Пређи на садржај

Вештачка интелигенција — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Dcirovic преместио је страницу Вјештачка интелигенција на Вештачка интелигенција преко преусмерења: .
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Интелигенција машина или софтвера}}{{рут}}
[[Датотека:HONDA ASIMO.jpg|мини|десно|200п|Хондин интелигентни хуманоидни робот [[АСИМО]]]]
[[Датотека:HONDA ASIMO.jpg|мини|десно|200п|Хондин интелигентни хуманоидни робот [[ASIMO]]]]
'''Вјештачка интелигенција''' (такође VI) је подобласт [[рачунарство|рачунарства]]. Циљ истраживања вјештачке интелигенције је развијање програма ([[софтвер]]а), који ће рачунарима омогућити да се понашају на начин који би се могао окарактерисати интелигентним. Прва истраживања се вежу за саме коријене рачунарства. Идеја о стварању машина које ће бити способне да обављају различите задатке интелигентно, била је централна преокупација научника рачунарства који су се опредијелили за истраживање вјештачке интелигенције, током цијеле друге половине [[20. век|20. вијека]]. Савремена истраживања у вјештачкој интелигенцији су оријентисана на [[експертски системи|експертске]] и преводилачке системе у ограниченим доменима, препознавање природног говора и писаног текста, [[аутоматски доказивач теорема|аутоматске доказиваче теорема]], као и константно интересовање за стварање генерално интелигентних [[аутономни агенти|аутономних агената]].


'''Вештачка интелигенција''' (такође VI) је подобласт [[рачунарство|рачунарства]] која развија и проучава интелигентне машине.<ref>{{Cite book | first1 = Stuart J. | last1 = Russell | author1-link = Stuart J. Russell | first2 = Peter. | last2 = Norvig | author2-link = Peter Norvig | title=[[Artificial Intelligence: A Modern Approach]] | year = 2021 | edition = 4th | isbn = 978-0134610993 | lccn = 20190474 | publisher = Pearson | location = Hoboken }}</ref><ref>{{Cite book | first1 = Elaine | last1 = Rich | author1-link = Elaine Rich | first2 = Kevin | last2 = Knight | first3 = Shivashankar B | last3 = Nair | title = Artificial Intelligence | date = 2010 | isbn = 978-0070087705 | language = en | publisher = Tata McGraw Hill India | location = New Delhi | edition = 3rd }}</ref> Вештачка интелигенција је интелигенција [[машина]] или софтвера, за разлику од интелигенције живих бића, првенствено [[Human intelligence|људи]]. Циљ истраживања вештачке интелигенције је развијање програма ([[софтвер]]а), који ће рачунарима омогућити да се понашају на начин који би се могао окарактерисати интелигентним. Прва истраживања се вежу за саме корене рачунарства. Идеја о стварању машина које ће бити способне да обављају различите задатке интелигентно, била је централна преокупација научника рачунарства који су се определили за истраживање вештачке интелигенције, током целе друге половине [[20. век]]а. Савремена истраживања у вештачкој интелигенцији су оријентисана на [[експертски системи|експертске]] и преводилачке системе у ограниченим доменима, препознавање природног говора и писаног текста, [[аутоматски доказивач теорема|аутоматске доказиваче теорема]], као и константно интересовање за стварање генерално интелигентних [[аутономни агенти|аутономних агената]]. Вештачка интелигенција као појам у ширем смислу, означава капацитет једне вештачке творевине за реализовање функција које су карактеристика људског размишљања. Могућност развоја сличне творевине је будила интересовање људи још од античког доба; ипак, тек у другој половини [[XX vek|XX века]] таква могућност је добила прва оруђа ([[рачунар]]е), чиме се отворио пут за тај подухват.<ref>[http://library.thinkquest.org/2705/ Artificial Intelligence] {{Wayback|url=http://library.thinkquest.org/2705/ |date=20110221055830 }}, Приступљено 28. 3. 2013.</ref> Потпомогнута напретком модерне науке, истраживања на пољу вештачке интелигенције се развијају у два основна смера: [[психологија|психолошка]] и [[физиологија|физиолошка]] истраживања природе људског ума, и технолошки развој све сложенијих [[рачунарство|рачунарских]] система. У том смислу, појам вештачке интелигенције се првобитно приписао системима и [[рачунарски програм|рачунарским програмима]] са способностима реализовања сложених задатака, односно симулацијама функционисања људског размишљања, иако и дан данас, прилично далеко од циља. У тој сфери, најважније области истраживања су обрада података, препознавање модела различитих области знања, игре и примијењене области, као на пример [[медицина]]. [[Applications of artificial intelligence|AI технологија]] се широко користи у [[Вештачка интелигенција у индустрији|индустрији]], [[Artificial intelligence in government|влади]] и науци. Неке апликације високог профила су: напредни [[web search engine|веб претраживачи]] (нпр. [[Google Search|Гоогле претрага]]), [[Sistemi za preporuku|системи препорука]] (које користе [[YouTube]], [[Amazon (company)|Амазон]] и [[Netflix|Нетфликс]]), интеракција путем [[natural-language understanding|људског говора]] (нпр. [[Google помоћник|Гугл асистант]], [[Сири]] и [[Amazon Alexa|Алекса]]), [[self-driving car|самостална вожња]] аутомобиле (нпр. [[Waymo|Вејмо]]), [[Generative artificial intelligence|генеративни]] и [[Computational creativity|креативни]] алати (нпр. [[ChatGPT]] и [[AI art|AI уметност]]), и надљудска игру и анализа у [[strategy game|стратешким играма]] (нпр. [[шах]] и [[Go (game)|го]]).{{sfnp|Google|2016}}
Вјештачка интелигенција као појам у ширем смислу, означава капацитет једне вјештачке творевине за реализовање функција које су карактеристика људског размишљања. Могућност развоја сличне творевине је будила интересовање људи још од античког доба ; ипак, тек у другој половини [[XX vek|XX вијека]] таква могућност је добила прва оруђа ([[рачунар]]е), чиме се отворио пут за тај подухват.<ref>[http://library.thinkquest.org/2705/ Artificial Intelligence] {{Wayback|url=http://library.thinkquest.org/2705/ |date=20110221055830 }}, Приступљено 28. 3. 2013.</ref>


