Магнетски флукс — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Враћене измене корисника 188.120.102.72 (разговор) на последњу измену корисника Autobot
ознака: враћање
.
Ред 5: Ред 5:


Магнетни флукс кроз елемент нормалан у односу на смер магнетне индукције (или магнетног поља) је производ вредности магнетне индукције и елементарне површине. Уопште, магнетни флукс је дефинисан [[скаларни производ вектора|скаларним производом]] вектора магнетне индукције и вектора елементарне површине. Гаусов закон магнетизма, један од четири [[Максвелове једначине]], говори да је магнетни флукс кроз затворену контуру једнак нули. Овај закон је последица тога што се [[магнетни дипол]] не може раставити на елементарне полове, северни и јужни пол.
Магнетни флукс кроз елемент нормалан у односу на смер магнетне индукције (или магнетног поља) је производ вредности магнетне индукције и елементарне површине. Уопште, магнетни флукс је дефинисан [[скаларни производ вектора|скаларним производом]] вектора магнетне индукције и вектора елементарне површине. Гаусов закон магнетизма, један од четири [[Максвелове једначине]], говори да је магнетни флукс кроз затворену контуру једнак нули. Овај закон је последица тога што се [[магнетни дипол]] не може раставити на елементарне полове, северни и јужни пол.

== Опис ==
{{рут}}
{{multiple image
| align = right
| direction = vertical
| image1 = Surface integral illustration.svg
| caption1 = The magnetic flux through a surface—when the magnetic field is variable—relies on splitting the surface into small surface elements, over which the magnetic field can be considered to be locally constant. The total flux is then a formal summation of these surface elements (see [[surface integral|surface integration]]).
| width1 = 250
| image2 = Surface normal.png
| caption2 = Each point on a surface is associated with a direction, called the [[surface normal]]; the magnetic flux through a point is then the component of the magnetic field along this direction.
| width2 = 250
}}

The magnetic interaction is described in terms of a [[vector field]], where each point in space is associated with a vector that determines what force a moving charge would experience at that point (see [[Lorentz force]]).<ref>{{Cite book |author= Purcell, Edward |author2= Morin, David|title=Electricity and Magnetism|edition=3rd|publisher=Cambridge University Press|location= New York|year= 2013|isbn=978-1-107-01402-2|page=278}}</ref> Since a vector field is quite difficult to visualize at first, in elementary physics one may instead visualize this field with [[field line]]s. The magnetic flux through some surface, in this simplified picture, is proportional to the number of field lines passing through that surface (in some contexts, the flux may be defined to be precisely the number of field lines passing through that surface; although technically misleading, this distinction is not important). The magnetic flux is the ''net'' number of field lines passing through that surface; that is, the number passing through in one direction minus the number passing through in the other direction (see below for deciding in which direction the field lines carry a positive sign and in which they carry a negative sign).<ref>{{Cite book|author= Browne, Michael|title=Physics for Engineering and Science|edition=2nd|publisher=McGraw-Hill/Schaum|year= 2008|isbn=978-0-07-161399-6|page=235}}</ref>


Магнетни флукс се дефинише као [[интеграл]] магнетне индукције кроз неку површину:
Магнетни флукс се дефинише као [[интеграл]] магнетне индукције кроз неку површину:
Ред 44: Ред 59:
На овоме се заснива принцип рада [[електрични генератор|електричног генератора]].
На овоме се заснива принцип рада [[електрични генератор|електричног генератора]].


{{Clear}}
== Литература ==

{{refbegin|2}}
== Магнетни флукс кроз затворену површину ==
* {{Cite book| ref = harv | last = Griffiths | first = David J. |title=Introduction to Electrodynamics|edition=3rd|location=|publisher=Prentice Hall|year=1998|isbn=978-0-13-805326-0|pages=}}

* {{Cite book| ref = harv | last = Jackson | first = John D. |title=Classical Electrodynamics|publisher=Wiley|edition=3rd|year=1998|isbn=978-0-471-30932-1|pages=}}
[[File:SurfacesWithAndWithoutBoundary.svg|right|thumb|250px|Some examples of [[closed surface]]s (left) and [[open surface]]s (right). Left: Surface of a sphere, surface of a [[torus]], surface of a cube. Right: [[Disk (mathematics)|Disk surface]], square surface, surface of a hemisphere. (The surface is blue, the boundary is red.)]]
* {{Cite book| ref = harv | last = Tipler | first = Paul |title=Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics|publisher=W. H. Freeman|edition=5th|year=2004|isbn=978-0-7167-0810-0|pages=}}

