>{{cite journal |title=The William Lowell Putnam Mathematical Competition |author=G. W. Mackey |journal=[[The American Mathematical Monthly]] |volume=54 |issue=7 |pages=400–3 |year=1947 |jstor=2304390 |doi=10.1080/00029890.1947.11990193 }}</ref>
{{рут}}
Gell-Mann graduated from Yale with a bachelor's degree in physics in 1948 and intended to pursue graduate studies in physics. He sought to remain in the [[Ivy League]] for his graduate education and applied to [[Princeton University]] as well as [[Harvard University]]. He was rejected by Princeton and accepted by Harvard, but the latter institution was unable to offer him any of the financial assistance that he needed. He was accepted by the [[Massachusetts Institute of Technology]] (MIT) and received a letter from [[Victor Weisskopf]] urging him to attend MIT and become Weisskopf's research assistant, which would provide Gell-Mann with the financial assistance he needed. Unaware of MIT's eminent status in physics research, Gell-Mann was "miserable" with the fact that he would not be able to attend Princeton or Harvard and considered suicide. He stated that he realized he could try to first enter MIT and commit suicide afterwards if he found it to be truly terrible. However, he couldn't first choose suicide and then attend MIT; the two "didn't commute", as Gell-Mann said.<ref>{{Citation|title=Murray Gell-Mann - MIT or suicide (17/200)|url=https://www.youtube.com/watch?v=nfEvQMPDhOg |archive-url=https://ghostarchive.org/varchive/youtube/20211211/nfEvQMPDhOg| archive-date=2021-12-11 |url-status=live|language=en|access-date=2020-06-06}}{{cbignore}}</ref><ref>{{Cite book|last=Strogatz|first=Steven|title=The Joy of x: A Guided Tour of Math, from One to Infinity|publisher=Mariner Books|year=2013|isbn=978-0544105850|pages=27}}</ref>

Gell-Mann received his Ph.D. in physics from MIT in 1951 after completing a doctoral dissertation, titled "Coupling strength and nuclear reactions", under the supervision of Victor Weisskopf.<ref>{{Cite thesis|title=Coupling strength and nuclear reactions|url=https://dspace.mit.edu/handle/1721.1/12195|publisher=Massachusetts Institute of Technology|date=1951|degree=Thesis|first=Murray|last=Gell-Mann|hdl=1721.1/12195}}</ref><ref name="Guardian_obit" /><ref name=mathgene>{{MathGenealogy|id=22479}}</ref>

==Career==
Gell-Mann was a postdoctoral fellow at the [[Institute for Advanced Study]] in 1951,<ref name="tnyt"/> and a visiting research professor at the [[University of Illinois at Urbana–Champaign]] from 1952 to 1953.<ref>in 1954, there, with [[Francis E. Low]], he discovered the [[renormalization group]] equation of QED.</ref> He was a visiting associate professor at [[Columbia University]] and an associate professor at the [[University of Chicago]] in 1954–1955 before moving to the [[California Institute of Technology]], where he taught from 1955 until he retired in 1993.<ref>{{cite web|url=http://oralhistories.library.caltech.edu/228/ |title=Interview with Murray Gell-Mann [Oral History] |website=Caltech Institute Archives |access-date=May 25, 2019}}</ref>

===Nuclear physics===
In 1958, Gell-Mann in collaboration with [[Richard Feynman]], in parallel with the independent team of [[E. C. George Sudarshan]] and [[Robert Marshak]], discovered the [[Chirality (physics)|chiral]] structures of the [[weak interaction]] of physics and developed the V-A theory (vector minus axial vector theory).<ref>{{Cite journal|last1=Sudarshan|first1=E. C. G.|last2=Marshak|first2=R. E.|date=June 1, 2016|title=Origin of the Universal V‐A theory|journal=AIP Conference Proceedings|volume=300|issue=1|pages=110–124|doi=10.1063/1.45454|issn=0094-243X|hdl=2152/29431|s2cid=10153816 |hdl-access=free}}</ref> This work followed the experimental discovery of the [[parity (physics)|violation of parity]] by [[Chien-Shiung Wu]], as suggested by [[Yang Chen-Ning|Chen-Ning Yang]] and [[Tsung-Dao Lee]], theoretically.<ref>{{cite book |last=Gleick |first=James |author-link=James Gleick |title=Genius: The Life and Science of Richard Feynman |publisher=[[Pantheon Books]] |year=1992 |isbn=0-679-40836-3|oclc=243743850}}</ref>