Неке области данашњих истраживања обрађивања података се концентришу на програме који настоје оспособити рачунар за разумевање писане и вербалне информације, стварање резимеа, давање одговара на одређена питања или редистрибуцију података корисницима заинтересованим за одређене делове тих информација. У тим програмима је од суштинског значаја капацитет система за конструисање [[граматика|граматички]] коректних реченица и успостављање везе између речи и идеја, односно идентификовање значења. Истраживања су показала да, док је проблеме структурне [[логика|логике]] [[језик]]а, односно његове [[синтакса|синтаксе]], могуће решити [[програмски језик|програмирањем]] одговарајућих [[алгоритам]]а, проблем значења, или [[семантика]], је много дубљи и иде у правцу аутентичне вештачке интелигенције. Основне тенденције данас, за развој система VI представљају: развој [[експертски системи|експертских система]] и развој [[неуронска мрежа|неуронских мрежа]]. Експертски системи покушавају репродуковати људско размишљање преко [[симбол]]а. Неуронске мреже то раде више из [[биологија|биолошке]] перспективе (рекреирају структуру људског мозга уз помоћ [[генетски алгоритам|генетских алгоритама]]). Упркос сложености оба система, резултати су веома далеко од стварног интелигентног размишљања. Многи научници су скептици према могућности развијања истинске VI. Функционисање људског размишљања, још увек није дубље познато, из ког разлога ће [[информатички дизајн]] интелигентних система, још дужи временски период бити у суштини онеспособљен за представљање тих непознатих и сложених процеса. Истраживања у VI су фокусирана на следеће компоненте интелигенције: учење, размишљање, решавање проблема, перцепција и разумијевање природног језика.
Потпомогнута напретком модерне науке, истраживања на пољу вјештачке интелигенције се развијају у два основна смјера: [[психологија|психолошка]] и [[физиологија|физиолошка]] истраживања природе људског ума, и технолошки развој све сложенијих [[рачунарство|рачунарских]] система.


