Лед — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Замрзнута вода: чврсто стање воде}}{{рут}}
[[Датотека:Mg-k_Eisfall.jpg|мини|десно|Залеђени [[водопад]] на планинама [[Рен (планине)|Рен]]]]
{{Infobox material
| name = Лед
| image = File:Ice Block, Canal Park, Duluth (32752478892).jpg
| image_size =
| alt = A picture of ice.
| caption =
| type =
| density = 0.9167<ref name=CRC/>–0.9168<ref name=Voitkovskii/> g/cm<sup>3</sup>


| abbe_number =

| refractive_index = 1,309
| youngs_modulus = 3400 to 37,500 [[Kilogram-force|kg-force]]/cm<sup>3</sup><ref name=Voitkovskii>{{Citation
|last = Voitkovskii
|first = K. F.
|title = Translation of: "The mechanical properties of ice" ("Mekhanicheskie svoistva l'da")
|publisher = Academy of Sciences (USSR)
|language = en|url = http://www.dtic.mil/dtic/tr/fulltext/u2/284777.pdf
|url-status = live
|archive-url = https://web.archive.org/web/20170210002542/http://www.dtic.mil/dtic/tr/fulltext/u2/284777.pdf
|archive-date = 10 February 2017
}}</ref>
| tensile_strength = 5 to 18&nbsp;kg-force/cm<sup>2</sup><ref name=Voitkovskii/>
| elongation =
| compressive_strength = 24 to 60&nbsp;kg-force/cm<sup>2</sup><ref name=Voitkovskii/>
| poissons_ratio = {{val|0.36|0.13}}<ref name=Voitkovskii/>
| thermal_conductivity = 0.0053(1 + 0.105 ''θ'') cal/(cm s K), ''θ'' = temperature in °C<ref name=Voitkovskii/>
| thermal_diffusivity =
| linear_expansion = {{val|5.5|e=-5}}<ref name=Voitkovskii/>
| specific_heat = 0.5057 − 0.001863 ''θ'' cal/(g K), ''θ'' = absolute value of temperature in °C<ref name=Voitkovskii/>
| specific_heat_note =
| dielectric_constant = ~3.15
| footnotes = The properties of ice vary substantially with temperature, purity and other factors.
}}
{{друго значење|диоду која емитује светлост (LED)|[[Светлећа диода]]}}
{{друго значење|диоду која емитује светлост (LED)|[[Светлећа диода]]}}


'''Лед''' представља чврсто [[агрегатна стања|агрегатно стање]] [[вода|воде]], које она достиже на температурама једнаким или мањим од 0-{°C}- (тачка мржњења). Због специфичног просторног распореда који молекули воде тада заузимају, лед има мању густину од воде (за око 8,5%) и плута на њеној површини (видети [[Вода#Агрегатна стања|Вода: Агрегатна стања]]). При смрзавању, запремина воде се повећава за око 11%.<ref name="Housecroft3rd">{{Housecroft3rd}}</ref><ref name="Атлас_фосила">{{Cite book | author=Група аутора | title=Атлас фосила и минерала | edition= | issue= | pages= | publisher=Креативни центар: Београд | year=2003 | doi= | url= |id=}}</ref>
'''Лед''' представља чврсто [[агрегатна стања|агрегатно стање]] [[вода|воде]], које она достиже на температурама једнаким или мањим од 0-{°C}- (тачка мржњења).<ref>{{Cite web|url=https://www.merriam-webster.com/dictionary/ice|title=Definition of ICE|website=www.merriam-webster.com|language=en|access-date=2018-06-19}}</ref><ref>{{Cite web|url=http://www.dictionary.com/browse/ice|title=the definition of ice|website=www.dictionary.com|language=en|access-date=2018-06-19}}</ref> Због специфичног просторног распореда који молекули воде тада заузимају, лед има мању густину од воде (за око 8,5%) и плута на њеној површини (видети [[Вода#Агрегатна стања|Вода: Агрегатна стања]]). При смрзавању, запремина воде се повећава за око 11%.<ref name="Housecroft3rd">{{Housecroft3rd}}</ref><ref name="Атлас_фосила">{{Cite book | author=Група аутора | title=Атлас фосила и минерала | edition= | issue= | pages= | publisher=Креативни центар: Београд | year=2003 | doi= | url= |id=}}</ref>