Gell-Mann's work in the 1950s involved recently discovered [[cosmic ray]] particles that came to be called [[kaon]]s and [[hyperon]]s. Classifying these particles led him to propose that a [[quantum number]] called [[strangeness]] would be conserved by the strong and the electromagnetic interactions, but not by the weak interactions.<ref>{{cite journal|last=Gell-Mann |first=M. |title=The Interpretation of the New Particles as Displaced Charge Multiplets |journal=[[Il Nuovo Cimento]] |year=1956 |volume=4 |number=supplement 2 |pages=848–866 |doi=10.1007/BF02748000|bibcode=1956NCim....4S.848G |s2cid=121017243 }}</ref> ([[Kazuhiko Nishijima]] arrived at this idea independently, calling the quantity <math>\eta</math>-charge after the [[eta meson]].<ref>
{{cite journal
|last=Nishijima |first=K |author-link=Kazuhiko Nishijima
|year=1955
|title=Charge Independence Theory of V Particles
|journal=[[Progress of Theoretical Physics]]
|volume=13 |issue=3 |pages=285–304
|bibcode=1955PThPh..13..285N
|doi=10.1143/PTP.13.285
|doi-access=free
}}</ref><ref name="PhysicsToday">
{{cite journal
|last=Nambu |first=Y. |author-link=Yoichiro Nambu
|year=2009
|title=Kazuhiko Nishijima
|journal=[[Physics Today]]
|volume=62 |issue=8 |pages=58
|bibcode=2009PhT....62h..58N
|doi=10.1063/1.3206100
|doi-access=free
}}</ref>) Another of Gell-Mann's ideas is the [[Gell-Mann–Okubo mass formula|Gell-Mann–Okubo]] formula, which was, initially, a formula based on empirical results, but was later explained by his [[quark model]].<ref>{{cite book|last=Georgi |first=Howard |author-link=Howard Georgi |title=Lie Algebras in Particle Physics: from Isospin to Unified Theories |publisher=Perseus Books |year=1999 |edition=2nd |isbn=9780738202334 |oclc=479362196}}</ref> Gell-Mann and [[Abraham Pais]] were involved in explaining the puzzling aspect of the [[neutral kaon mixing]].<ref>{{Cite web|url=https://www.britannica.com/science/quantum-mechanics-physics/Applications-of-quantum-mechanics#ref77525|title=Quantum mechanics – Applications of quantum mechanics – Decay of the Kaon|last=Squires|first=Gordon Leslie|date=July 26, 1999|website=[[Encyclopedia Britannica]]|access-date=May 27, 2019}}</ref>

Murray Gell-Mann's fortunate encounter with mathematician [[Richard Earl Block]] at Caltech, in the fall of 1960, "enlightened" him to introduce a novel classification scheme, in 1961, for [[hadron]]s.<ref>{{cite report |last=Gell-Mann |first=M. |author-link=Murray Gell-Mann |date=March 15, 1961 |title=The Eightfold Way: A Theory of Strong Interaction Symmetry |publisher=California Inst. of Tech., Synchrotron Laboratory |location=[[Pasadena, CA]] |doi=10.2172/4008239 |id=TID-12608 |url=https://www.osti.gov/scitech/servlets/purl/4008239 |via=[[Office of Scientific and Technical Information|OSTI.GOV]]}}</ref><ref>{{cite AV media |title=Murray Gell-Mann - Sheldon Glashow. The SU(2) times U1 theory: Part 2 (91/200) |url=https://m.youtube.com/watch?v=UoRm30T2058&t=2m32s |archive-url=https://ghostarchive.org/varchive/youtube/20211211/UoRm30T2058| archive-date=2021-12-11 |url-status=live|date=May 19, 2016 |publisher=[[Web of Stories]] |via=YouTube |access-date=June 3, 2019}}{{cbignore}}</ref> A similar scheme had been independently proposed by [[Yuval Ne'eman]], and is now explained by the quark model.<ref>{{cite journal |last=Ne'eman |first=Y. |author-link=Yuval Ne'eman |date=August 1961 |title=Derivation of Strong Interactions from a Gauge Invariance |journal=[[Nuclear Physics (journal)|Nuclear Physics]] |publisher=North-Holland Publishing Co. |location=Amsterdam |doi=10.1016/0029-5582(61)90134-1 |volume=26 |issue=2 |pages=222–229|bibcode=1961NucPh..26..222N }}</ref> Gell-Mann referred to the scheme as the ''[[Eightfold way (physics)|eightfold way]]'', because of the ''octets'' of particles in the classification (the term is a reference to the [[Noble Eightfold Path|Eightfold Path]] of [[Buddhism]]).<ref name="tnyt" /><ref name=Guardian_obit>{{cite news |url=https://www.theguardian.com/science/2019/may/26/murray-gell-mann-nobel-prize-physicist-quarks-dies |title=Murray Gell-Mann, Nobel Prize-winning physicist who named quarks, dies at 89 |newspaper=The Guardian |date=26 May 2019 |access-date=27 May 2019 }}</ref>