{{refend}}
{{Main|Gauss's law for magnetism}}

[[Gauss's law for magnetism]], which is one of the four [[Maxwell's equations]], states that the total magnetic flux through a [[closed surface]] is equal to zero. (A "closed surface" is a surface that completely encloses a volume(s) with no holes.) This law is a consequence of the empirical observation that [[magnetic monopole]]s have never been found.

In other words, Gauss's law for magnetism is the statement:

:{{oiint
| preintegral = <math>\Phi_B=\,\!</math>
| intsubscpt = <math>\scriptstyle S</math>
| integrand = <math>\mathbf{B} \cdot d\mathbf S = 0</math>}}

for any [[closed surface]] ''S''.

== Магнетни ток кроз отворену површину ==
[[File:Vector field on a surface.svg|right|thumb|250px|For an open surface Σ, the [[electromotive force]] along the surface boundary, ∂Σ, is a combination of the boundary's motion, with velocity '''v''', through a magnetic field '''B''' (illustrated by the generic '''F''' field in the diagram) and the induced electric field caused by the changing magnetic field.]]

While the magnetic flux through a [[closed surface]] is always zero, the magnetic flux through an [[open surface]] need not be zero and is an important quantity in electromagnetism.

When determining the total magnetic flux through a surface only the boundary of the surface needs to be defined, the actual shape of the surface is irrelevant and the integral over any surface sharing the same boundary will be equal. This is a direct consequence of the closed surface flux being zero.

== Промена магнетног флукса ==
{{Main|Faraday's law of induction}}
[[File:Spulenflaeche.jpg|thumb|лево|250px|Area defined by an electric coil with three turns.]]

For example, a change in the magnetic flux passing through a loop of conductive wire will cause an [[electromotive force]], and therefore an electric current, in the loop. The relationship is given by [[Faraday's law of induction|Faraday's law]]:

:<math>\mathcal{E} = \oint_{\partial \Sigma}\left( \mathbf{E} +\mathbf{ v \times B}\right) \cdot d\boldsymbol{\ell} = -{d\Phi_B \over dt},</math>

where
:<math>\mathcal{E}</math> is the electromotive force ([[electromotive force|EMF]]),
:Φ<sub>''B''</sub> is the magnetic flux through the open surface Σ,
:∂Σ is the boundary of the open surface Σ; the surface, in general, may be in motion and deforming, and so is generally a function of time. The electromotive force is induced along this boundary.
:d'''ℓ''' is an [[infinitesimal]] vector element of the contour ∂Σ,
:'''v''' is the velocity of the boundary ∂Σ,
:'''E''' is the [[electric field]],
:'''B''' is the [[magnetic field]].

The two equations for the EMF are, firstly, the work per unit charge done against the [[Lorentz force]] in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an [[electrical generator]].

== Поређење са електричним флуксом ==
{{Main|Електрични флукс|Гаусов закон}}

By way of contrast, [[Gauss's law]] for electric fields, another of [[Maxwell's equations]], is

:{{oiint
| preintegral = <math>\Phi_E =\,\!</math>
| intsubscpt = <math>\scriptstyle S</math>
| integrand = <math>\mathbf{E}\cdot d\mathbf{S} = \frac{Q}{\varepsilon_0}\,\!</math>}}

where
:'''E''' is the [[electric field]],
:''S'' is any [[closed surface]],
:''Q'' is the total [[electric charge]] inside the surface ''S'',
:''ε''<sub>0</sub> is the [[electric constant]] (a universal constant, also called the "[[permittivity]] of free space").

The [[electric flux|flux of '''E''']] through a closed surface is ''not'' always zero; this indicates the presence of "electric monopoles", that is, free positive or negative [[electric charge|charges]].