[[Алан Тјуринг]] је био прва особа која је спровела значајна истраживања у области коју је назвао машинска интелигенција.<ref name="turing"/> Вештачка интелигенција је основана као академска дисциплина 1956. године.<ref name="Dartmouth workshop"/> Поље је прошло кроз више циклуса оптимизма,<ref name="AI in the 60s"/><ref name="AI in the 80s"/> праћених периодима разочарења и губитка финансирања, познатим као [[AI winter|AI зима]].<ref name="First AI winter" /><ref name="Second AI winter"/> Финансирање и интересовање су се знатно повећали након 2012. када је [[deep learning|дубоко учење]] надмашило све претходне технике вештачке интелигенције,<ref name="Deep learning revolution"/> и после 2017. са архитектуром [[Transformer (machine learning model)|трансформатора]].{{sfnp|Toews|2023}} Ово је довело до [[AI spring|AI пролећа]] почетком 2020-их, при чему су компаније, универзитети и лабораторије које су претежно са седиштем у Сједињеним Државама, остварили значајне пионирске [[advances in artificial intelligence|напретке]] у вештачкој интелигенцији.{{sfnp|Frank|2023}} Све већа употреба вештачке интелигенције у 21. веку утиче на [[AI era|друштвени и економски помак]] ка повећању [[automation|аутоматизације]], [[data-driven decision-making|доношења одлука заснованих на подацима]] и [[Artificial intelligence systems integration|интеграцији AI система]] у различите економске секторе и области живота, утичући на [[Workplace impact of artificial intelligence|тржишта рада]], [[Artificial intelligence in healthcare|здравство]], владу , индустрија и [[Artificial intelligence in education|образовање]]. Ово поставља питања о [[Etika veštačke inteligencije|етичким импликацијама]] и [[AI risk|ризицима од AI]], што подстиче дискусије о [[Regulation of artificial intelligence|регулаторним политикама]] како би се осигурала [[AI safety|безбедност и предности]] технологије. Различите подобласти AI истраживања су усредсређене на одређене циљеве и употребу специфичних алата. Традиционални циљеви истраживања вештачке интелигенције обухватају [[Аутоматско резоновање|расуђивање]], [[knowledge representation|представљање знања]], [[Automated planning and scheduling|планирање]], [[machine learning|учење]], [[natural language processing|обрада природног језика]], [[machine perception|перцепција]] и подршка [[robotics|роботици]].{{efn|name="Problems of AI"}} [[Artificial general intelligence|Општа интелигенција]] (способност да се обави било који задатак који човек може да изврши) спада у дугорочне цињеве у овој области.<ref name="AGI"/> Да би решили ове проблеме, истраживачи вештачке интелигенције су прилагодили и интегрисали широк спектар техника решавања проблема, укључујући [[state space search|претрагу]] и [[mathematical optimization|математичку оптимизацију]], формалну логику, [[artificial neural network|вештачке неуронске мреже]] и методе засноване на [[statistics|статистици]], [[operations research|операционом истраживању]] и [[economics|економији]].{{efn|name="Tools of AI"}} AI се такође ослања на [[psychology|психологију]], [[linguistics|лингвистику]], [[philosophy|филозофију]], [[neuroscience|неуронауку]] и друге области.<ref name="AI influences">{{Harvtxt|Russell|Norvig|2021|loc=§1.2}}.</ref>
У том смислу, појам вјештачке интелигенције се првобитно приписао системима и [[рачунарски програм|рачунарским програмима]] са способностима реализовања сложених задатака, односно симулацијама функционисања људског размишљања, иако и дан данас, прилично далеко од циља. У тој сфери, најважније области истраживања су обрада података, препознавање модела различитих области знања, игре и примијењене области, као на примјер [[медицина]].