Gell-Mann, along with Maurice Lévy, developed the [[sigma model]] of [[pion]]s, which describes low-energy pion interactions.<ref>{{Cite journal
| last1=Gell-Mann | first1=M.
| last2=Lévy | first2=M.
| year=1960
| title=The axial vector current in beta decay
| journal=[[Il Nuovo Cimento]]
| volume=16 | issue=4
| pages=705–726
| doi=10.1007/BF02859738
| bibcode=1960NCim...16..705G| s2cid=122945049
}}</ref>

In 1964, Gell-Mann and, independently, [[George Zweig]] went on to postulate the existence of [[quark]]s, particles of which the [[hadron]]s of this scheme are composed. The name was coined by Gell-Mann and is a reference to the novel ''[[Finnegans Wake]]'', by [[James Joyce]] ("Three quarks for Muster Mark!" book 2, episode 4). Zweig had referred to the particles as "aces",<ref>{{Cite book |author=G. Zweig |chapter=An SU(3) model for strong interaction symmetry and its breaking II |chapter-url=http://cdsweb.cern.ch/search.py?recid=570209&ln=en |editor1=D. Lichtenberg |editor2=S. Rosen |year=1980 |title=Developments in the Quark Theory of Hadrons |volume=1 |pages=22–101 |publisher=Hadronic Press }}</ref> but Gell-Mann's name caught on. Quarks, antiquarks, and gluons were soon established as the underlying elementary objects in the study of the structure of hadrons. He was awarded a [[Nobel Prize in Physics]] in 1969 for his contributions and discoveries concerning the classification of elementary particles and their interactions.<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/1969/ Simple listing of Nobel Prize in Physics, 1969] Retrieved February 15, 2017</ref>

In the 1960s, he introduced [[current algebra]] as a method of systematically exploiting symmetries to extract predictions from quark models, in the absence of reliable dynamical theory. This method led to model-independent [[Sum rule in quantum mechanics|sum rules]] confirmed by experiment and provided starting points underpinning the development of the [[Standard Model]] (SM), the widely accepted theory of elementary particles.<ref>{{cite conference|last=Ellis |first=John |title=Prospects for New Physics at the LHC |book-title=Proceedings of the Conference in Honour of Murray Gell-Mann's 80th Birthday: Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity : Nanyang Technological University, Singapore, February 24–26, 2010 |publisher=World Scientific |year=2011 |isbn=9789814335607 |editor1-last=Fritzsch |editor1-first=Harald |editor2-last=Phua |editor2-first=K. K. |editor3-last=Baaquie |editor3-first=B. E.}}</ref><ref>{{cite book|last=Cao |first=Tian Yu |title=From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism |year=2010 |publisher=Cambridge University Press |isbn=9781139491600}}</ref>


== Референце ==
== Референце ==

Верзија на датум 29. јануар 2023. у 00:03

Мари Гел-Ман
Лични подаци
Датум рођења(1929-09-15)15. септембар 1929.
Место рођењаМенхетн, Њујорк, САД
Датум смрти24. мај 2019.(2019-05-24) (89 год.)
Место смртиСанта Фе, САД
ПребивалиштеСАД
Научни рад
ПољеФизика
НаградеНобелова награда за физику (1969), ForMemRS (1978)[1]
Званични веб-сајт
tuvalu.santafe.edu/~mgm