[[Датотека:Mg-k_Eisfall.jpg|мини|лево|Залеђени [[водопад]] на планинама [[Рен (планине)|Рен]]]]
Специфична топлота леда је дупло мања од воде у течном стању. Због тога се лед релативно брзо образује на површини воде расхлађене до температуре од 0-{°C}-, а за његово топљење потребна је много мања количина топлоте (79,72 цал г -1) него за упаравање течне воде (539,6 цал г -1). Повећањем [[салинитет]]а снижава се тачка мржњења воде; тако се [[Morska voda|морска вода]] (просечног салинитета од 35 -{g}- Л -1) мрзне тек на -1,91-{°C}-.<ref name="CRC">{{RubberBible87th}}</ref><ref name="Merck13th">{{Merck13th}}</ref> Највеће количине леда у биосфери се налазе у поларним капама.
Специфична топлота леда је дупло мања од воде у течном стању. Због тога се лед релативно брзо образује на површини воде расхлађене до температуре од 0-{°C}-, а за његово топљење потребна је много мања количина топлоте (79,72 цал г -1) него за упаравање течне воде (539,6 цал г -1). Повећањем [[салинитет]]а снижава се тачка мржњења воде; тако се [[Morska voda|морска вода]] (просечног салинитета од 35 -{g}- Л -1) мрзне тек на -1,91-{°C}-.<ref name="CRC87">{{RubberBible87th}}</ref><ref name="Merck13th">{{Merck13th}}</ref> Највеће количине леда у биосфери се налазе у поларним капама.


Лед није само својство крутости воде. Наиме, таква врста леда се у науци назива „водени лед“, док готово сваки [[гас]]овити спој при одређеним температурама и притиском може прећи у стање леда. Гледано у [[свемир]]у, на [[Марс]]у постоје одређене количине воденог леда, али нпр. на [[Плутон]]у постоји тзв. [[метан]]ски лед, на [[Уран]]у [[амонијак]]ов лед итд.
Лед није само својство крутости воде. Наиме, таква врста леда се у науци назива „водени лед“, док готово сваки [[гас]]овити спој при одређеним температурама и притиском може прећи у стање леда. Гледано у [[свемир]]у, на [[Марс]]у постоје одређене количине воденог леда, али нпр. на [[Плутон]]у постоји тзв. [[метан]]ски лед, на [[Уран]]у [[амонијак]]ов лед итд.

In the [[Solar System]], ice is abundant and occurs naturally from as close to the Sun as [[Mercury (planet)|Mercury]] to as far away as the [[Oort cloud]] objects. Beyond the Solar System, it occurs as [[interstellar ice]]. It is abundant on [[Earth]]'s surface{{spaced ndash}}particularly [[Polar ice cap|in the polar regions]] and above the [[snow line]]<ref>{{cite journal |url=http://www.jhuapl.edu/techdigest/TD/td2602/Prockter.pdf |title=Ice in the Solar System |author=Prockter, Louise M. |journal=Johns Hopkins APL Technical Digest |volume=26 |issue=2 |year=2005 |page=175 |url-status=dead |archive-url=https://web.archive.org/web/20150319063545/http://www.jhuapl.edu/techdigest/TD/td2602/Prockter.pdf |archive-date=19 March 2015 |access-date=21 December 2013 }}</ref>{{spaced ndash}}and, as a common form of [[precipitation]] and [[Deposition (phase transition)|deposition]], plays a key role in Earth's [[water cycle]] and [[climate]]. It falls as snowflakes and hail or occurs as frost, icicles or [[ice spike]]s and aggregates from snow as [[glaciers]] and ice sheets.

== Физичка својства ==
[[File:Ice Ih Crystal Lattice.png|thumb|250px|The three-dimensional crystal structure of H{{sub|2}}O ice I<sub>h</sub> (c) is composed of bases of H{{sub|2}}O ice molecules (b) located on lattice points within the two-dimensional hexagonal space lattice (a).<ref name="Physics of Ice">Physics of Ice, V. F. Petrenko, R. W. Whitworth, Oxford University Press, 1999, {{ISBN|9780198518945}}</ref><ref>{{cite journal|doi = 10.1063/1.1749327|title = A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions|year = 1933|author1=Bernal, J. D. |author2=Fowler, R. H. |journal = The Journal of Chemical Physics|volume = 1|issue = 8|page = 515|bibcode = 1933JChPh...1..515B }}</ref>]]