== Циљеви ==
Неке области данашњих истраживања обрађивања података се концентришу на програме који настоје оспособити рачунар за разумијевање писане и вербалне информације, стварање резимеа, давање одговара на одређена питања или редистрибуцију података корисницима заинтересованим за одређене дијелове тих информација. У тим програмима је од суштинског значаја капацитет система за конструисање [[граматика|граматички]] коректних реченица и успостављање везе између ријечи и идеја, односно идентификовање значења. Истраживања су показала да, док је проблеме структурне [[логика|логике]] [[језик]]а, односно његове [[синтакса|синтаксе]], могуће ријешити [[програмски језик|програмирањем]] одговарајућих [[алгоритам]]а, проблем значења, или [[семантика]], је много дубљи и иде у правцу аутентичне вјештачке интелигенције.


Општи проблем симулације (или стварања) интелигенције подељен је на подпроблеме. Они се састоје од одређених особина или способности које истраживачи очекују да интелигентни систем покаже. Испод описане особине су задобиле највише пажње и покривају обим истраживања вештачке интелигенције.{{efn|name="Problems of AI"|Ова листа интелигентних особина заснована је на темама које покривају главни AI уџбеници, укључујући: {{Harvtxt|Russell|Norvig|2021}}, {{Harvtxt|Luger|Stubblefield|2004}}, {{Harvtxt|Poole|Mackworth|Goebel|1998}} and {{Harvtxt|Nilsson|1998}}}}
Основне тенденције данас, за развој система VI представљају: развој [[експертски системи|експертских система]] и развој [[неуронска мрежа|неуронских мрежа]]. Експертски системи покушавају репродуковати људско размишљање преко [[симбол]]а. Неуронске мреже то раде више из [[биологија|биолошке]] перспективе (рекреирају структуру људског мозга уз помоћ [[генетски алгоритам|генетских алгоритама]]). Упркос сложености оба система, резултати су веома далеко од стварног интелигентног размишљања.


=== Основни циљеви истраживања на пољу вештачке интелигенције ===
Многи научници су скептици према могућности развијања истинске VI. Функционисање људског размишљања, још увијек није дубље познато, из ког разлога ће [[информатички дизајн]] интелигентних система, још дужи временски период бити у суштини онеспособљен за представљање тих непознатих и сложених процеса.


Тренутно, када су у питању истраживања на пољу вештачке интелигенције, могуће је постићи два комплементарна циља, који респективно наглашавају два аспекта вештачке интелигенције, а то су теоријски и технолошки аспект.
Истраживања у VI су фокусирана на сљедеће компоненте интелигенције: учење, размишљање, рјешавање проблема, перцепција и разумијевање природног језика.


Први циљ је студија људских [[спознаја|когнитивних]] процеса уопште, што потврђује дефиницију [[Патрик Хејес|Патрика Ј. Хејеса]] - „студија интелигенције као компутације“, чиме се вештачка интелигенција усмерава ка једној својеврсној студији интелигентног понашања код људи.
== Учење ==


Вештачка интелигенција, као област информатике, бави се пројектовањем програмских решења за проблеме које настоји решити.
Постоји више различитих облика учења који су примијењени на област вјештачке интелигенције. Најједноставнији се односи на учење на грешкама преко покушаја. На примјер, најједноставнији рачунарски програм за ријешавање проблема матирања у једном потезу у [[шах]]у, је истраживање мат позиције случајним потезима. Једном изнађено рјешење, програм може запамтити позицију и искористити је сљедећи пут када се нађе у идентичној ситуацији. Једноставно памћење индивидуалних потеза и процедура - познато као [[механичко учење]] - је врло лако имплементирати у рачунарски систем. Приликом покушаја имплементације тзв., уопштавања, јављају се већи проблеми и захтјеви. Уопштавање се састоји од примјене прошлих искустава на аналогне нове ситуације. На примјер, програм који учи прошла времена глагола на српском језику механичким учењем, неће бити способан да изведе прошло вријеме, рецимо глагола скочити, док се не нађе пред обликом глагола скочио, гдје ће програм који је способан за уопштавање научити „додај -о и уклони -ти“ правило, те тако формирати прошло вријеме глагола скочити, заснивајући се на искуству са сличним глаголима.