Мари Гел-Ман (енгл. Murray Gell-Mann, 15. септембар 1929. — 24. мај 2019)[2][3] био је амерички физичар, који је 1969. године, добио Нобелову награду за физику „за доприносе и открића која се тичу класификације елементарних честица и њихових интеракција”.[4][5]

Гел-Ман је провео неколико периода у ЦЕРН-у, институту за нуклеарна истраживања у Швајцарској, између осталог као члан Меморијалне фондације Џон Сајмон Гугенхајм 1972. године.[6][7]

Рани животи и образовање

Гел-Ман је рођен на доњем Менхетну у породици јеврејских досељеника из Аустроугарске империје, тачније из Черноваца (историјско име: Czernowitz) у данашњој Украјини.[8][9] Његови родитељи били су Полина (рођ. Рајчстајн) и Артур Исидор Гел-Ман, које је предавао енглески језик као други језик (ЕСЛ).[10]

Подстакнут снажном дечачком радозналошћу и љубављу према природи и математици, он је дипломирао као валедикторијан у Колумбија граматичкој и припремној школи са 14 година, а потом је уписао Јејл колеџ као члан Џонатан Едвардс колеџа.[2][11] На Јејлу је учествовао на Вилијам Лоул Путам математичком такмичењу и био је у тиму који је представљао универзитет Јејл (заједно са Маријем Герштенхабером и Хенријем О. Полаком) који је освојио другу награду 1947. године.[12]

Gell-Mann graduated from Yale with a bachelor's degree in physics in 1948 and intended to pursue graduate studies in physics. He sought to remain in the Ivy League for his graduate education and applied to Princeton University as well as Harvard University. He was rejected by Princeton and accepted by Harvard, but the latter institution was unable to offer him any of the financial assistance that he needed. He was accepted by the Massachusetts Institute of Technology (MIT) and received a letter from Victor Weisskopf urging him to attend MIT and become Weisskopf's research assistant, which would provide Gell-Mann with the financial assistance he needed. Unaware of MIT's eminent status in physics research, Gell-Mann was "miserable" with the fact that he would not be able to attend Princeton or Harvard and considered suicide. He stated that he realized he could try to first enter MIT and commit suicide afterwards if he found it to be truly terrible. However, he couldn't first choose suicide and then attend MIT; the two "didn't commute", as Gell-Mann said.[13][14]

Gell-Mann received his Ph.D. in physics from MIT in 1951 after completing a doctoral dissertation, titled "Coupling strength and nuclear reactions", under the supervision of Victor Weisskopf.[15][16][17]

Career

Gell-Mann was a postdoctoral fellow at the Institute for Advanced Study in 1951,[2] and a visiting research professor at the University of Illinois at Urbana–Champaign from 1952 to 1953.[18] He was a visiting associate professor at Columbia University and an associate professor at the University of Chicago in 1954–1955 before moving to the California Institute of Technology, where he taught from 1955 until he retired in 1993.[19]

Nuclear physics

In 1958, Gell-Mann in collaboration with Richard Feynman, in parallel with the independent team of E. C. George Sudarshan and Robert Marshak, discovered the chiral structures of the weak interaction of physics and developed the V-A theory (vector minus axial vector theory).[20] This work followed the experimental discovery of the violation of parity by Chien-Shiung Wu, as suggested by Chen-Ning Yang and Tsung-Dao Lee, theoretically.[21]

Gell-Mann's work in the 1950s involved recently discovered cosmic ray particles that came to be called kaons and hyperons. Classifying these particles led him to propose that a quantum number called strangeness would be conserved by the strong and the electromagnetic interactions, but not by the weak interactions.[22] (Kazuhiko Nishijima arrived at this idea independently, calling the quantity -charge after the eta meson.[23][24]) Another of Gell-Mann's ideas is the Gell-Mann–Okubo formula, which was, initially, a formula based on empirical results, but was later explained by his quark model.[25] Gell-Mann and Abraham Pais were involved in explaining the puzzling aspect of the neutral kaon mixing.[26]

