Егзогена дормантност семена

С Википедије, слободне енциклопедије
Макросклереидне ћелије семењече легуминоза.
Семе гвозденог дрвета (лево), трновца (горе), келреутерије (доле) и руја (десно) има непропусну семењачу за воду и гасове.
Семе једносемене жутилице у пупчаној бразди има "хигроскопни вентил" којим се спречава продор влаге кроз микропилу.
Сочни хипантијум шипка садржи инхибиторне материје који продором у семе блокирају клијање.
Lactuca тест: семе салате заливено раствореном пулпом шипка не клија (десно) и контрола заливена водом интензивно клија (лево).
Семе јеле у семењачи садржи депое терпентина који изазивају дормантност.

Егзогена дормантност семена је облик дормантности семена, а према терминологији коју је предложио Ланг са сарадницима[1], она је парадормантност што представља мировање изазвано физиолошким факторима или биохемијским сигналима пореклом ван дормантне структуре. Контрола активности ембриона долази из неке од окружујућих структура: перикарпа, семењаче па и ендосперма. Овај облик дормантности потврђује се нормалним клијањем ембриона експлантираног из семена. Егзогена дормантност обухвата три типа: физичку, хемијску и механичку дормантност, као и њихове комбинације.

Физичка дормантност[уреди | уреди извор]

Физичка дормантност проузрокована је непропустљивошћу омотача (семењаче, перикарпа (или његових делова - ендокарпа, најчешће) и/или ендосперма) за воду и понекад за кисеоник. Семе са овим типом дормантности очува клијавост много година, чак и на високој температури. Најчешће је изазивају (макросклереидне) ћелије семењаче дебелих зидова сличне палисадним (светла линија под микроскопом) и слој кутикуле. За ове врсте се обично каже да имају "тврдо семе" које не бубри ни после 10 дана мочења у води. Клијање започиње тек по омекшавању или оштећивању омотача. Чим се слој пробије вода продире у унутрашњост и долази до бубрења. Многе врсте из фамилија Mimosaceae, Cesalpiniaceae, Papilionaceae, Anacardiaceae, Ericaceae, Rhamnaceae и Sapindaceae имају овај облик дормантности: Acacia spp, Albizia spp, Cytisus spp, Gleditsia spp, Gymnocladus spp, Koelreuteria spp, Laburnum spp, Petteria spp, Rhus spp, Robinia spp, Sophora spp.

Проучавање пропустљивости омотача посебно је значајно за оне врсте код којих сетвени материјал, поред семењаче садржи још неке омотаче, као што је случај код једносемених или ломљивих махуна (lomentum). Питање дораде и уклањања ових структура пресудно је за клијање. Истраживања са сетвеним материјалом багренца (Amorpha fruticosa L.), једносемене жутиловке (Genista monosperma Lam.), леспедезе (Lespedeza bicolor Turcz.) и шибике (Coronilla emerus L.) указују на различиту улогу перикарпа, семењаче и ендосперма код ових врста[2].

Код неких лептирњача (Genista monosperma Lam., Lupinus arboreus Sims) у пупчаној бразди, изнад микропиле налази се врста хигроскопног вентила, кога чине палисадне ћелије које бубре ако је влага ван семена већа од оне у семену не дозвољавајући да она допре у семе. При обрнутој ситуацији, "вентил" се отвара због смањења запремине палисадних ћелија које губе влагу и ембрион може да дише[3]. Код других (Albizia lophantha (Willd.) Benth.) мали отвори строфиоле (strophiolаe) у близини хилума затворене су плутастим чеповима, који отпадају интензивним протресањем, притиском или излагањем сувој топлоти (пожару) и омогућују упијање воде.

Степен тврдоће зависи од климатских услова за време сазревања семена (суша) и фазе зрелости (непропустљивост као последица просушивања или стајања карактеристична је за Symphoricarpus spp.), као и од индивидуалних особина родитељских стабала (код багрема проценат тврдих зрна у зависности од родитељске индивидуе варира од 13-84%). У природи физичка дормантност превазилази се проласком семена кроз цревни тракт животиња или пожаром, радом микроорганизама, смењивањем ниских и високих температура уз обиље влаге, што све може да потраје и више година[4].