== Размишљање ==
=== Размишљање и решавање проблема ===


Размишљање је процес извлачења закључака који одговарају датој ситуацији. Закључци се класификују као дедуктивни и индуктивни. Примјер дедуктивног начина закључивања би могао бити, „Саво је или у музеју, или у кафићу. Није у кафићу; онда је сигурно у музеју“; и индуктивног, „Претходне несреће ове врсте су биле посљедица грешке у систему; стога је и ова несрећа узрокована грешком у систему“. Најзначајнија разлика између ова два начина закључивања је да, у случају дедуктивног размишљања, истинитост премисе гарантује истинитост закључка, док у случају индуктивног размишљања истинитост премисе даје подршку закључку без давања апсолутне сигурности његовој истинитости. Индуктивно закључивање је уобичајено у наукама у којима се сакупљају подаци и развијају провизиони модели за опис и предвиђање будућег понашања, све док се не појаве аномалије у моделу, који се тада реконструише. Дедуктивно размишљање је уобичајено у [[математика|математици]] и [[логика|логици]], гдје детаљно обрађене структуре непобитних [[теорема]] настају од мањих скупова основних [[аксиома]] и правила.
Размишљање је процес извлачења закључака који одговарају датој ситуацији. Закључци се класификују као дедуктивни и индуктивни. Пример дедуктивног начина закључивања би могао бити, „Саво је или у музеју, или у кафићу. Није у кафићу; онда је сигурно у музеју“; и индуктивног, „Претходне несреће ове врсте су биле последица грешке у систему; стога је и ова несрећа узрокована грешком у систему“. Најзначајнија разлика између ова два начина закључивања је да, у случају дедуктивног размишљања, истинитост премисе гарантује истинитост закључка, док у случају индуктивног размишљања истинитост премисе даје подршку закључку без давања апсолутне сигурности његовој истинитости. Индуктивно закључивање је уобичајено у наукама у којима се сакупљају подаци и развијају провизиони модели за опис и предвиђање будућег понашања, све док се не појаве аномалије у моделу, који се тада реконструише. Дедуктивно размишљање је уобичајено у [[математика|математици]] и [[логика|логици]], где детаљно обрађене структуре непобитних [[теорема]] настају од мањих скупова основних [[аксиома]] и правила. Постоје значајни успеси у програмирању рачунара за извлачење закључака, нарочито дедуктивне природе. Ипак, истинско размишљање се састоји од сложенијих аспеката; укључује закључивање на начин којим ће се решити одређени задатак, или ситуација. Ту се налази један од највећих проблема с којим се сусреће VI.


Решавање проблема, нарочито у вештачкој интелигенцији, карактерише систематска претрага у рангу могућих акција с циљем изналажења неког раније дефинисаног решења. Методе решавања проблема се деле на оне посебне и оне опште намене. Метода посебне намене је тражење адаптираног решења за одређени проблем и садржи врло специфичне особине ситуација од којих се проблем састоји. Супротно томе, метод опште намене се може применити на шири спектар проблема. Техника опште намене која се користи у VI је метод крајње анализе, део по део, или постепено додавање, односно редуковање различитости између тренутног стања и крајњег циља. Програм бира акције из листе метода - у случају једноставног робота кораци су следећи: -{PICKUP}-, -{PUTDOWN}-, -{MOVEFROWARD}-, -{MOVEBACK}-, -{MOVELEFT}- и -{MOVERIGHT}-, све док се циљ не постигне. Већи број различитих проблема су решени преко програма вештачке интелигенције. Неки од примера су тражење победничког потеза, или секвенце потеза у играма, сложени математички докази и манипулација виртуелних објеката у вештачким, односно синтетичким рачунарским световима.
Постоје значајни успјеси у програмирању рачунара за извлачење закључака, нарочито дедуктивне природе. Ипак, истинско размишљање се састоји од сложенијих аспеката; укључује закључивање на начин којим ће се ријешити одређени задатак, или ситуација. Ту се налази један од највећих проблема с којим се сусреће VI.