== Квант магнетног флукса ==

{| class="wikitable" style="float: right;"
! colspan=2 | CODATA values
! Units
|-
| {{math|Φ}}<sub>0</sub> || {{physconst|Phi0|unit=no}} || [[Weber (unit)|Wb]]
|-
| {{math|''K''}}<sub>J</sub> || {{physconst|KJ|unit=no}} || [[Hertz|Hz]]/[[volt|V]]
|-
| {{math|''K''}}<sub>J-90</sub> || {{physconst|KJ90|unit=no}} || [[Hertz|Hz]]/[[volt|V]]
|}

The magnetic flux, represented by the symbol {{math|'''Φ'''}}, threading some contour or loop is defined as the magnetic field {{math|'''B'''}} multiplied by the loop area {{math|'''S'''}}, i.e. {{math|1='''Φ''' = '''B''' ⋅ '''S'''}}. Both {{math|'''B'''}} and {{math|'''S'''}} can be arbitrary, meaning {{math|'''Φ'''}} can be as well. However, if one deals with the superconducting loop or a hole in a bulk [[superconductor]], the magnetic flux threading such a hole/loop is actually quantized.
The (superconducting) '''magnetic flux quantum''' {{math|1=Φ<sub>0</sub> = ''h''/(2''e'')}} ≈ {{physconst|Phi0|ref=no}}{{physconst|Phi0|ref=only}} is a combination of fundamental physical constants: the [[Planck constant]] {{math|''h''}} and the [[electron charge]] {{math|''e''}}. Its value is, therefore, the same for any [[superconductor]].
The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank<ref name=Deaver:1961:FluxQuantum /> and, independently, by R. Doll and M. Näbauer,<ref name=Doll:1961:FluxQuantum /> in 1961. The quantization of magnetic flux is closely related to the [[Little–Parks effect]],<ref>{{Cite journal|last=Parks|first=R. D.|date=1964-12-11|title=Quantized Magnetic Flux in Superconductors: Experiments confirm Fritz London's early concept that superconductivity is a macroscopic quantum phenomenon|url=https://science.sciencemag.org/content/146/3650/1429|journal=Science|language=en|volume=146|issue=3650|pages=1429–1435|doi=10.1126/science.146.3650.1429|issn=0036-8075|pmid=17753357|s2cid=30913579}}</ref> but was predicted earlier by [[Fritz London]] in 1948 using a [[Phenomenology (particle physics)|phenomenological model]].<ref>{{Cite book|url=https://books.google.com/books?id=VNxEAAAAIAAJ|title=Superfluids: Macroscopic theory of superconductivity|last=London|first=Fritz|date=1950|publisher=John Wiley & Sons|pages=152 (footnote)|language=en}}</ref><ref name=":0" />

The inverse of the flux quantum, {{math|1/Φ<sub>0</sub>}}, is called the '''Josephson constant''', and is denoted {{math|''K''}}<sub>J</sub>. It is the constant of proportionality of the [[Josephson effect]], relating the [[potential difference]] across a Josephson junction to the [[frequency]] of the irradiation. {{anchor|KJ-1990}}The Josephson effect is very widely used to provide a standard for high-precision measurements of potential difference, which (from 1990 to 2019) were related to a fixed, [[conventional electrical unit|conventional value]] of the Josephson constant, denoted {{math|''K''}}<sub>J-90</sub>. With the [[2019 redefinition of SI base units]], the Josephson constant has an exact value of {{math|''K''}}<sub>J</sub> = {{val|483597.84841698|end=...|u=GHz⋅V{{sup|−1}}}},<ref>{{cite web|url=https://www.bipm.org/utils/en/pdf/si-mep/MeP-a-2018.pdf|title=''Mise en pratique'' for the definition of the ampere and other electric units in the SI|publisher=[[BIPM]]}}</ref> which replaces the conventional value {{math|''K''}}<sub>J-90</sub>.

The following physical equations use SI units. In CGS units, a factor of {{math|''c''}} would appear.