As a naturally occurring crystalline inorganic solid with an ordered structure, ice is considered to be a [[mineral]].<ref>{{Cite book|url=https://books.google.com/books?id=WFefWAq1Sh0C&pg=PA90|title=Methane Gas Hydrate|last=Demirbas|first=Ayhan|date=2010|publisher=Springer Science & Business Media|isbn=978-1-84882-872-8|page=90}}</ref><ref>{{cite web|url=https://www.minerals.net/mineral/ice.aspx|title=The Mineral Ice|website=minerals.net|access-date=2019-01-09}}</ref> It possesses a regular [[crystalline]] structure based on the [[molecule]] of water, which consists of a single [[oxygen]] atom [[covalently]] bonded to two [[hydrogen atom]]s, or H–O–H. However, many of the physical properties of water and ice are controlled by the formation of [[hydrogen bond]]s between adjacent oxygen and hydrogen atoms; while it is a weak bond, it is nonetheless critical in controlling the structure of both water and ice.

An unusual property of water is that its solid form—ice frozen at atmospheric pressure—is approximately 8.3% less dense than its liquid form; this is equivalent to a volumetric expansion of 9%. The [[density]] of ice is 0.9167<ref name=CRC>{{cite book |chapter=Properties of Ice and Supercooled Water |first=Allan H. |last=Harvey |editor1= Haynes, William M. |editor2 = Lide, David R. |editor3=Bruno, Thomas J. |title = CRC Handbook of Chemistry and Physics |edition = 97th |location = Boca Raton, FL |publisher = CRC Press |year = 2017 |isbn = 978-1-4987-5429-3}}</ref>–0.9168<ref name=Voitkovskii/>&nbsp;g/cm<sup>3</sup> at 0&nbsp;°C and standard atmospheric pressure (101,325 Pa), whereas water has a density of 0.9998<ref name=CRC/>–0.999863<ref name=Voitkovskii/> g/cm<sup>3</sup> at the same temperature and pressure. Liquid water is densest, essentially 1.00&nbsp;g/cm<sup>3</sup>, at 4&nbsp;°C and begins to lose its density as the water molecules begin to form the [[Hexagonal (crystal system)|hexagonal]] [[crystal]]s of [[ice crystals|ice]] as the freezing point is reached. This is due to hydrogen bonding dominating the intermolecular forces, which results in a packing of molecules less compact in the solid. Density of ice increases slightly with decreasing temperature and has a value of 0.9340 g/cm<sup>3</sup> at −180&nbsp;°C (93 K).<ref>{{RubberBible86th}}</ref>

When water freezes, it increases in volume (about 9% for fresh water).<ref>Sreepat, Jain. ''Fundamentals of Physical Geology''. New Delhi: Springer, India, Private, 2014. 135. Print. {{ISBN|978-81-322-1538-7}}</ref> The effect of expansion during freezing can be dramatic, and ice expansion is a basic cause of [[freeze-thaw]] weathering of rock in nature and damage to building foundations and roadways from [[frost heaving]]. It is also a common cause of the flooding of houses when water pipes burst due to the pressure of expanding water when it freezes.

The result of this process is that ice (in its most common form) floats on liquid water, which is an important feature in Earth's [[biosphere]]. It has been argued that without this property, natural bodies of water would freeze, in some cases permanently, from the bottom up,<ref>{{cite web|url=http://www.haydenplanetarium.org/tyson/read/1998/05/01/water-water|title=Water, Water|author=Tyson, Neil deGrasse|publisher=haydenplanetarium.org|url-status=live|archive-url=https://web.archive.org/web/20110726095920/http://www.haydenplanetarium.org/tyson/read/1998/05/01/water-water|archive-date=26 July 2011}}</ref> resulting in a loss of bottom-dependent animal and plant life in fresh and sea water. Sufficiently thin [[ice sheet]]s allow light to pass through while protecting the underside from short-term weather extremes such as [[wind chill]]. This creates a sheltered environment for bacterial and algal colonies. When sea water freezes, the ice is riddled with brine-filled channels which sustain [[Sympagic ecology|sympagic organisms]] such as bacteria, algae, copepods and annelids, which in turn provide food for animals such as krill and specialised fish like the [[bald notothen]], fed upon in turn by larger animals such as [[emperor penguins]] and [[minke whales]].<ref>[http://www.acecrc.sipex.aq/access/page/?page=d664da82-b244-102a-8ea7-0019b9ea7c60 Sea Ice Ecology] {{webarchive|url=https://web.archive.org/web/20120321204557/http://www.acecrc.sipex.aq/access/page/?page=d664da82-b244-102a-8ea7-0019b9ea7c60 |date=21 March 2012 }}. Acecrc.sipex.aq. Retrieved 30 October 2011.</ref>