Хемијска (инхибиторна) дормантност[уреди | уреди извор]

Карактеристична је за тропске и суптропске врсте. Клијавост је спречена присуством различитих инхибитора као што су фенолне и апсцисинска киселина. У природи под утицајем интензивних падавина ови инхибитори могу бити испрани. Код неких планинских еукалиптуса, хемијски инхибитори у семењачи могу изазвати ненормално и ниско исклијавање, које се може превазићи ниским температурама. У огледима са Camptonia peregrina, потврђено је да је дормантност изазвана хемијским инхибитором (вероватно апсцисинска киселина) у семењачи који се не може испрати. Уклањањем перикарпа и семењаче постигнута је клијавост од 71%, док код контроле није било клијања.

Иако се према Николајевој хемијска дормантност везује само за врсте са сувим непуцајућим плодовима код којих је присутан инхибитор у перикарпу[5], овде се може сврстати и низ врста са инхибиторима у омотачима плода (најчешће сочним) или семењачи. Тип који је од више аутора назван инхибиторном дормантношћу[6].

Ако се семе врста код којих нема сметњи у клијању стави на филтер папир натопљен соком или раствореном пулпом неких врста бобица, коштуница или других типова сочних плодова, често долази до блокаде клијања што јасно указује на присуство инхибиторних материја у сочном омотачу. Истраживања са семеном салате (Lactuca тест) потврдила су постојање инхибиторних материја код Cotoneaster horizontalis Decne., Ilex aquifolium L., Juniperus chinensis 'PFITZERIANA' и Rosa canina L. тако што је пулпа божиковине и кинеске клеке потпуно блокирала клијање, руже у мањој, а дуњарице у најмањој мери[7].

Köckemann је 1934. године открио у ткиву плода парадајза супстанцу (киселину карактеристика сличних апсцисинској) растворљиву у етру која је инхибирала клијање семена парадајза. Назвао ју је "Бластоколин"[8]. Овој супстанци приписивана је главна кривица за инхибиторну дормантност. Касније је утврђена улога органских киселина: сирћетне (најјачи инхибитор), оксалне, винске, јабучне, ћилибарне и лимунске (најслабији инхибитор). У мањој мери су инхибитори и тршчани, грожђани и воћни шећер. У семењачи јеле налази се терпентин коме се приписује инхибиторно дејство. Током зиме он испари тако да семе несметано клија у пролеће. Клијање семена неких врста је блокирано поред осталог и кумарином, β-индолсирћетном киселином, незасићеним лактонима, неким ферментима... који могу да се нађу у ендосперму или семењачи (али и ембриону), у различитој концентрацији.

Ниске концентрације ових истих супстанци, међутим, могу да делују и стимулативно. Данас се сматра да се апсцисинској киселини, која подстиче старење и опадање асимилационих органа и има пресудну улогу код неких типова физиолошке дормантности, може приписати главни утицај и код инхибиторне дормантности.

На степен инхибиторне дормантности утичу индивидуалне разлике материнских биљака, садржај воде у плодовима, степен зрелости, начин дораде, старост семена...[4]

Механичка дормантност[уреди | уреди извор]

Код опалог плода црног ораха под утицајем микроорганизама разлажу се везе које спајају половине перикарпа.

Механички отпор расту ембриона ствара чврста семењача перикарп и/или ендосперм, што успорава клијање. Често ткиво које пуцајуће делове плода држи заједно мора да омекша, иако је семе ибибирано. Сама механичка дормантност је ретка, и обично је удружена са другим облицима. Неке од врста које показују овај тип дормантности су: Crataegus spp, Elaeagnus angustifolia L., Prunus avium L., Symphoricarpus spp, Juglans nigra L., Olea europaea L., Carya spp. Механичка дормантност може да буде сметња и за исклијавање семена неких врста четинара. Код семена Pinus cembra L. (са комбинованим егзо и ендогеним облицима дормантности) јавља се спречавање продора кисеоника и механички отпор клици док семењача истовремено пропушта воду (+ дормантан ембрион). Код липа рожнат ендосперм представља механичку сметњу клијању. Механичка дормантност код неких врста у природи се превазилази проласком кроз цревни тракт животиња које се хране плодовима тих врста или радом микроорганизама у земљишту по опадању плода[4].

Комбинована дормантност[уреди | уреди извор]

Код неких врста јављају се различите комбинације егзогених типова дормантности, а семе неких других има сметње које су комбинација егзогених и ендогених дормантности. Тако глогови, липе, тиса, граб, клеке, дрен... имају непропустљиве семењаче и физиолошку дормантност ембриона.

