Портал:Fizika/Članak meseca

S Vikipedije, slobodne enciklopedije

Izabrani članci
[uredi izvor]

Januar[uredi izvor]

Transformator na hidroelektrani Vrhovo na Savi
Transformator na hidroelektrani Vrhovo na Savi

Transformator je električni uređaj koji transformiše energiju iz jednog kola u drugo posredstvom magnetne sprege, bez ikakvih pokretnih delova. Transformator se sastoji od dva (ili više) spregnuta namotaja ili jednog namotaja sa više izvoda i, u većini slučajeva, magnetnog jezgra koje koncentriše magnetni fluks. Naizmenična struja u jednom namotaju će indukovati struju u drugim namotajima.

Transformatori se koriste da spuštaju ili dižu napon, da menjaju impedansu i da obezbede električnu izolaciju između kola.

Ostali izabrani članci
uredi

Februar[uredi izvor]

Ovaj žiroskop zadržava uspravnom (u vertikalnom pravcu) svoju osu rotacije zahvaljujući zakonu održanja njegovog momenta impulsa.
Ovaj žiroskop zadržava uspravnom (u vertikalnom pravcu) svoju osu rotacije zahvaljujući zakonu održanja njegovog momenta impulsa.

Moment impulsa (poznat i kao moment količine kretanja ili ugaoni moment) je fizička veličina kojom se meri nastojanje materijalnog tela da nastavi da rotira. Formalno se definiše kao:

Momentom impulsa se izražava kako kretanje tela po orbiti (kruženje Zemlje oko Sunca) tako i rotacija tela oko sopstvenog centra mase (rotacija Zemlje oko sopstvene ose). Moment impulsa je vektorska veličina, dakle, poseduje intezitet, pravac i smer. Pravac vektora momenta impulsa je normalan na ravan orbite tela (paralelan sa osom rotacije) i poklapa se sa pravcem vektora ugaone brzine. Moment impulsa ima dimenzije dejstva, ML2T-1 i u MKS sistemu izražava se u Džul-sekundama J s ili N m s, a SI jedinica za moment impulsa je kgm2s-1 (kilogram metar na kvadrat u sekundi ).

Ostali izabrani članci
uredi

Mart[uredi izvor]

Emitovani fotoni u koherentnom laserskom zraku
Emitovani fotoni u koherentnom laserskom zraku

Fotón (od grčke reči φωτός, što znači „svetlost“) je elementarna čestica, kvant elektromagnetnog zračenja (u užem smislu — svetlosti). To je čestica bez mase mirovanja. Naelektrisanje fotona je takođe jednako nuli. Foton može biti samo u dva spinska stanja sa projekcijom spina na smer kretanja ±1. Tom svojstvu u klasičnoj elektrodinamici odgovaraju kružna desna i leva polarizacija elektromagnetnog talasa. Fotonu kao elementarnoj čestici je svojstven korpuskularno-talasni dualizam, tj. on istovremeno poseduje svojstva elementarne čestice i talasa. Niz autora ubraja foton u kvazičestice zbog mase mirovanja jednakoj nuli. Foton nema masu mirovanja, slično kvazičesticama, ali ipak ne traži sredinu za svoje prostiranje, slično elementarnim česticama, u koje većina autora ubraja foton. Fotoni se obično obeležavaju slovom , zbog čega ih često nazivaju gama-kvantima (fotoni visokih energija) pri čemu su ti termini praktično sinonimi. Sa tačke gledišta Standardnog modela foton je bozon. Virtuelni fotoni su prenosioci elektromagnetne interakcije koji na taj način obezbeđuju mogućnost uzajamnog delovanja između dva naelektrisanja.