The superconducting properties in each point of the [[superconductor]] are described by the ''complex'' quantum mechanical wave function {{math|Ψ('''r''',''t'')}} — the superconducting order parameter. As any complex function {{math|Ψ}} can be written as {{math|1=Ψ = Ψ<sub>0</sub>''e''<sup>i''θ''</sup>}}, where {{math|Ψ<sub>0</sub>}} is the amplitude and {{math|''θ''}} is the phase. Changing the phase {{math|''θ''}} by {{math|2π''n''}} will not change {{math|Ψ}} and, correspondingly, will not change any physical properties. However, in the superconductor of non-trivial topology, e.g. superconductor with the hole or superconducting loop/cylinder, the phase {{math|''θ''}} may continuously change from some value {{math|''θ''<sub>0</sub>}} to the value {{math|''θ''<sub>0</sub> + 2π''n''}} as one goes around the hole/loop and comes to the same starting point. If this is so, then one has {{math|''n''}} magnetic flux quanta trapped in the hole/loop,<ref name=":0">{{Cite web|url=https://www.feynmanlectures.caltech.edu/III_21.html |title=The Feynman Lectures on Physics Vol. III Ch. 21: The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity, Section 21-7: Flux quantization|website=www.feynmanlectures.caltech.edu|access-date=2020-01-21}} </ref> as shown below:

Per [[minimal coupling]], the [[probability current]] of [[Cooper pair|cooper pairs]] in the superconductor is:

:<math>\mathbf J = \frac{1}{2m}\left[\left(\Psi^* (-i\hbar\nabla) \Psi - \Psi (-i\hbar\nabla) \Psi^*\right) - 2q \mathbf{A} |\Psi|^2 \right]\,\! .</math>

Here, the wave function is the [[Ginzburg–Landau theory|Ginzburg–Landau order parameter]]:

:<math>\Psi(\mathbf{r})=\sqrt{\rho(\mathbf{r})} \, e^{i\theta(\mathbf{r})}.</math>

Plugging into the expression of probability current, one obtains:

:<math>\mathbf{J}=\frac{\hbar}{m}(\nabla{\theta}-\frac{q}{\hbar}\mathbf{A})\rho.</math>

While inside the body of the superconductor, the current density '''J''' is zero; Therefore:

:<math>\nabla{\theta}=\frac{q}{\hbar}\mathbf{A}.</math>

Integrating around the hole/loop using [[Kelvin–Stokes theorem|Stokes' theorem]]<ref>{{Cite book|last=Stewart|first=James|title=Calculus - Early Transcendentals|publisher=Brooks/Cole Cengage Learning|year=2012|isbn=978-0-538-49790-9|edition=7th|pages=1122}}</ref><ref name="iwahori">[[Nagayoshi Iwahori]], et al.:"Bi-Bun-Seki-Bun-Gaku" [[:ja:裳華房|Sho-Ka-Bou]](jp) 1983/12 {{ISBN|978-4-7853-1039-4}}
[http://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1039-4.htm](Written in Japanese)</ref><ref name="fujimno">Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)"
Bai-Fu-Kan (jp)(1979/01) {{ISBN|978-4563004415}} [{{Google books |plainurl=yes |id=nXhDywAACAAJ }}] (Written in Japanese)</ref> and <math>\nabla \times \mathbf{A} = B</math> gives:

:<math>\Phi_B=\oint\mathbf{A}\cdot d\mathbf{l}=\frac{\hbar}{q}\oint\nabla{\theta}\cdot d\mathbf{l}.</math>

Now, because the order parameter must return to the same value when the integral goes back to the same point, we have:<ref> R. Shankar, "Principles of Quantum Mechanics", eq. 21.1.44 </ref>

:<math>\Phi_B=\frac{\hbar}{q}2c\pi=c\frac{h}{2e}.</math>


== Види још ==
== Види још ==
{{портал|Физика}}
* [[Густина магнетског флукса|Густина магнетног флукса]]
* [[Густина магнетског флукса|Густина магнетног флукса]]
* [[Магнетно поље]]
* [[Магнетно поље]]
* [[Максвелове једначине]]
* [[Максвелове једначине]]
* [[Гаусови закони]]
* [[Гаусови закони]]

== Референце ==
{{Reflist|refs =
<ref name=Deaver:1961:FluxQuantum>{{cite journal |last1=Deaver|first1=Bascom|last2=Fairbank |first2 = William |title = Experimental Evidence for Quantized Flux in Superconducting Cylinders |journal=Physical Review Letters |date=July 1961 |volume=7 |issue=2 |pages=43–46 |doi = 10.1103/PhysRevLett.7.43 |bibcode = 1961PhRvL...7...43D }}</ref>
<ref name=Doll:1961:FluxQuantum>{{cite journal |last1=Doll |first1=R.|last2=Näbauer |first2 = M. |title = Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring |journal=Physical Review Letters |date=July 1961 |volume=7 |issue=2 |pages=51–52 |doi = 10.1103/PhysRevLett.7.51 |bibcode = 1961PhRvL...7...51D }}</ref>
}}