When ice melts, it absorbs as much [[Heat|energy]] as it would take to heat an equivalent mass of water by 80&nbsp;°C. During the melting process, the temperature remains constant at 0&nbsp;°C. While melting, any energy added breaks the hydrogen bonds between ice (water) molecules. Energy becomes available to increase the thermal energy (temperature) only after enough hydrogen bonds are broken that the ice can be considered liquid water. The amount of energy consumed in breaking hydrogen bonds in the transition from ice to water is known as the ''[[heat of fusion]]''.

As with water, ice absorbs light at the red end of the spectrum preferentially as the result of an overtone of an oxygen–hydrogen (O–H) bond stretch. Compared with water, this absorption is shifted toward slightly lower energies. Thus, ice appears blue, with a slightly greener tint than liquid water. Since absorption is cumulative, the color effect intensifies with increasing thickness or if internal reflections cause the light to take a longer path through the ice.<ref name=color>{{cite book|author1=Lynch, David K. |author2=Livingston, William Charles |title=Color and light in nature|url=https://books.google.com/books?id=4Abp5FdhskAC&pg=PA161|year=2001|publisher=Cambridge University Press|isbn=978-0-521-77504-5|pages=161–}}</ref>

Other colors can appear in the presence of light absorbing impurities, where the impurity is dictating the color rather than the ice itself. For instance, [[iceberg]]s containing impurities (e.g., sediments, algae, air bubbles) can appear brown, grey or green.<ref name=color/>


== Референце ==
== Референце ==
{{reflist|2}}
{{reflist|}}


== Литература ==
== Литература ==
{{refbegin|30em}}
* {{Cite book |ref= harv|author=Група аутора | title=Атлас фосила и минерала | edition= | issue= | publisher=Креативни центар: Београд | year=2003 | doi= | url= |id=}}
* {{Cite book |ref= harv|author=Група аутора | title=Атлас фосила и минерала | edition= | issue= | publisher=Креативни центар: Београд | year=2003 | doi= | url= |id=}}
* {{cite journal |last1=Rothrock |first1=D.A. |first2=J. |last2=Zhang |title = Arctic Ocean Sea Ice Volume: What Explains Its Recent Depletion?|journal = [[J. Geophys. Res.]] |volume = 110|issue = C1|date = 2005|pages = C01002|doi=10.1029/2004JC002282|bibcode=2005JGRC..11001002R|url=http://psc.apl.washington.edu/zhang/Pubs/rothrock_zhang_2004JC002282.pdf|doi-access=free}}
* {{cite web |title=All About Sea Ice |publisher=National Snow and Ice Data Center, University of Colorado, Boulder |url=http://nsidc.org/cryosphere/seaice/ |ref={{harvid|NSIDC All About Sea Ice}}}}
* {{cite journal |last1=Vinnikov |first1=K.Y. |first2=D.J. |last2=Cavalieri |first3=C.L. |last3=Parkinson |title=A model assessment of satellite observed trends in polar sea ice extents |journal=Geophys. Res. Lett. |volume=33 |issue=5 |pages=L05704 |date=March 2006 |doi=10.1029/2005GL025282 |bibcode = 2006GeoRL..33.5704V |citeseerx=10.1.1.594.2054 }}
* {{cite web |title=Cryosphere Glossary |publisher=National Snow and Ice Data Center, University of Colorado, Boulder |url=http://nsidc.org/cgi-bin/words/glossary.pl}}
* {{cite web |title=Ice Glossary |publisher=Environment Canada |url=http://www.ec.gc.ca/glaces-ice/default.asp?lang=En&n=501D72C1-1 |ref={{harvid|Environment Canada Ice Glossary}}|date=2010-09-27 }}
* {{cite web |title=WMO Sea-Ice Nomenclature |id=WMO/OMM/ВМО – No. 259 • Edition 1970–2004 |publisher=World Meteorological Organization |url=http://www.jcomm.info/components/com_oe/oe.php?task=download&id=27226&version=March%202014&lang=1&format=1 |ref={{harvid|WMO Sea-Ice Nomenclature}}}}
* {{cite web |url=http://www.acecrc.sipex.aq/access/page/?page=d664da82-b244-102a-8ea7-0019b9ea7c60 |title=Sea Ice Ecology |website=Sea Ice Physics and Ecosystem eXperiment (SIPEX) |publisher=Antarctic Climate & Ecosystems CRC |access-date=23 June 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120320075657/http://www.acecrc.sipex.aq/access/page/?page=d664da82-b244-102a-8ea7-0019b9ea7c60 |archive-date=2012-03-20}}
* {{cite journal |last1=Barber |first1=D. G. |last2=Iacozza |first2=J. |title=Historical analysis of sea ice conditions in M'Clintock Channel and the Gulf of Boothia, Nunavut: implications for ringed seal and polar bear habitat |journal=Arctic |volume=57 |issue=1 |pages=1–14 |date=March 2004 |jstor=40512590 |url=http://goliath.ecnext.com/coms2/gi_0199-263435/Historical-analysis-of-sea-ice.html |doi=10.14430/arctic478}}
* {{cite journal |last1=Stirling |first1=I. |last2=Lunn |first2=N. J. |last3=Iacozza |first3=J. |last4=Elliott |first4=C. |last5=Obbard |first5=M. |title=Polar bear distribution and abundance on the southwestern Hudson Bay coast during open water season, in relation to population trends and annual ice patterns |journal=Arctic |volume=57 |issue=1 |pages=15–26 |date=March 2004 |jstor=40512591 |doi=10.14430/arctic479}}
* {{cite journal |last1=Stirling |first1=I. |last2=Parkinson |first2=C. L. |title=Possible effects of climate warming on selected populations of polar bears (''Ursus maritimus'') in the Canadian Arctic |journal=Arctic |volume=59 |issue=3 |pages=261–275 |doi=10.14430/arctic312 |date=September 2006 |jstor=40512813 |url=http://www.nasa.gov/pdf/157360main_StirlingParkinson2006_Arctic59-3-261.pdf |hdl=2060/20060020227 |hdl-access=free }}