Види још[уреди | уреди извор]

Референце[уреди | уреди извор]

  1. ^ Lang, G. A., Early, J. D., Martin, G. C., & Darnell, R. L. (1987): Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience 22(3): 371-7
  2. ^ Грбић, М. (1997): Динамика клијања легуминоза са атипичном махуном у зависности од степена изложености ембриона. XII симпозијум Југословенског друштва за физиологију биљака. Програм и изводи саопштења, Крагујевац: 118
  3. ^ Hopkins, W. G. (1995): Introduction to plant physiology. John Wiley & sons, INC. New York, Chichester, Brisbane. Toronto, Singapore
  4. ^ а б в Грбић, М. (2003): Дормантност и клијање семена – механизми, класификације и поступци. Гласник Шумарског факултета 87: 25-49
  5. ^ Nikolaeva, M. G. (1977): Factors controlling the seed dormancy pattern. In Physiology and Biochemistry of Seed Dormancy and Germination (ed. A.A. Khan) Elsevier, Holland: 51-74
  6. ^ Стилиновић, С. (1985): Семенарство шумског и украсног дрвећа и жбуња. Универзитет у Београду. Београд
  7. ^ Грбић, М., & Скочајић, Д. (2002): Одређивање интензитета инхибиторне дормантнности семена Lactuca тестом. 7. Симпозијум о флори југоисточне Србије и суседних подручја, Димитровград
  8. ^ Köckemann,A. (1934): Ueber eine keimungshemmende Substanz in fleischigen Fruechten (vorläufige Mitteilung). Berichte der deutschen botanischen Gesellschaft 52, 523—526.

Литература[уреди | уреди извор]