Early researchers developed algorithms that imitated step-by-step reasoning that humans use when they solve puzzles or make logical [[Deductive reasoning|deductions]].<ref>
== Рјешавање проблема ==
Problem solving, puzzle solving, game playing and deduction:


* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 3–5}}
Рјешавање проблема, нарочито у вјештачкој интелигенцији, карактерише систематска претрага у рангу могућих акција с циљем изналажења неког раније дефинисаног рјешења. Методе рјешавања проблема се дијеле на оне посебне и оне опште намјене. Метода посебне намјене је тражење адаптираног рјешења за одређени проблем и садржи врло специфичне особине ситуација од којих се проблем састоји. Супротно томе, метод опште намјене се може примијенити на шири спектар проблема. Техника опште намјене која се користи у VI је метод крајње анализе, дио по дио, или постепено додавање, односно редуковање различитости између тренутног стања и крајњег циља. Програм бира акције из листе метода - у случају једноставног робота кораци су сљедећи: -{PICKUP}-, -{PUTDOWN}-, -{MOVEFROWARD}-, -{MOVEBACK}-, -{MOVELEFT}- и -{MOVERIGHT}-, све док се циљ не постигне.
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 6}} ([[constraint satisfaction]])
* {{Harvtxt|Poole|Mackworth|Goebel|1998|loc=chpt. 2, 3, 7, 9}}
* {{Harvtxt|Luger|Stubblefield|2004|loc=chpt. 3, 4, 6, 8}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 7–12}}
</ref> By the late 1980s and 1990s, methods were developed for dealing with [[uncertainty|uncertain]] or incomplete information, employing concepts from [[probability]] and [[economics]].<ref>
Uncertain reasoning:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 12–18}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=345–395}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=333–381}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 7–12}}
</ref>


Many of these algorithms are insufficient for solving large reasoning problems because they experience a "combinatorial explosion": they became exponentially slower as the problems grew larger.<ref name="Intractability">
Већи број различитих проблема су ријешени преко програма вјештачке интелигенције. Неки од примјера су тражење побједничког потеза, или секвенце потеза у играма, сложени математички докази и манипулација виртуелних објеката у вјештачким, односно синтетичким рачунарским свјетовима.
[[Intractably|Intractability and efficiency]] and the [[combinatorial explosion]]:


* {{Harvtxt|Russell|Norvig|2021|p=21}}
== Историјски преглед развоја ==
</ref> Even humans rarely use the step-by-step deduction that early AI research could model. They solve most of their problems using fast, intuitive judgments.<ref name="Psychological evidence of sub-symbolic reasoning">
Psychological evidence of the prevalence sub-symbolic reasoning and knowledge:
* {{Harvtxt|Kahneman|2011}}
* {{Harvtxt|Dreyfus|Dreyfus|1986}}
* {{Harvtxt|Wason|Shapiro|1966}}
* {{Harvtxt|Kahneman|Slovic|Tversky|1982}}
</ref> Accurate and efficient reasoning is an unsolved problem.


=== Knowledge representation ===
Појам '''вјештачка интелигенција (VI)''', настаје љета [[1956]]. године у [[Дартмуд]]у, [[Хановер (САД)]], на скупу истраживача заинтересованих за теме [[интелигенција|интелигенције]], [[неуронска мрежа (вештачка интелигенција)|неуронских мрежа]] и [[теорија аутомата|теорије аутомата]]. Скуп је организовао [[Џон Макарти (информатичар)|Џон Макарти]], уједно са [[Klod Elvud Šenon|Клодом Шеноном]], [[Марвин Мински|Марвином Минским]] и Н. Рочестером. На скупу су такође учествовали Т. Мур ([[Универзитет Принстон|Принстон]]), А. Семјуел ([[IBM]]), Р. Соломоноф и О. Селфриџ ([[Масачусетски институт технологије|МИТ]]), као и А. Невил, Х. Сајмон (-{Carnegie Tech}-, данас -{Carnegie Mellon University}-). На скупу су постављене основе области вјештачке интелигенције и трасиран пут за њен даљи развој.
[[File:General Formal Ontology.svg|thumb|upright=1.2|An ontology represents knowledge as a set of concepts within a domain and the relationships between those concepts.]]