== Литература ==
{{refbegin|}}
* {{Cite book| ref = harv | last = Griffiths | first = David J. |title=Introduction to Electrodynamics|edition=3rd|location=|publisher=Prentice Hall|year=1998|isbn=978-0-13-805326-0|pages=}}
* {{Cite book| ref = harv | last = Jackson | first = John D. |title=Classical Electrodynamics|publisher=Wiley|edition=3rd|year=1998|isbn=978-0-471-30932-1|pages=}}
* {{Cite book| ref = harv | last = Tipler | first = Paul |title=Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics|publisher=W. H. Freeman|edition=5th|year=2004|isbn=978-0-7167-0810-0|pages=}}
* L. O. Chua, [http://www.cpmt.org/scv/meetings/chua.pdf"Memristor – The Missing Circuit Element"], IEEE Trans. Circuit Theory, vol. CT_18, no. 5, pp.&nbsp;507–519, 1971.

{{refend}}

== Спољашње везе ==
{{Commonscat|Magnetic flux}}
{{Commonscat|Magnetic flux}}
* {{cite patent| inventor =Vicci|country=US|number=6720855|title=Magnetic-flux conduits|gdate=2003|ref=none}}
* [http://demonstrations.wolfram.com/MagneticFluxThroughALoopOfWire/ Magnetic Flux through a Loop of Wire] by Ernest Lee, [[Wolfram Demonstrations Project]].
* [http://www.sengpielaudio.com/calculator-magneticflux.htm Conversion Magnetic flux Φ in nWb per meter track width to flux level in dB – Tape Operating Levels and Tape Alignment Levels]

{{Authority control}}
{{портал бар|Физика}}


[[Категорија:Магнетизам]]
[[Категорија:Магнетизам]]

Верзија на датум 8. новембар 2021. у 19:56

Магнетни флукс или магнетни ток (магнетни флукс или магнетни ток), који се представља грчким словом Φ (фи), је физичка величина која описује магнетно поље у околини покретног наелектрисања. Уколико магнетно поље замишљамо помоћу магнетних линија сила које се шире у простору, тада је флукс број линија која пролази кроз неку затворену контуру.

СИ јединица за магнетни флукс је Wb (вебер), или V s (волт секунда) преко основних јединица, док је јединица која описује индукцију магнетног поља Wb/m² или T (тесла).

Магнетни флукс кроз елемент нормалан у односу на смер магнетне индукције (или магнетног поља) је производ вредности магнетне индукције и елементарне површине. Уопште, магнетни флукс је дефинисан скаларним производом вектора магнетне индукције и вектора елементарне површине. Гаусов закон магнетизма, један од четири Максвелове једначине, говори да је магнетни флукс кроз затворену контуру једнак нули. Овај закон је последица тога што се магнетни дипол не може раставити на елементарне полове, северни и јужни пол.

Опис

The magnetic flux through a surface—when the magnetic field is variable—relies on splitting the surface into small surface elements, over which the magnetic field can be considered to be locally constant. The total flux is then a formal summation of these surface elements (see surface integration).
Each point on a surface is associated with a direction, called the surface normal; the magnetic flux through a point is then the component of the magnetic field along this direction.

The magnetic interaction is described in terms of a vector field, where each point in space is associated with a vector that determines what force a moving charge would experience at that point (see Lorentz force).[1] Since a vector field is quite difficult to visualize at first, in elementary physics one may instead visualize this field with field lines. The magnetic flux through some surface, in this simplified picture, is proportional to the number of field lines passing through that surface (in some contexts, the flux may be defined to be precisely the number of field lines passing through that surface; although technically misleading, this distinction is not important). The magnetic flux is the net number of field lines passing through that surface; that is, the number passing through in one direction minus the number passing through in the other direction (see below for deciding in which direction the field lines carry a positive sign and in which they carry a negative sign).[2]

Магнетни флукс се дефинише као интеграл магнетне индукције кроз неку површину:

где је

магнетни флукс
B је магнетна индукција
S је површина.