Ostali izabrani članci
uredi

April[uredi izvor]

Umetnički prikaz kvazara GB1508
Umetnički prikaz kvazara GB1508

Kvazar (skraćenica od „Kvazi-stelarni radio izvori“ ili na engleskom jeziku QUASi-stellAR radio source) je kosmološki izvor elektromagnetnog zračenja, uključujući i svetlosno, koje pokazuje veoma veliki crveni pomak. Među naučnicima vlada opšta saglasnost da je veliki crveni pomak kvazara rezultat Hablovog zakona. Iz toga sledi da su kvazari i veoma udaljeni od nas. Da bi ih uopšte mogli opaziti na tolikoj udaljenosti, energija zračenja kvazara morala bi da bude daleko veća od energije zračenja skoro svakog od poznatih kosmičkih objekata, sa izuzetkom relativno kratko živećih supernova i eksplozija gama zračenja. Oni bi u stvari trebalo da zrače energiju koja je jednaka zračenju koje izrače zajedno stotinu običnih galaksija.

Na optičkim teleskopima, kvazari izgledaju kao usamljene svetlosne tačke ili zvezde slabašnog sjaja, odakle i potiče njihov pridev kvazistelarni (kvazizvezdani).

Neki od kvazara pokazuju nagle promene u luminoznosti, iz čega se može zaključiti da su oni i veoma mali (jedan objekt ne može da se menja brže od vremena koje je potrebno svetlosti da pređe sa jednog njegovog kraja na drugi). Najveći do sada poznati crveni pomak nekog kvazara iznosi 6,4.

Snaga kvazara smatra se da potiče od gomilanja ili propadanja materije u supermasivne crne rupe, koje se nalaze u jezgrima udaljenih galaksija, čineći kvazare tako luminoznom verzijom jedne opštije klase objekata pod nazivom aktivne galaksije. Inače, ni jedan drugi trenutno poznati mehanizam ne bi mogao da objasni toliko veliku snagu i brzu promenljivost zračenja kvazara.

Saznanja o kvazarima ubrzano napreduju. Ali sve do 1990. nije bilo jasne saglasnosti oko njihovog porekla i prirode.

Ostali izabrani članci
uredi

Maj[uredi izvor]

Energija je sposobnost vršenja rada. Ova opšta definicija je deo osnovnih definicija savremene fizike, i to u onom delu koji treba da odgovori na pitanje o uzroku i poreklu prirodnih fenomena akcije, dejstva i sile. Svaki fizički sistem poseduje energiju u izvesnoj količini. Količina energije sistema nije apsolutna vrednost već relativna u odnosu na referentno stanje ili referentni nivo. Energija fizičkog sistema se definiše kao količina mehaničkog rada koga sistem može da proizvede kada menja svoje tekuće stanje i prelazi u referentno stanje; na primer ako se litar vode ohladi do 0°C ili kada auto udari drvo i uspori od 120 km/h do 0 km/h.

U fizici je energija tesno povezana sa pojmom entropija.


Ostali izabrani članci
uredi

Juni[uredi izvor]

Molekulska struktura vode.
Molekulska struktura vode.

Voda ima molekulsku formulu H2O, dakle, jedan molekul vode sastoji se od dva vodonikova atoma i jednog atoma kiseonika. Isto može biti opisana jonski kao HOH, sa vodonikovim jonom (H+) vezanim za hidroksilni jon (OH-). Pri normalnim uslovima kod vode se tečna i gasna faza nalaze u dinamičkoj ravnoteži.

Na sobnoj temperaturi voda je tečnost skoro bezbojna, bez ukusa i mirisa. U nauci se često kaže da je voda univerzalni rastvarač i jedina je supstanca koja se u prirodi nalazi čista u sva tri agregatna stanja.

Voda postoji u mnogim oblicima - u čvrstom stanju poznata je kao led koji može imati nekoliko kristalnih oblika, a ultra brzo hlađena voda može da pređe u amorfno stanje. U gasnom stanju voda je poznata kao vodena para. Tečna faza se kao i samo jedinjenje naziva voda.

Iznad kritične temperature (647 K i 22,064 MPa), voda se nalazi u superkritičnim uslovima kada molekuli vode obrazuju grozdove koji se ponašaju kao tečna faza a koji lebde u parnoj fazi.

Teška voda je voda u kojoj je atom vodonika isključivo zastupljen kao izotop deuterijum. Po hemijskim i fizičkim osobinama je skoro identična `običnoj` vodi. Najpoznatija primena teške vode je kao usporivač neutrona u nuklearnim reaktorima.