{{refend}}


== Спољашње везе ==
== Спољашње везе ==
Ред 25: Ред 91:
* [http://www.phys.unsw.edu.au/~jw/unfreezable.html 'Незамрзива вода', 'везана вода' и вода хидрације]
* [http://www.phys.unsw.edu.au/~jw/unfreezable.html 'Незамрзива вода', 'везана вода' и вода хидрације]
* [http://permanent.access.gpo.gov/websites/armymil/www.crrel.usace.army.mil/techpub/CRREL_Reports/reports/sr96_02.pdf Електромеханичка својства леда]
* [http://permanent.access.gpo.gov/websites/armymil/www.crrel.usace.army.mil/techpub/CRREL_Reports/reports/sr96_02.pdf Електромеханичка својства леда]
* [http://www.sciencebits.com/StandingOnIce Estimating the bearing capacity of ice]
* [http://www.physorg.com/news93200439.html High-temperature, high-pressure ice]
* [https://web.archive.org/web/20090318135129/http://blogs.static.mentalfloss.com/blogs/archives/20311.html The Surprisingly Cool History of Ice]



{{-}}
{{Климатски фактори}}
{{Климатски фактори}}
{{Вода}}
{{Вода}}
{{Минерали}}
{{Минерали}}
{{Authority control}}


{{нормативна контрола}}
{{нормативна контрола}}

Верзија на датум 5. октобар 2021. у 22:52

Лед
A picture of ice.
Физичке особине
Густина (ρ)0.9167[1]–0.9168[2] g/cm3
Индекс рефракције (n)1,309
Механичка својства
Јунгов модул (E)3400 to 37,500 kg-force/cm3[2]
Затезна чврстоћаt)5 to 18 kg-force/cm2[2]
Компресивна јачина (σc)24 to 60 kg-force/cm2[2]
Пуасонов однос (ν)0,36±0,13[2]
Термална својства
Топлотна проводљивост (k)0.0053(1 + 0.105 θ) cal/(cm s K), θ = temperature in °C[2]
Коефицијент линеарне термичке експанзије (α)5,5×10−5[2]
Специфични топлотни капацитет (c)0.5057 − 0.001863 θ cal/(g K), θ = absolute value of temperature in °C[2]
Електрична својства
Диелектрична константа (εr)~3.15
The properties of ice vary substantially with temperature, purity and other factors.