[[Knowledge representation]] and [[knowledge engineering]]<ref>
Раније, [[1950]]. године, [[Алан Тјуринг]] је објавио један чланак у ревији Мајнд ''(-{Mind}-)'', под насловом „Рачунари и интелигенција“, гдје говори о концепту вјештачке интелигенције и поставља основе једне врсте пробе, преко које би се утврђивало да ли се одређени рачунарски систем понаша у складу са оним што се подразумијева под вјештачком интелигенцијом, или не. Касније ће та врста пробе добити име, [[Тјурингов тест]].
[[Knowledge representation]] and [[knowledge engineering]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 10}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=23–46, 69–81, 169–233, 235–277, 281–298, 319–345}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=227–243}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 17.1–17.4, 18}}
</ref> allow AI programs to answer questions intelligently and make deductions about real-world facts. Formal knowledge representations are used in content-based indexing and retrieval,{{sfnp|Smoliar|Zhang|1994}} scene interpretation,{{sfnp|Neumann|Möller|2008}} clinical decision support,{{sfnp|Kuperman|Reichley|Bailey|2006}} knowledge discovery (mining "interesting" and actionable inferences from large [[Database|databases]]),{{sfnp|McGarry|2005}} and other areas.{{sfnp|Bertini|Del Bimbo|Torniai|2006}}


A [[knowledge base]] is a body of knowledge represented in a form that can be used by a program. An [[ontology (information science)|ontology]] is the set of objects, relations, concepts, and properties used by a particular domain of knowledge.{{sfnp|Russell|Norvig|2021|pp=272}} Knowledge bases need to represent things such as: objects, properties, categories and relations between objects;<ref name="Representing categories and relations">
Скуп је посљедица првих радова у области. Невил и Сајмон су на њему представили свој програм за [[аутоматско резоновање]], Логиц Тхеорист (који је направио сензацију). Данас се сматра да су концепт вјештачке интелигенције поставили В. Мекулок и M. Питс, [[1943]]. године, у раду у ком се представља модел вјештачких неурона на бази три извора: [[спознаја]] о физиологији и функционисању можданих неурона, [[исказна логика]] [[Бертранд Расел|Расела]] и Вајтехеда, и Тјурингова [[компутациона теорија]]. Неколико година касније створен је први неурални рачунар -{SNARC}-. Заслужни за подухват су студенти Принстона, Марвин Мински и Д. Едмонс, [[1951]]. године. Негдје из исте епохе су и први програми за [[шах]], чији су аутори Шенон и Тјуринг.
Representing categories and relations: [[Semantic network]]s, [[description logic]]s, [[Inheritance (object-oriented programming)|inheritance]] (including [[Frame (artificial intelligence)|frames]] and [[Scripts (artificial intelligence)|scripts]]):
* {{Harvtxt|Russell|Norvig|2021|loc=§10.2 & 10.5}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=174–177}},
* {{Harvtxt|Luger|Stubblefield|2004|pp=248–258}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 18.3}}
</ref> situations, events, states and time;<ref name="Representing time">Representing events and time:[[Situation calculus]], [[event calculus]], [[fluent calculus]] (including solving the [[frame problem]]):
* {{Harvtxt|Russell|Norvig|2021|loc=§10.3}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=281–298}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 18.2}}
</ref> causes and effects;<ref name="Representing causation">
[[Causality#Causal calculus|Causal calculus]]:
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=335–337}}
</ref> knowledge about knowledge (what we know about what other people know);<ref name="Representing knowledge about knowledge">
Representing knowledge about knowledge: Belief calculus, [[modal logic]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§10.4}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=275–277}}
</ref> [[default reasoning]] (things that humans assume are true until they are told differently and will remain true even when other facts are changing);<ref name="Default reasoning and non-monotonic logic">
[[Default reasoning]], [[Frame problem]], [[default logic]], [[non-monotonic logic]]s, [[circumscription (logic)|circumscription]], [[closed world assumption]], [[abductive reasoning|abduction]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§10.6}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=248–256, 323–335}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=335–363}}
* {{Harvtxt|Nilsson|1998|loc=~18.3.3}}
(Poole ''et al.'' places abduction under "default reasoning". Luger ''et al.'' places this under "uncertain reasoning").
</ref> and many other aspects and domains of knowledge.