Ostali izabrani članci
uredi

Juli[uredi izvor]

Špiritusna lampa i njen vidljivi spektar: Žuta linija na ~600 nm potiče od sveprisutnog natrijuma (mikrogramskih tragova kuhinjske soli).
Špiritusna lampa i njen vidljivi spektar: Žuta linija na ~600 nm potiče od sveprisutnog natrijuma (mikrogramskih tragova kuhinjske soli).

Spektroskopija je disciplina koja se bavi proučavanjem međudelovanja elektromagnetnog zračenja i materije. Osnovni elementi su izvor zračenja, disperzioni element (ili monohromator, dakle, deo koji razlaže zračenje na komponente prema energiji, frekvenciji ili talasnoj dužini) i apsorber zračenja. Ako su dva od tri elementa dobro definisana onda se na osnovu emitovanog i apsorbovanog zračenja može saznati nešto o onome koji je nepoznat. Na primer, sastav nepoznate legure može da se odredi tako što se na njoj visokim naponom izazove varnica čije se zračenje razloži prizmom (ili optičkom rešetkom) u spektar koji se registruje pogodnim apsorberom (film, fotoelement...). Na osnovu poznatih osobina diperzionog elementa (prizme ili rešetke) može da se odredi talasna dužina svake komponente u spektru a na osnovu poznatih osobina apsorbera njihovi relativni intenziteti što je dovoljno da se utvrdi vrsta i koncentracija metala u ispitivanoj leguri.

Ostali izabrani članci
uredi

Avgust[uredi izvor]

Atom sa dva protona, dva neutrona i dva elektrona
Atom sa dva protona, dva neutrona i dva elektrona

Subatomske čestice je pojam koji obuhvata sve čestice manje od atoma, bez obzira na njihovu složenost, dok bi izraz elementarne čestice trebalo da obuhvati samo čestice koje se ne mogu podeliti na manje.

Pored elektrona, protona i neutrona kao (materijalnih) čestica i fotona kao osnovnog kvanta energije, otkriveno je na stotine drugih čestica. Dugo se verovalo da su nove čestice elementarne t.j. da se ne mogu razložiti na prostije sastojke, ali se vremenom pokazalo da je najveći broj čestica složen. Uprkos tome, naziv elementarne čestice zadržao se, sada u novom, proširenom, značenju. Isto tako, drugi uobičajeni naziv, subatomske čestice, izveden iz činjenice da su nove čestice manje od atoma, strogo uzevši, nije ispravan, jer mase nekih čestica višestruko prevazilaze mase lakših hemijskih elemenata. Nazivi elementarne ili subatomske čestice zadržali su se do današnjih dana kao sinonimi za čestice bez obzira na njihovu složenost i masu.

Ostali izabrani članci
uredi

Septembar[uredi izvor]

Talas
Talas

Talas je periodična deformacija koja se širi u prostoru i vremenu. Talasi prenose energiju kroz prostor bez protoka čestica sredine (ne postoji prenos mase nosećeg medijuma); čestice sredine samo osciluju oko svojih ravnotežnih položaja. Dok mehanički talas zahteva prisustvo sredine (koja na deformacije reaguje elastičnim silama), elektromagnetni talasi se prostiru i kroz vakuum (pogledati Etar).

Brojne su pojave vezane za talasno kretanje:

  • Refleksija (odbijanje) – promena smera prostiranja, usled nailaska na refleksionu površinu (naglu promenu sredine);
  • Refrakcija (prelamanje) – promena pravca prostiranja talasa (lomljenje), usled nailaska na novu sredinu;
  • Difrakcija (rasejanje) – kružno širenje talasa iza prepreke na putu prostiranja talasa kroz sredinu;
  • Interferencija (uzajamni uticaj) – slaganje talasa koji se nađu u istoj tački u istom trenutku;
  • Disperzija (raspršivanje) – razlaganje talasa po učestanostima, talasnim dužinama ili energijama;

Ostali izabrani članci
uredi

Oktobar[uredi izvor]

Nuklearno-magnetno-rezonantna spektroskopija (NMR) je svestrana spektroskopska disciplina koja može da registruje signale atoma iz različitih položaja u molekulu i pri tome da svaki signal dovede u vezu sa nekom od poznatih spinskih interakcija, glavnim izvorima podataka o molekulskoj strukturi i dinamici. NMR spektroskopija je danas, uz rendgeno-strukturnu analizu (kristalografiju x-zraka), jedina metoda kojom može da se odredi struktura biopolimera sa razlaganjem na atomskom nivou.