Murray Gell-Mann's fortunate encounter with mathematician Richard Earl Block at Caltech, in the fall of 1960, "enlightened" him to introduce a novel classification scheme, in 1961, for hadrons.[27][28] A similar scheme had been independently proposed by Yuval Ne'eman, and is now explained by the quark model.[29] Gell-Mann referred to the scheme as the eightfold way, because of the octets of particles in the classification (the term is a reference to the Eightfold Path of Buddhism).[2][16]

Gell-Mann, along with Maurice Lévy, developed the sigma model of pions, which describes low-energy pion interactions.[30]

In 1964, Gell-Mann and, independently, George Zweig went on to postulate the existence of quarks, particles of which the hadrons of this scheme are composed. The name was coined by Gell-Mann and is a reference to the novel Finnegans Wake, by James Joyce ("Three quarks for Muster Mark!" book 2, episode 4). Zweig had referred to the particles as "aces",[31] but Gell-Mann's name caught on. Quarks, antiquarks, and gluons were soon established as the underlying elementary objects in the study of the structure of hadrons. He was awarded a Nobel Prize in Physics in 1969 for his contributions and discoveries concerning the classification of elementary particles and their interactions.[32]

In the 1960s, he introduced current algebra as a method of systematically exploiting symmetries to extract predictions from quark models, in the absence of reliable dynamical theory. This method led to model-independent sum rules confirmed by experiment and provided starting points underpinning the development of the Standard Model (SM), the widely accepted theory of elementary particles.[33][34]