  • Adams, C.A. (2003): A comparative study of seedmorphology, dormancy, and germination of four closely-related Aristolochia subgenus Siphisia species (Aristolochiaceae, Piperales): A test of two hypotheses on ecological changes in species within a lineage through geological time. PhD thesis, University of Kentucky,Lexington, USA.
  • Alvarado, V., Hiroyaki, H. and Bradford, K.J.(2000): Expression of endo-β-mannanase and SNF-related protein kinase genes in true potato seeds in relation to dormancy, gibberellin and abscisic acid. pp. 347–364 inViémont, J.-D.; Crabbé, J. (Eds) Dormancy in plants: Fromwhole plant behavior to cellular control. Wallingford, CABI Publishing.
  • Amen, R.D. (1968): A model of seed dormancy. The Botanical Review 34, 1–31.
  • Angiosperm Phylogeny Group (APG)(1998): An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85, 531–553.
  • Baskin, C.C. and Baskin, J.M. (1998): Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.
  • Baskin, C.C. and Baskin, J.M. (2004b): Determining dormancy-breaking and germination requirements from the fewest seeds. InGuerrant, E.; Havens, K.;Maunder, M. (Eds) Ex situ plant conservation: supporting species survival in the wild. Covelo, CA, Island Press (inpress).
  • Baskin, C.C., Chesson, P.L. and Baskin, J.M. (1993): Annual seed dormancy cycles in two desert winter annuals. Journal of Ecology 81, 551–556.
  • Baskin, C.C., Zackrisson, O. and Baskin, J.M. (2002): Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany89, 486–493.
  • Baskin, J.M. and Baskin, C.C. (1972): Ecological life cycle and physiological ecology of seed germination of Arabidopsis thaliana. Canadian Journal of Botany50,353–360.
  • Baskin, J.M. and Baskin, C.C.(1980): Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia. Ecology 61, 475–480.12
  • Baskin, J.M. and Baskin, C.C. (1983): Seasonal changes in the germination responses of buried seeds of Arabidopsis thaliana and ecological interpretation. Botanical Gazette144, 540–543.
  • Baskin, J.M. and Baskin, C.C. (1985): The annual dormancy cycle in buried weed seeds: A continuum. BioScience 35, 492–498.
  • Baskin, J.M. and Baskin, C.C. (1986): Changes in dormancy status of Frasera caroliniensis seeds during overwinteringon parent plant. American Journal of Botany 73, 5–10.
  • Baskin, J.M. and Baskin, C.C. (1989): Physiology of dormancy and germination in relation to seed bank ecology.pp. 53–66 in Leck, M.A.; Parker, V.T.; Simpson, R.L. (Eds) Ecology of soil seed banks. San Diego, Academic Press.
  • Baskin, J.M. and Baskin, C.C. (1997): Methods of breaking seed dormancy in the endangered species Iliamna corei (Sherff) Sherff (Malvaceae), with special attention to heating. Natural Areas Journal 17, 313–323.
  • Baskin, Jerry M.; Baskin, Carol C. (2004). „A classification system for seed dormancy”. Seed Science Research. 14: 1—16. S2CID 47004677. doi:10.1079/ssr2003150. 
  • Baskin, J.M., Nan, X. and Baskin, C.C.(1998) A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae).Seed Science Research 8, 501–512.
  • Baskin, J.M., Baskin, C.C. and Li, X. (2000): Taxonomy, ecology, and evolution of physical dormancy in seeds. Plant Species Biology 15, 139–152.
  • Beadle, N.C.W. (1952): Studies in halophytes. I. The germination of seeds and establishment of seedlings of five species of Atriplexin Australia. Ecology 33, 49–62.
  • Beaudoin, N., Serizet, C., Gosti, F. and Giraudat, J.(2000): Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell 12, 1103–1115.
  • Berry, T. and Bewley, J.D. (1992): A role of the surrounding fruit tissues in preventing the germination of tomato (Lycopersicon esculentum) seeds. A consideration of the osmotic environment and abscisic acid. Plant Physiology 100, 951–957.
  • Bewley, J.D. (1997a): Seed germination and dormancy. ThePlant Cell 9, 1055–1066.
  • Bewley, J.D. (1997b): Breaking down the walls – a role forendo-β-mannanase in release from seed dormancy? Trends in Plant Science 2, 464–469.
  • Bewley, J.D and Black, M. (1994): Seeds. Physiology,development and germination (2nd edition). New York, Plenum Press.
  • Bouwmeester, H.J. and Karssen, C.M. (1992): The dual role of temperature in the regulation of the seasonal changesin dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90, 88–94.
  • Bremer, K., Bremer, B. and Thulin, M.(1999): Introduction to phylogeny and systematics of flowering plants. Department of Systematic Botany, Evolutionary Biology Center, Uppsala University, Sweden.