Ostali izabrani članci
uredi

Novembar[uredi izvor]

Neutrino udara u proton u komori sa mehurićima. Sudar se odigrao kada nastaju tri traga na desnoj strani fotografije.
Neutrino udara u proton u komori sa mehurićima. Sudar se odigrao kada nastaju tri traga na desnoj strani fotografije.

Neutrino je elementarna čestica. Spada u leptone, nema naelektrisanje, spin je polubrojni () pa spada u fermione. Sva do sada opažena neutrina su leve heličnosti (t.j., realizovano je samo jedno od dva moguća spinska stanja; helicitetom se izražava projekcija spinskog momenta na pravac kretanja). Dugo se verovalo da nema masu, međutim, postoje indikacije da neutrino ipak ima masu, mada vrlo malu. Postojanje neutrina je postulirao Volfgang Pauli, ime im je dao Enriko Fermi, a eksperimentalno ih registrovao Frederik Rejns 1956, za šta je dobio Nobelovu nagradu za fiziku 1995. godine.

Ostali izabrani članci
uredi

Decembar[uredi izvor]

Model aviona G-4 Super Galeb, u aerotunelu
Model aviona G-4 Super Galeb, u aerotunelu

Aerodinamika (od grč. ἀηρ, aēr, aéros — vazduh, i δύναμις, dynamis — sila) je nauka koja se bavi kretanjem vazduha, u odnosu na čvrsta tela. Fizikalnost je potpuno identična, u suprotnom slučaju, pri kretanju čvrstih tela kroz vazduh. Prema tome primenjenom principu relativnog kretanja, analiza fenomena se izvodi kao za slučaj da telo miruje u strujnom polju vazduha. Ova zamena referentnog stanja je usvojena u teorijskoj aerodinamici, ali je ona ujedno i osnova većine eksperimentalnih metoda, naročito aerotunelskih ispitivanja.

Teorija strujanja i fizikalnost kretanja čvrstih tela, izučavaju međusobno destvo vazduha i tela. To dejstvo se određuje u obliku potencijala polja opstrujavanja, raspodele pritiska, sila i njihovih momenata.

Zemljina atmosfera predstavlja vazdušni omotač oko zemljine kugle. Na osnovu usvojenih definicija, taj vazdušni omotač se deli na četiri sloja. Počev od zemljine površine pa naviše, slojevi su: troposfera, stratosfera, jonosfera i eksosfera (koja predstavlja granicu s međuplanetarnim prostorom). Atmosferu karakterišu promene fizičkih veličina pritiska, temperature, vlažnosti, gustine itd. s visinom, godišnjim dobom i geografskom širinom i dužinom. Usvojene statističke srednje vrednosti fizičkih veličina su standardizovane, međunarodnim normama, u standard atmosferu. Izmerene karakteristike kretanja tela kroz vazduh, pri konkretnim atmosferskim uslovima, se prevode na uslove standard atmosfere i tako postaju referentno uporedive.

Šire gledano, kretanje tela kroz gasove i tečnost se izučava u mehanici fluida.

Podela aerodinamike, kao specifične grane nauke, se vrši na više načina, s nekoliko osnova. Pojedini aerodinamički problemi se istovremeno rešavaju u više njenih grana. Primer je određivanje i korišćenje otpora vazduha. Pripada svima delovima, dobijenim pri podeli aerodinamike. Otpor se određuje analitički i eksperimentalno u svim oblastima brzina, visina i uslova leta i prisutan je u svim razmatranjima.

Način podele aerodinamike može da varira, zavisno od iskustva i stavova autora, znači nije strogo standardizovan. Opseg variranja, u prilazima, je veoma sužen.


uredi