Курт Гедел

Из Википедије, слободне енциклопедије
Курт Гедел

Kurt Godel.jpg
Курт Гедел, 1906—1978

Општи подаци
Датум рођења 28. април 1906.
Место рођења Брно (Аустроугарска)
Датум смрти 14. јануар 1978.
Место смрти Принстон (САД)
Рад
Поље математика

Курт Гедел (нем. Kurt Gödel; Брно, 28. април 1906Принстон, 14. јануар 1978) је био аустријско-амерички математичар логичар који је 1931. године доказао комплетност првог реда инфинитезималног рачуна функција. Затим је уследио његов рад О формалној неодређености поставки у „Принципима математике“ и односним системима (нем. Uber formal unentscheidbare Sätze der 'Principia Mathematica' und verwandter Systeme), у којем је доказао прву од своје две знамените теореме некомплетности. Овај рад, датиран 17. новембра 1930, изворно је објављен на немачком, 1931. године у часопису „Монатсхефте фир математик“ (нем. Monatshefte für Mathematik).

Године 1938. Гедел је показао да се Канторова хипотеза континуума не може оповргнути унутар стандардне Цермело—Френкел теорије скупова, чак ни ако јој се дода аксиома избора. Амерички математичар Пол Коен је 1963. године шокирао математичку заједницу доказавши да се хипотеза континуума не може ни доказати унутар ZFC.

Његов допринос на пољу математике, искористио је Даглас Хофштатер за приказивање своје философије у књизи Гедел, Есхер, Бах - вечна златна плетеница.

Теорема непотпуности[уреди]

„Достигнуће Курта Гедела у модерној логици је сингуларно и монументално — заиста, оно је више од споменика, то је међаш који ће остати видљив далеко у простору и времену. ... Природа и могућности логике су сигурно потпуно промењене Геделовим достигнућем.“ —Џон фон Нојман[1]

1931. док је још боравио у Бечу, Гедел је објавио своје теореме о непотпуности у раду О формалној неодређености поставки у „Принципима математике“ и односним системима (нем. Uber formal unentscheidbare Sätze der 'Principia Mathematica' und verwandter Systeme). У том раду је доказао да за сваки израчунљив аксиоматски систем који је довољно снажан да опише аритметику природних бројева (на пример Пеанове аксиоме или Зермело-Френкел теорија скупова са аксиомом избора), важи:

  1. ако је систем конзистентан, он не може бити потпун.
  2. конзистентност аксиома не може бити доказана унутар система.

Ове теореме су окончале пола века дуге покушаје да се пронађе скуп аксиома довољних за заснивање целокупне математике, који су почели радом Фрегеа а кулминирали у делу Principia Mathematica Расела и Вајтхеда и Хилбертовим формализмом.

Основна идеја која лежи у срцу теореме о непотпуности је прилично једноставна. Гедел је у суштини конструисао формулу која тврди да је недоказива у датом формалном систему. Ако би била доказива, онда би била нетачна, што представља контрадикцију идеји да су у конзистентном систему доказиви искази увек тачни. Стога ће увек постојати бар један истинит али недоказив исказ.

Види још[уреди]

Референце[уреди]

  1. ^ Halmos, P.R. "The Legend of von Neumann", The American Mathematical Monthly, Vol. 80, No. 4. (April 1973), pp. 382-394

Литература[уреди]

  • John L. Casti and Werner DePauli, 2000. Gödel: A Life of Logic, Basic Books (Perseus Books Group), Cambridge, MA. ISBN 0-7382-0518-4.
  • John W. Dawson, Jr. Logical Dilemmas: The Life and Work of Kurt Gödel. AK Peters, Ltd., 1996.
  • John W. Dawson, Jr, 1999. "Gödel and the Limits of Logic", Scientific American, vol. 280 num. 6, pp. 76-81
  • Torkel Franzén, 2005. Gödel's Theorem: An Incomplete Guide to Its Use and Abuse. Wellesley, MA: A K Peters.
  • Ivor Grattan-Guinness, 2000. The Search for Mathematical Roots 1870–1940. Princeton Univ. Press.
  • Jaakko Hintikka, 2000. On Gödel. Wadsworth.
  • Douglas Hofstadter, 1980. Gödel, Escher, Bach. Vintage.
  • Stephen Kleene, 1967. Mathematical Logic. Dover paperback reprint ca. 2001.
  • Stephen Kleene, 1980. Introduction to Metamathematics. North Holland ISBN 0-7204-2103-9 (Ishi Press paperback. 2009. ISBN 978-0-923891-57-2. pp. )
  • J.R. Lucas, 1970. The Freedom of the Will. Clarendon Press, Oxford.
  • Ernest Nagel and Newman, James R., 1958. Gödel's Proof. New York Univ. Press.
  • Procházka, Jiří, 2006, 2006, 2008, 2008, 2010. Kurt Gödel: 1906–1978: Genealogie. ITEM, Brno. Volume I. Brno 2006, ISBN 80-902297-9-4. In Ger., Engl. Volume II. Brno 2006, ISBN 80-903476-0-6. In Germ., Engl. Volume III. Brno 2008, ISBN 80-903476-4-9. In Germ., Engl. Volume IV. Brno, Princeton. 2008. ISBN 978-80-903476-5-6. pp. In Germ., Engl. Volume V,Brno,Princeton 2010, ISBN 80-903476-9-X. In Germ., Engl.
  • Procházka, Jiří, 2012. "Kurt Gödel: 1906-1978: Historie". ITEM,Brno, Wien, Princeton. Volume I. ISBN 978-80-903476-2-5. In Ger., Engl.
  • Ed Regis, 1987. Who Got Einstein's Office? Addison-Wesley Publishing Company, Inc.
  • Raymond Smullyan, 1992. Godel's Incompleteness Theorems. Oxford University Press.
  • Olga Taussky-Todd, 1983. Remembrances of Kurt Gödel. Engineering & Science, Winter 1988.
  • Hao Wang, 1987. Reflections on Kurt Gödel. MIT Press.
  • Hao Wang, 1996. A Logical Journey: From Godel to Philosophy. MIT Press.
  • Yourgrau, Palle, 1999. Gödel Meets Einstein: Time Travel in the Gödel Universe. Chicago: Open Court.
  • Yourgrau, Palle, 2004. A World Without Time: The Forgotten Legacy of Gödel and Einstein. Basic Books. Book review by John Stachel in the Notices of the American Mathematical Society (54 (7), pp. 861-868):

Спољашње везе[уреди]