  • Burrows, C.J.(1993): Germination requirements of the seeds of native trees, shrubs, and vines. Canterbury Botanical Journal 27, 42–46.
  • Burrows, C.J.(1995): Germination behavior of the seeds of the New Zealand species Aristotelia serrata, Coprosma robusta, Cordyline australis, Myrtus obcordata, and Schefflera digitata. New Zealand Journal of Botany 33, 257–264.
  • Burrows, C.J. (1999): Germination behavior of seeds of the New Zealand woody species Alseuosmia macrophylla, A. pusilla, Cordyline banksii, Geniostoma rupestre, Myrtus bullata, and Solanum aviculare. New Zealand Journal of Botany 37, 277–287.
  • Corbineau, F. and Côme, D. (2000): Dormancy of cereal seeds as related to embryo sensitivity to ABA and water potential. pp. 183–194 inViémont, J.-D.; Crabbé, J. (Eds) Dormancy in plants: From whole plant behavior to cellular control. Wallingford, CABI Publishing.
  • Debeaujon, I. and Koornneef, M. (2000): Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology122, 415–424.
  • de Miguel, L. and Sánchez, R.A. (1992): Phytochrome-induced germination, endosperm softening and embryo growth potential in Datura ferox seeds: Sensitivity to low water potential and time to escape FR reversal. Journal of Experimental Botany 43, 969–974.
  • Derkx, M.P.M. and Karssen, C.M. (1994): Are seasonal dormancy patterns in Arabidopsis thaliana regulated by changes in seed sensitivity to light, nitrate and gibberellin? Annals of Botany 73, 129–136.
  • Downie, B. and Bewley, J.D. (1996): Dormancy in white spruce (Picea glauca [Moench] Voss) seeds imposed by tissues surrounding the embryo. Seed Science Research 6,9–15.
  • Downie, B., Hilhorst, H.W.M. and Bewley, J.D. (1997): Endo- β -mannanase activity during dormancy alleviation and germination of white spruce (Picea glauca) seeds. Physiologia Plantarum 101, 405–415.
  • Dyer, W .E. (1993): Dormancy-associated embryonic mRNA sand proteins in imbibing Avena fatua caryopses. Physiologia Plantarum 88, 201–211.
  • Fennimore, S.A. and Foley, M.E. (1998): Genetic and physiological evidence for the role of gibberellic acid in the germination of dormant Avena fatua seeds. Journal of Experimental Botany 49, 89–94.
  • Foley, M.E. (2001): Seed dormancy: An update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Science 49, 305–317.
  • Foley, M.E. and Fennimore, S.A. (1998): Genetic basis for seed dormancy. Seed Science Research 8, 173–182.
  • Forbis, T.A. and Diggle, P.K. (2001): Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae). Canadian Journal of Botany 79, 635–642.
  • Forbis, T.A., Floyd, S.K. and de Querioz, A. (2002): The evolution of embryo size in angiosperms and other seed plants: Implications for the evolution of seed dormancy. Evolution 56, 2112–2125.
  • Garello, G., Barthe, P., Bonelli, M., Bianco-Trinchant, J.,Bianco, J. and Le Page-Degivry, M.-T. (2000): Abscisic acid-regulated responses of dormant and non-dormant embryos of Helianthus annuus: Role of ABA-inducible proteins. Plant Physiology and Biochemistry 38, 473–482.
  • Garvin, S.C. and Meyer, S.E. (2003): Multiple mechanisms for seed dormancy regulation in shad scale (Atriplex confertifolia: Chenopodiaceae). Canadian Journal of Botany 81, 601–610.
  • Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H.,Kamiya, Y. and McCourt, P. (2000): Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. The Plant Cell 12, 1117–1126. Classification of seed dormancy 13
  • Goldmark, P.J., Curry, J., Morris, C.F. and Walker-Simmons, M.K. (1992): Cloning and expression of an embryo-specific mRNA up-regulated in hydrated dormant seeds. Plant Molecular Biology19, 433–441.
  • Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien,M. (2000): Control of seed dormancy in Nicotiana plumbaginifolia: Post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta210, 279–285.
  • Groot, S.P.C. and Karssen, C.M. (1992): Dormancy and germination of abscisic acid-deficient tomato seeds. Studies with the sitiens mutant. Plant Physiology 99,952–958.
  • Gunn, C.R. (1984): Fruits and seeds of genera in subfamily Mimosoideae (Fabaceae). United States Department of Agriculture Technical Bulletin Number 1681.Washington, DC, United States Department of Agriculture.
  • Gunn, C.R. (1991): Fruits and seeds of genera in subfamily Caesalpinioideae (Fabaceae). United States Department of Agriculture Technical Bulletin Number 1755. Washington,DC, United States Department of Agriculture.
  • Gutterman, Y. (1993): Seed germination in desert plants. Berlin,Springer-Verlag.