Референце

  1. ^ „Professor Murray Gell-Mann ForMemRS”. London: Royal Society. Архивирано из оригинала 17. 11. 2015. г. 
  2. ^ а б в г Johnson, George (24. 5. 2019). „Murray Gell-Mann, Who Peered at Particles and Saw the Universe, Dies at 89”. Obituaries. The New York Times. ISSN 0362-4331. Приступљено 24. 5. 2019. 
  3. ^ Carroll, Sean (28. 5. 2019). „The Physicist Who Made Sense of the Universe - Murray Gell-Mann's discoveries illuminated the most puzzling aspects of nature, and changed science forever.”. The New York Times. Приступљено 28. 5. 2019. 
  4. ^ „The Nobel Prize in Physics 1969”. NobelPrize.org (на језику: енглески). Приступљено 21. 12. 2018. 
  5. ^ „Nobel Prize Winner Appointed Presidential Professor at USC”. Архивирано из оригинала 19. 9. 2010. г. 
  6. ^ Gell-Mann, M. (1972). „Quarks”. CERN-affiliated article by Gell-Mann. Springer. стр. 733—761. ISBN 978-3-7091-4036-9. doi:10.1007/978-3-7091-4034-5_20. 
  7. ^ Scientific publications of M. Gell-Mann on INSPIRE-HEP
  8. ^ M. Gell-Mann (октобар 1997). „My Father”. Web of Stories. Приступљено 1. 10. 2010. 
  9. ^ J. Brockman (2003). „The Making of a Physicist: A talk with Murray Gell-Mann”. Edge Foundation, Inc. Приступљено 1. 10. 2010. 
  10. ^ Profile, NNDB; accessed April 26, 2015.
  11. ^ „Notable Alumni”. Jonathan Edwards College. Приступљено 27. 5. 2019. 
  12. ^ G. W. Mackey (1947). „The William Lowell Putnam Mathematical Competition”. The American Mathematical Monthly. 54 (7): 400—3. JSTOR 2304390. doi:10.1080/00029890.1947.11990193. 
  13. ^ Murray Gell-Mann - MIT or suicide (17/200) (на језику: енглески), Архивирано из оригинала 2021-12-11. г., Приступљено 2020-06-06 
  14. ^ Strogatz, Steven (2013). The Joy of x: A Guided Tour of Math, from One to Infinity. Mariner Books. стр. 27. ISBN 978-0544105850. 
  15. ^ Gell-Mann, Murray (1951). Coupling strength and nuclear reactions (Теза). Massachusetts Institute of Technology. hdl:1721.1/12195. 
  16. ^ а б „Murray Gell-Mann, Nobel Prize-winning physicist who named quarks, dies at 89”. The Guardian. 26. 5. 2019. Приступљено 27. 5. 2019. 
  17. ^ Мари Гел-Ман на сајту MGP (језик: енглески)
  18. ^ in 1954, there, with Francis E. Low, he discovered the renormalization group equation of QED.
  19. ^ „Interview with Murray Gell-Mann [Oral History]”. Caltech Institute Archives. Приступљено 25. 5. 2019. 
  20. ^ Sudarshan, E. C. G.; Marshak, R. E. (1. 6. 2016). „Origin of the Universal V‐A theory”. AIP Conference Proceedings. 300 (1): 110—124. ISSN 0094-243X. S2CID 10153816. doi:10.1063/1.45454. hdl:2152/29431Слободан приступ. 
  21. ^ Gleick, James (1992). Genius: The Life and Science of Richard Feynman. Pantheon Books. ISBN 0-679-40836-3. OCLC 243743850. 
  22. ^ Gell-Mann, M. (1956). „The Interpretation of the New Particles as Displaced Charge Multiplets”. Il Nuovo Cimento. 4 (supplement 2): 848—866. Bibcode:1956NCim....4S.848G. S2CID 121017243. doi:10.1007/BF02748000. 
  23. ^ Nishijima, K (1955). „Charge Independence Theory of V Particles”. Progress of Theoretical Physics. 13 (3): 285—304. Bibcode:1955PThPh..13..285N. doi:10.1143/PTP.13.285Слободан приступ. 
  24. ^ Nambu, Y. (2009). „Kazuhiko Nishijima”. Physics Today. 62 (8): 58. Bibcode:2009PhT....62h..58N. doi:10.1063/1.3206100Слободан приступ. 
  25. ^ Georgi, Howard (1999). Lie Algebras in Particle Physics: from Isospin to Unified Theories (2nd изд.). Perseus Books. ISBN 9780738202334. OCLC 479362196. 
  26. ^ Squires, Gordon Leslie (26. 7. 1999). „Quantum mechanics – Applications of quantum mechanics – Decay of the Kaon”. Encyclopedia Britannica. Приступљено 27. 5. 2019. 
  27. ^ Gell-Mann, M. (15. 3. 1961). The Eightfold Way: A Theory of Strong Interaction Symmetry (Извештај). Pasadena, CA: California Inst. of Tech., Synchrotron Laboratory. doi:10.2172/4008239. TID-12608 — преко OSTI.GOV. 
  28. ^ Murray Gell-Mann - Sheldon Glashow. The SU(2) times U1 theory: Part 2 (91/200). Web of Stories. 19. 5. 2016. Архивирано из оригинала 2021-12-11. г. Приступљено 3. 6. 2019 — преко YouTube. 
  29. ^ Ne'eman, Y. (август 1961). „Derivation of Strong Interactions from a Gauge Invariance”. Nuclear Physics. Amsterdam: North-Holland Publishing Co. 26 (2): 222—229. Bibcode:1961NucPh..26..222N. doi:10.1016/0029-5582(61)90134-1. 
  30. ^ Gell-Mann, M.; Lévy, M. (1960). „The axial vector current in beta decay”. Il Nuovo Cimento. 16 (4): 705—726. Bibcode:1960NCim...16..705G. S2CID 122945049. doi:10.1007/BF02859738. 
  31. ^ G. Zweig (1980). „An SU(3) model for strong interaction symmetry and its breaking II”. Ур.: D. Lichtenberg; S. Rosen. Developments in the Quark Theory of Hadrons. 1. Hadronic Press. стр. 22—101. 
  32. ^ Simple listing of Nobel Prize in Physics, 1969 Retrieved February 15, 2017
  33. ^ Ellis, John (2011). „Prospects for New Physics at the LHC”. Ур.: Fritzsch, Harald; Phua, K. K.; Baaquie, B. E. Proceedings of the Conference in Honour of Murray Gell-Mann's 80th Birthday: Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity : Nanyang Technological University, Singapore, February 24–26, 2010. World Scientific. ISBN 9789814335607. 
  34. ^ Cao, Tian Yu (2010). From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism. Cambridge University Press. ISBN 9781139491600. 

Литература

Спољашње везе