Гаусов закон магнетизма казује да

Интеграл по запремини ове једначине, заједно са теоремом дивергенције, даје следећи резултат:

Другим речима, магнетни флукс кроз било коју затворену контуру мора бити једнак нули, јер се магнет не може поделити на северни и јужни пол.

Насупрот томе, Гаусов закон за електрично поље, још једна од Максвелових једначина, је:

где је

E јачина електричног поља,
је густина слободних наелектрисања (не укључује наелектрисања везана за материјал),
је пермитивност вакуума.

Ова једначина наговештава постојање електричних монопола, позитивног и негативног наелектрисања.

Смер вектора магнетног поља је по дефиницији од јужног ка северном полу унутар магнета, док ван магнета линије силе иду од северног пола ка јужном полу.

Промена магнетног флукса кроз навојак проводника ће индуковати електромоторну силу, а тиме и електричну струју кроз навојак (ако је струјно коло затворено). Ова једначина је дата Фарадејевим законом електромагнетне индукције:

На овоме се заснива принцип рада електричног генератора.

Магнетни флукс кроз затворену површину

Some examples of closed surfaces (left) and open surfaces (right). Left: Surface of a sphere, surface of a torus, surface of a cube. Right: Disk surface, square surface, surface of a hemisphere. (The surface is blue, the boundary is red.)

Gauss's law for magnetism, which is one of the four Maxwell's equations, states that the total magnetic flux through a closed surface is equal to zero. (A "closed surface" is a surface that completely encloses a volume(s) with no holes.) This law is a consequence of the empirical observation that magnetic monopoles have never been found.

In other words, Gauss's law for magnetism is the statement:

\oiint

for any closed surface S.

Магнетни ток кроз отворену површину

For an open surface Σ, the electromotive force along the surface boundary, ∂Σ, is a combination of the boundary's motion, with velocity v, through a magnetic field B (illustrated by the generic F field in the diagram) and the induced electric field caused by the changing magnetic field.

While the magnetic flux through a closed surface is always zero, the magnetic flux through an open surface need not be zero and is an important quantity in electromagnetism.

When determining the total magnetic flux through a surface only the boundary of the surface needs to be defined, the actual shape of the surface is irrelevant and the integral over any surface sharing the same boundary will be equal. This is a direct consequence of the closed surface flux being zero.

Промена магнетног флукса

Area defined by an electric coil with three turns.

For example, a change in the magnetic flux passing through a loop of conductive wire will cause an electromotive force, and therefore an electric current, in the loop. The relationship is given by Faraday's law:

where

is the electromotive force (EMF),
ΦB is the magnetic flux through the open surface Σ,
∂Σ is the boundary of the open surface Σ; the surface, in general, may be in motion and deforming, and so is generally a function of time. The electromotive force is induced along this boundary.
d is an infinitesimal vector element of the contour ∂Σ,
v is the velocity of the boundary ∂Σ,
E is the electric field,
B is the magnetic field.

The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an electrical generator.

Поређење са електричним флуксом

By way of contrast, Gauss's law for electric fields, another of Maxwell's equations, is

\oiint

where

E is the electric field,
S is any closed surface,
Q is the total electric charge inside the surface S,
ε0 is the electric constant (a universal constant, also called the "permittivity of free space").

The flux of E through a closed surface is not always zero; this indicates the presence of "electric monopoles", that is, free positive or negative charges.

Квант магнетног флукса

CODATA values Units
Φ0 2,067833848...×10−15[3] Wb
KJ 483597,8484...×109[4] Hz/V
KJ-90 483597,9×109[5] Hz/V

The magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = BS. Both B and S can be arbitrary, meaning Φ can be as well. However, if one deals with the superconducting loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is actually quantized. The (superconducting) magnetic flux quantum Φ0 = h/(2e)2,067833848...×10−15 Wb[3] is a combination of fundamental physical constants: the Planck constant h and the electron charge e. Its value is, therefore, the same for any superconductor. The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank[6] and, independently, by R. Doll and M. Näbauer,[7] in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect,[8] but was predicted earlier by Fritz London in 1948 using a phenomenological model.[9][10]

The inverse of the flux quantum, 1/Φ0, is called the Josephson constant, and is denoted KJ. It is the constant of proportionality of the Josephson effect, relating the potential difference across a Josephson junction to the frequency of the irradiation. The Josephson effect is very widely used to provide a standard for high-precision measurements of potential difference, which (from 1990 to 2019) were related to a fixed, conventional value of the Josephson constant, denoted KJ-90. With the 2019 redefinition of SI base units, the Josephson constant has an exact value of KJ = 483597,84841698... GHz⋅V−1,[11] which replaces the conventional value KJ-90.