  • Gutterman, Y.(2000): Maternal effects on plants during development. pp. 59–84 inFenner, M. (Ed.) Seeds: Theecology of regeneration in plant communities (2nd edition).Wallingford, CABI Publishing.
  • Harper, J.L. (1957): The ecological significance of dormancy and its importance in weed control. Proceedings of the international congress on crop protection (Hamburg) 4, 415–420.
  • Harper, J.L. (1977): Population biology of plants. London, Academic Press.
  • Hilhorst, H.W.M. (1993): New aspects of seed dormancy.pp. 571–579 in Côme, D.; Corbineau, F. (Eds) Proceedings of the international workshop on seeds. Basic and applied aspects of seed biology, Angers, France, 20–24 July 1992, Vol.2. Paris, Université Pierre et Marie Curie.
  • Hilhorst, H.W .M. (1995): A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5,61–73.
  • Hilhorst, H.W .M. (1998): The regulation of secondary dormancy. The membrane hypothesis revisited. SeedScience Research 8, 77–90.
  • Hilhorst, H.W .M. and Cohn, M.A. (2000): Are cellular membranes involved in the control of seed dormancy? pp. 275–289 in Viémont, J.-D.; Crabbé, J. (Eds) Dormancy in plants: From whole plant behavior to cellular control. Wallingford, CABI Publishing.
  • Hilhorst, H.W.M. and Downie, B. (1995): Primary dormancy in tomato (Lycopersicon esculentum CV.Moneymaker): Studies with the sitiens mutant. Journal of Experimental Botany 47, 89–97.
  • Hilhorst, H.W.M. and Karssen, C.M. (1992): Seed dormancy and germination: The role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation 11, 225–238.
  • Hilhorst, H.W.M., Derkx, M.P.M. and Karssen, C.M. (1996): An integrating model for seed dormancy cycling.pp. 341–360 in Lang, G.A. (Ed.) Plant dormancy: Physiology, biochemistry and molecular biology.Wallingford, CAB International.
  • Hilhorst, H.W.M., Groot, S.P.C. and Bino, R.J. (1998): The tomato seed as a model system to study seed development and germination. Acta Botanica Neerlandica 47, 169–183.
  • Holdsworth, M., Kurup, S. and McKibbin, R. (1999): Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends in Plant Science 4, 275–280.
  • Jarvis, S.B., Taylor, M.A., MacLeod, M.R. and Davies, H.V. (1996): Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii). Journal of Plant Physiology 147, 559–566.
  • Jarvis, S.B., Taylor, M.A., Bianco, J., Corbineau, F. and Davies, H.V. (1997): Dormancy-breakage in seeds of Douglas fir (Pseudotsuga menziesii(Mirb.) Franco). Support for the hypothesis that LEA gene expression is essential for the process. Journal of Plant Physiology 151, 457–464.
  • Johnson, R.R., Cranston, H.J., Chaverra, M.E. and Dyer,W .E. (1995): Characterization of cDNA clones for differentially expressed genes in embryos of dormant and nondormant Avena fatua L. caryopses. Plant Molecular Biology 28, 113–122.
  • Jullien, M., Bouinot, D., Ali-Rachedi, S., Sotta, B. and Grappin, P. (2000): Abscisic acid control of dormancy expression in Nicotiana plumbaginifolia and Arabidopsis thaliana. pp. 195–210 in Viémont, J.-D.; Crabbé, J. (Eds) Dormancy in plants: From whole plant behavior to cellular control. Wallingford, CABI Publishing.
  • Karssen, C.M. (1995): Hormonal regulation of seed development, dormancy, and germination studied by genetic control. pp. 333–350 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.
  • Karssen, C.M. and Groot, S.P.C. (1987): The hormone-balance theory of dormancy evaluated. pp. 17–30 in Pinfield, N.J.; Black, M. (Eds) British plant growth regulator group monograph 15 – Growth regulators and seeds. Bristol, UK, British Plant Growth Regulator Group.
  • Karssen, C.M. and Lacka, E. (1986): A revision of the hormone balance theory of seed dormancy: Studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. pp. 315–323 in Bopp, M. (Ed.) Plant growth substances 1985. Berlin, Springer-Verlag.
  • Khan, A.A. (1994): Induction of dormancy in non dormant seeds. Journal of the American Society for Horticultural Science 119, 408–413.
  • Koller, D. (1957): Germination-regulating mechanisms in some desert seeds. I. Atriplex dimorphostegia Kar. et Kir. Ecology 38, 1–13.
  • Koornneef, M. and Karssen, C.M. (1994): Seed dormancy and germination. pp. 313–334 in Myerowitz, E.M.;Somerville, C.R. (Eds) Arabidopsis. Plainview, NY, Cold Spring Harbor Press.
  • Koornneef, M., Alonso-Blanco, C., Bentsink, L.,Blankestijn-de Vries, H., Debeaujon, I., Hanhart, C.J.,Léon-Kloosterziel, K.M., Peeters, A.J.M. and Raz, V. (2000): The genetics of seed dormancy in Arabidopsis thaliana. pp. 365–373 inViémont, J.D.; Crabbé, J. (Eds) Dormancy in plants: From whole plant behavior to cellular control. Wallingford, CABI Publishing.