Лед представља чврсто агрегатно стање воде, које она достиже на температурама једнаким или мањим од 0°C (тачка мржњења).[3][4] Због специфичног просторног распореда који молекули воде тада заузимају, лед има мању густину од воде (за око 8,5%) и плута на њеној површини (видети Вода: Агрегатна стања). При смрзавању, запремина воде се повећава за око 11%.[5][6]

Залеђени водопад на планинама Рен

Специфична топлота леда је дупло мања од воде у течном стању. Због тога се лед релативно брзо образује на површини воде расхлађене до температуре од 0°C, а за његово топљење потребна је много мања количина топлоте (79,72 цал г -1) него за упаравање течне воде (539,6 цал г -1). Повећањем салинитета снижава се тачка мржњења воде; тако се морска вода (просечног салинитета од 35 g Л -1) мрзне тек на -1,91°C.[7][8] Највеће количине леда у биосфери се налазе у поларним капама.

Лед није само својство крутости воде. Наиме, таква врста леда се у науци назива „водени лед“, док готово сваки гасовити спој при одређеним температурама и притиском може прећи у стање леда. Гледано у свемиру, на Марсу постоје одређене количине воденог леда, али нпр. на Плутону постоји тзв. метански лед, на Урану амонијаков лед итд.

In the Solar System, ice is abundant and occurs naturally from as close to the Sun as Mercury to as far away as the Oort cloud objects. Beyond the Solar System, it occurs as interstellar ice. It is abundant on Earth's surface – particularly in the polar regions and above the snow line[9] – and, as a common form of precipitation and deposition, plays a key role in Earth's water cycle and climate. It falls as snowflakes and hail or occurs as frost, icicles or ice spikes and aggregates from snow as glaciers and ice sheets.

Физичка својства

The three-dimensional crystal structure of H2O ice Ih (c) is composed of bases of H2O ice molecules (b) located on lattice points within the two-dimensional hexagonal space lattice (a).[10][11]

As a naturally occurring crystalline inorganic solid with an ordered structure, ice is considered to be a mineral.[12][13] It possesses a regular crystalline structure based on the molecule of water, which consists of a single oxygen atom covalently bonded to two hydrogen atoms, or H–O–H. However, many of the physical properties of water and ice are controlled by the formation of hydrogen bonds between adjacent oxygen and hydrogen atoms; while it is a weak bond, it is nonetheless critical in controlling the structure of both water and ice.

An unusual property of water is that its solid form—ice frozen at atmospheric pressure—is approximately 8.3% less dense than its liquid form; this is equivalent to a volumetric expansion of 9%. The density of ice is 0.9167[1]–0.9168[2] g/cm3 at 0 °C and standard atmospheric pressure (101,325 Pa), whereas water has a density of 0.9998[1]–0.999863[2] g/cm3 at the same temperature and pressure. Liquid water is densest, essentially 1.00 g/cm3, at 4 °C and begins to lose its density as the water molecules begin to form the hexagonal crystals of ice as the freezing point is reached. This is due to hydrogen bonding dominating the intermolecular forces, which results in a packing of molecules less compact in the solid. Density of ice increases slightly with decreasing temperature and has a value of 0.9340 g/cm3 at −180 °C (93 K).[14]

When water freezes, it increases in volume (about 9% for fresh water).[15] The effect of expansion during freezing can be dramatic, and ice expansion is a basic cause of freeze-thaw weathering of rock in nature and damage to building foundations and roadways from frost heaving. It is also a common cause of the flooding of houses when water pipes burst due to the pressure of expanding water when it freezes.