The following physical equations use SI units. In CGS units, a factor of c would appear.

The superconducting properties in each point of the superconductor are described by the complex quantum mechanical wave function Ψ(r,t) — the superconducting order parameter. As any complex function Ψ can be written as Ψ = Ψ0eiθ, where Ψ0 is the amplitude and θ is the phase. Changing the phase θ by n will not change Ψ and, correspondingly, will not change any physical properties. However, in the superconductor of non-trivial topology, e.g. superconductor with the hole or superconducting loop/cylinder, the phase θ may continuously change from some value θ0 to the value θ0 + 2πn as one goes around the hole/loop and comes to the same starting point. If this is so, then one has n magnetic flux quanta trapped in the hole/loop,[10] as shown below:

Per minimal coupling, the probability current of cooper pairs in the superconductor is:

Here, the wave function is the Ginzburg–Landau order parameter:

Plugging into the expression of probability current, one obtains:

While inside the body of the superconductor, the current density J is zero; Therefore:

Integrating around the hole/loop using Stokes' theorem[12][13][14] and gives:

Now, because the order parameter must return to the same value when the integral goes back to the same point, we have:[15]

Види још

Референце

  1. ^ Purcell, Edward; Morin, David (2013). Electricity and Magnetism (3rd изд.). New York: Cambridge University Press. стр. 278. ISBN 978-1-107-01402-2. 
  2. ^ Browne, Michael (2008). Physics for Engineering and Science (2nd изд.). McGraw-Hill/Schaum. стр. 235. ISBN 978-0-07-161399-6. 
  3. ^ а б „2018 CODATA Value: magnetic flux quantum”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  4. ^ „2018 CODATA Value: Josephson constant”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  5. ^ „2018 CODATA Value: conventional value of Josephson constant”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  6. ^ Deaver, Bascom; Fairbank, William (јул 1961). „Experimental Evidence for Quantized Flux in Superconducting Cylinders”. Physical Review Letters. 7 (2): 43—46. Bibcode:1961PhRvL...7...43D. doi:10.1103/PhysRevLett.7.43. 
  7. ^ Doll, R.; Näbauer, M. (јул 1961). „Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring”. Physical Review Letters. 7 (2): 51—52. Bibcode:1961PhRvL...7...51D. doi:10.1103/PhysRevLett.7.51. 
  8. ^ Parks, R. D. (1964-12-11). „Quantized Magnetic Flux in Superconductors: Experiments confirm Fritz London's early concept that superconductivity is a macroscopic quantum phenomenon”. Science (на језику: енглески). 146 (3650): 1429—1435. ISSN 0036-8075. PMID 17753357. S2CID 30913579. doi:10.1126/science.146.3650.1429. 
  9. ^ London, Fritz (1950). Superfluids: Macroscopic theory of superconductivity (на језику: енглески). John Wiley & Sons. стр. 152 (footnote). 
  10. ^ а б „The Feynman Lectures on Physics Vol. III Ch. 21: The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity, Section 21-7: Flux quantization”. www.feynmanlectures.caltech.edu. Приступљено 2020-01-21. 
  11. ^ Mise en pratique for the definition of the ampere and other electric units in the SI” (PDF). BIPM. 
  12. ^ Stewart, James (2012). Calculus - Early Transcendentals (7th изд.). Brooks/Cole Cengage Learning. стр. 1122. ISBN 978-0-538-49790-9. 
  13. ^ Nagayoshi Iwahori, et al.:"Bi-Bun-Seki-Bun-Gaku" Sho-Ka-Bou(jp) 1983/12 ISBN 978-4-7853-1039-4 [1](Written in Japanese)
  14. ^ Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)" Bai-Fu-Kan (jp)(1979/01) ISBN 978-4563004415 [2] (Written in Japanese)
  15. ^ R. Shankar, "Principles of Quantum Mechanics", eq. 21.1.44

Литература

Спољашње везе