  • Koornneef, M., Bentsink, L.and Hilhorst, H. (2002): Seed dormancy and germination. Current Opinion in Plant Biology 5, 33–36.
  • Lang, G.A. (1987): Dormancy: A new universal terminology.HortScience 22, 817–820.
  • Lang, G.A., Early, J.D., Arroyave, N.J., Darnell, R.L.,Martin, G.C. and Stutte, G.W. (1985): Dormancy: Toward a reduced, universal terminology. HortScience20, 809–812.
  • Lang, G.A., Early, J.D., Martin, G.C. and Darnell, R.L. (1987): Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience22, 371–377.
  • LePage-Degivry, M.-T., Bianco, J., Barthe, P. and Garello,G. (1996): Changes in hormone sensitivity in relation to onset and breaking of sunflower embryo dormancy.pp. 221–231 in Lang, G.A. (Ed.) Plant dormancy:Physiology, biochemistry and molecular biology.Wallingford, CAB International.
  • Leubner-Metzger, G. (2003): Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Science Research13, 17–34.
  • Leubner-Metzger, G., Fründt, C., Vögeli-Lange, R. andMeins, F. (1995): Class 1 β-1,3-glucanases in the endosperm of tobacco during germination. PlantPhysiology109, 751–759.
  • Li, B. and Foley, M.E. (1994): Differential polypeptide patterns in imbibed dormant and after-ripened Avena fatua embryos. Journal of Experimental Botany 45, 275–279.
  • Li, B. and Foley, M.E. (1995): Cloning and characterization of differentially expressed genes in imbibed dormant and afterripened Avena fatua embryos. Plant Molecular Biology 29, 823–831.
  • Li, B. and Foley, M. (1996): Transcriptional andpost transcriptional regulation of dormancy-associated gene expression by afterripening in wild oat. Plant Physiology 110, 1267–1273.
  • Li, B. and Foley, M.E. (1997): Genetic and molecular control of seed dormancy. Trends in Plant Science 2, 384–389.
  • Li, X., Baskin, J.M. and Baskin, C.C. (1999): Physiological dormancy and germination requirements of seeds of several North American Rhus species (Anacardiaceae). Seed Science Research 9, 237–245.
  • Lorenzo, O., Nicolás, C., Nicolás, G. and Rodriquez, D. (2002): GA3-induced expression of a new functional AAA-ATPase (FsA1) is correlated with the onset of germination in Fagus sylvatica L. seeds. Plant and Cell Physiology 43, 27–34.
  • Mabberley, D.J. (1997): The plant-book. A portable dictionary of the vascular plants (2nd edition). Cambridge, Cambridge University Press.
  • Mandák, B. and Pyšek, P. (2001): The effect of light quality, nitrate concentration and presence of bracteoles on germination of different fruit types in heterocarpous Atriplex sagittata. Journal of Ecology 89, 149–158.
  • Matilla, A.J. (2000): Ethylene in seed formation and germination. Seed Science Research 10, 111–126.
  • Mayer, A.M. and Poljakoff-Mayber, A. (1989): The germination of seeds (4th edition). Oxford, Pergamon Press.
  • Meisert, A. (2002): Physical dormancy in Geraniaceae seeds. Seed Science Research12, 121–128.
  • Meisert, A., Schulz, D. and Lehman, H. (1999): Structural features underlying hardseededness in Geraniaceae. Plant Biology 1, 311–314.
  • Morris, C.F., Anderberg, R.J., Goldmark, P.J. and Walker-Simmons, M.K. (1991): Molecular cloning and expression of abscisic acid-responsive genes in embryos of dormant wheat seeds. Plant Physiology 95, 814–821.
  • Morrison, D.A., Auld, T.D., Rish, S., Porter, C. and McClay,K. (1992): Patterns of testa-imposed dormancy in nativeAustralian legumes. Annals of Botany 70, 157–163.
  • Morrison, D.A., McClay, K., Porter, C. and Rish, S. (1998): The role of the lens in controlling heat-induced breakdown of testa-imposed dormancy in nativeAustralian legumes. Annals of Botany 82, 35–40.
  • Nicolás, C., Nicolás, G. and Rodriquez, D. (1996): Antagonistic effects of abscisic acid and gibberellic acidon the breaking of dormancy of Fagus sylvatica seeds. Physiologia Plantarum 96, 244–250.
  • Nikolaeva, M.G. (1969): Physiology of deep dormancy in seeds. Leningrad, Russia, Izdatel’stvo ‘Nauka’. (Translated from Russian by Z. Shapiro, National Science Foundation, Washington, DC.)
  • Nikolaeva, M.G. (1977): Factors controlling the seed dormancy pattern. pp. 51–74 in Khan, A.A. (Ed.) Thephysiology and biochemistry of seed dormancy and germination. Amsterdam, North-Holland.
  • Nikolaeva, M.G.(1999) Patterns of seed dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. Russian Journal of Plant Physiology 46, 369–373.