The result of this process is that ice (in its most common form) floats on liquid water, which is an important feature in Earth's biosphere. It has been argued that without this property, natural bodies of water would freeze, in some cases permanently, from the bottom up,[16] resulting in a loss of bottom-dependent animal and plant life in fresh and sea water. Sufficiently thin ice sheets allow light to pass through while protecting the underside from short-term weather extremes such as wind chill. This creates a sheltered environment for bacterial and algal colonies. When sea water freezes, the ice is riddled with brine-filled channels which sustain sympagic organisms such as bacteria, algae, copepods and annelids, which in turn provide food for animals such as krill and specialised fish like the bald notothen, fed upon in turn by larger animals such as emperor penguins and minke whales.[17]

When ice melts, it absorbs as much energy as it would take to heat an equivalent mass of water by 80 °C. During the melting process, the temperature remains constant at 0 °C. While melting, any energy added breaks the hydrogen bonds between ice (water) molecules. Energy becomes available to increase the thermal energy (temperature) only after enough hydrogen bonds are broken that the ice can be considered liquid water. The amount of energy consumed in breaking hydrogen bonds in the transition from ice to water is known as the heat of fusion.

As with water, ice absorbs light at the red end of the spectrum preferentially as the result of an overtone of an oxygen–hydrogen (O–H) bond stretch. Compared with water, this absorption is shifted toward slightly lower energies. Thus, ice appears blue, with a slightly greener tint than liquid water. Since absorption is cumulative, the color effect intensifies with increasing thickness or if internal reflections cause the light to take a longer path through the ice.[18]

Other colors can appear in the presence of light absorbing impurities, where the impurity is dictating the color rather than the ice itself. For instance, icebergs containing impurities (e.g., sediments, algae, air bubbles) can appear brown, grey or green.[18]

Референце

  1. ^ а б в Harvey, Allan H. (2017). „Properties of Ice and Supercooled Water”. Ур.: Haynes, William M.; Lide, David R.; Bruno, Thomas J. CRC Handbook of Chemistry and Physics (97th изд.). Boca Raton, FL: CRC Press. ISBN 978-1-4987-5429-3. 
  2. ^ а б в г д ђ е ж з и Voitkovskii, K. F., Translation of: "The mechanical properties of ice" ("Mekhanicheskie svoistva l'da") (PDF) (на језику: енглески), Academy of Sciences (USSR), Архивирано (PDF) из оригинала 10. 2. 2017. г. 
  3. ^ „Definition of ICE”. www.merriam-webster.com (на језику: енглески). Приступљено 2018-06-19. 
  4. ^ „the definition of ice”. www.dictionary.com (на језику: енглески). Приступљено 2018-06-19. 
  5. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3. изд.). Prentice Hall. ISBN 978-0-13-175553-6. 
  6. ^ Група аутора (2003). Атлас фосила и минерала. Креативни центар: Београд. 
  7. ^ Lide David R., ур. (2006). CRC Handbook of Chemistry and Physics (87th изд.). Boca Raton, FL: CRC Press. ISBN 978-0-8493-0487-3. 
  8. ^ Susan Budavari, ур. (2001). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (13th изд.). Merck Publishing. ISBN 0911910131. 
  9. ^ Prockter, Louise M. (2005). „Ice in the Solar System” (PDF). Johns Hopkins APL Technical Digest. 26 (2): 175. Архивирано из оригинала (PDF) 19. 3. 2015. г. Приступљено 21. 12. 2013. 
  10. ^ Physics of Ice, V. F. Petrenko, R. W. Whitworth, Oxford University Press, 1999, ISBN 9780198518945
  11. ^ Bernal, J. D.; Fowler, R. H. (1933). „A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions”. The Journal of Chemical Physics. 1 (8): 515. Bibcode:1933JChPh...1..515B. doi:10.1063/1.1749327. 
  12. ^ Demirbas, Ayhan (2010). Methane Gas Hydrate. Springer Science & Business Media. стр. 90. ISBN 978-1-84882-872-8. 
  13. ^ „The Mineral Ice”. minerals.net. Приступљено 2019-01-09. 
  14. ^ Lide, D. R., ур. (2005). CRC Handbook of Chemistry and Physics (86th изд.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  15. ^ Sreepat, Jain. Fundamentals of Physical Geology. New Delhi: Springer, India, Private, 2014. 135. Print. ISBN 978-81-322-1538-7
  16. ^ Tyson, Neil deGrasse. „Water, Water”. haydenplanetarium.org. Архивирано из оригинала 26. 7. 2011. г. 
  17. ^ Sea Ice Ecology Архивирано 21 март 2012 на сајту Wayback Machine. Acecrc.sipex.aq. Retrieved 30 October 2011.
  18. ^ а б Lynch, David K.; Livingston, William Charles (2001). Color and light in nature. Cambridge University Press. стр. 161—. ISBN 978-0-521-77504-5. 

Литература

Спољашње везе