  • Nikolaeva, M.G. (2001): Ecological and physiological aspects of seed dormancy and germination (review of investigations for the last century). Botanicheskii Zhurnal 86, 1–14 (in Russian with English summary).
  • Nikolaeva, M.G., Rasumova, M.V. and Gladkova, V.N. (1985): Reference book on dormant seed germination. Danilova, M.F. (Ed.). Leningrad, ‘Nauka’ Publishers (in Russian).
  • Nikolaeva, M.G., Lyanguzova, I.V. and Pozdova, L.M. (1999): Biology of seeds. St. Petersburg, V.L. Komarov Botanical Institute, Russian Academy of Sciences (in Russian with English summary and English table of contents).
  • Osmond, C.B., Björkman, O. and Anderson, D.J.(1980): Physiological processes in plant ecology – Toward a synthesis with Atriplex. Berlin, Springer-Verlag.
  • Pallais, N. (1995a): Storage factors control germination and seedling establishment of freshly harvested true potato seed. American Potato Journal 72, 427–436.
  • Pallais, N. (1995b): High temperature and low moisture reduce the storage requirement of freshly harvested true potato seed. Journal of the American Society for Horticultural Science 120, 699–702.
  • Probert, R.J. (2000): The role of temperature in the regulation of seed dormancy and germination. pp. 261–292 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities (2nd edition). Wallingford, CABI Publishing.
  • Ratcliffe, D. (1976): Germination characteristics and the irinter- and intra-population variability in Arabidopsis. Arabidopsis Information Service13, 34–45.
  • Ren, C. and Kermode, A.R. (1999): Analyses to determinethe role of the megagametophyte and other seed tissues in dormancy maintenance of yellow cedar (Chamaecyparis nootkatensis) seeds: Morphological, cellular and physiological changes following moist chilling and during germination. Journal of Experimental Botany 50, 1403–1419.
  • Sánchez, R.A. and de Miguel, L. (1997): Phytochrome promotion of mannan-degrading enzyme activities inthe micropylar endosperm of Datura ferox seeds requires the presence of the embryo and gibberellin synthesis.Seed Science Research 7, 27–33.
  • Simpson, G.M. (1990): Seed dormancy in grasses. Cambridge, Cambridge University Press.
  • Steinbach, H.S., Benech-Arnold, R.L. and Sánchez, R.A. (1997): Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology 113, 149–154.
  • Takhtajan, A.L. (1980): Outline of the classification off lowering plants (Magnoliophyta). The Botanical Review 46, 225–359.
  • Thompson, K., Ceriani, R.M., Bakker, J.P. and Bekker,R.M. (2003): Are seed dormancy and persistence in soil related? Seed Science Research 13, 97–100.
  • Thorne, R.F. (2000): The classification and geography off lowering plants: Dicotyledons of the classAngiospermae. The Botanical Review 66, 441–647.
  • Threadgill, P.F., Baskin, J.M. and Baskin, C.C. (1981): Dormancy in seeds of Frasera caroliniensis (Gentianaceae). American Journal of Botany 68, 80–86.
  • Van der Schaar, W., Alonso-Blanco, C., Léon-Kloosterziel, K.M., Jansen, R.C., Van Ooijen, J.W. and Koornneef, M. (1997): QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79, 190–200.
  • Vegis, A. (1964): Dormancy in higher plants. Annual Review of Plant Physiology 15, 185–224.
  • Vleeshouwers, L.M., Bouwmeester, H.J., and Karssen, C.M. (1995): Redefining seed dormancy: An attempt to integrate physiology and ecology. Journal of Ecology 83, 1031–1037.
  • Walck, J.L., Baskin, C.C. and Baskin, J.M. (1999): Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canadian Journal of Botany77, 1769–1776.
  • Wareing, P.F. and Saunders, P.F. (1971): Hormones and dormancy. Annual Review of Plant Physiology 22, 261–288.
  • Welbaum, G.E., Tissaoui, T. and Bradford, K.J. (1990): Water relations of seed development and germination in musk melon (Cucumis melo L.). III. Sensitivity of germination to water potential and abscisic acid during development. Plant Physiology 92, 1029–1037.
  • Welbaum, G.E., Muthui, W .J., Wilson, J.H., Grayson, R.L. and Fell, R.D. (1995): Weakening of musk melon perisperm envelope tissue during germination. Journal of Experimental Botany 46, 391–400.
  • Went, F.W .(1949): Ecology of desert plants. II. The effect of rain and temperature on germination and growth.Ecology 30, 1–13.
  • White, C.N. and Rivin, C.J. (2000): Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos. Plant Physiology 122, 1089–1097.
  • White, C.N., Proebsting, W .M., Hedden, P. and Rivin, C.J. (2000): Gibberellins and seed development in maize. I.Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiology 122, 1081–1088