Among the most difficult problems in knowledge representation are: the breadth of commonsense knowledge (the set of atomic facts that the average person knows is enormous);<ref name="Breadth of commonsense knowledge">
Иако се ова истраживања сматрају зачетком вјештачке интелигенције, постоје многа друга који су битно утјецала на развој ове области. Нека потичу из области као што су [[филозофија]] (први покушаји формализације резоновања су [[силогизам|силогизми]] грчког филозофа [[Аристотел]]а), [[математика]] (теорија одлучивања и [[теорија пробабилитета]] се примјењују у многим данашњим системима), или [[психологија]] (која је заједно са вјештачком интелигенцијом формирала област [[когнитивна наука|когнитивне науке]]).
Breadth of commonsense knowledge:
* {{Harvtxt|Lenat|Guha|1989|loc=Introduction}}
* {{Harvtxt|Crevier|1993|pp=113–114}},
* {{Harvtxt|Moravec|1988|p=13}},
* {{Harvtxt|Russell|Norvig|2021|pp=241, 385, 982}} ([[qualification problem]])
</ref> and the sub-symbolic form of most commonsense knowledge (much of what people know is not represented as "facts" or "statements" that they could express verbally).<ref name="Psychological evidence of sub-symbolic reasoning"/> There is also the difficulty of [[knowledge acquisition]], the problem of obtaining knowledge for AI applications.{{efn|It is among the reasons that [[expert system]]s proved to be inefficient for capturing knowledge.{{sfnp|Newquist|1994|p=296}}{{sfnp|Crevier|1993|pp=204–208}}}}


=== Planning and decision making ===
У годинама које слиједе скуп у Дартмуду постижу се значајни напреци. Конструишу се програми који рјешавају различите проблеме. На примјер, студенти Марвина Минског ће крајем шездесетих година имплементирати програм -{Analogy}-, који је оспособљен за рјешавање геометријских проблема, сличним онима који се јављају у [[тест интелигенције|тестовима интелигенције]], и програм Стјудент, који рјешава [[алгебра|алгебарске]] проблеме написане на [[енглески језик|енглеском језику]]. Невил и Сајмон ће развити ''-{General Problem Solver}- (-{ГПС}-)'', који покушава имитирати људско резоновање. Семјуел је написао програме за игру сличну дами, који су били оспособљени за учење те игре. Макарти, који је у међувремену отишао на МИТ, имплементира програмски језик [[Lisp (programski jezik)|Lisp]], [[1958]]. године. Исте године је написао чланак, ''-{Programs With Common Sense}-'', гдје описује један хипотетички програм који се сматра првим комплетним системом вјештачке интелигенције.


An "agent" is anything that perceives and takes actions in the world. A [[rational agent]] has goals or preferences and takes actions to make them happen.{{efn|
Ова серија успјеха се ломи средином шездесетих година и превише оптимистичка предвиђања из ранијих година се фрустрирају. До тада имплементирани системи су функционисали у ограниченим доменима, познатим као микросвијетови (-{microworlds}-). Трансформација која би омогућила њихову примјену у стварним окружењима није била тако лако изводљива, упркос очекивањима многих истраживача. По Раселу и Норивигу, постоје три фундаментална фактора који су то онемогућили:
"Rational agent" is general term used in [[economics]], [[philosophy]] and theoretical artificial intelligence. It can refer to anything that directs its behavior to accomplish goals, such as a person, an animal, a corporation, a nation, or, in the case of AI, a computer program.
# Многи дизајнирани системи нису посједовали сазнање о окружењу примјене, или је имплементирано сазнање било врло ниског нивоа и састојало се од неких једноставних синтактичких манипулација.
}}{{sfnp|Russell|Norvig|2021|p=528}} In [[automated planning and scheduling|automated planning]], the agent has a specific goal.<ref>
# Многи проблеми које су покушавали ријешити су били у суштини нерјешиви, боље речено, док је количина сазнања била мала и ограничена рјешење је било могуће, али када би дошло до пораста обима сазнања, проблеми постају нерјешиви.
[[Automated planning and scheduling|Automated planning]]:
# Неке од основних структура које су се користиле за стварање одређеног интелигентног понашања су биле веома ограничене.

* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 11}}.
</ref> In [[automated decision making]], the agent has preferences – there are some situations it would prefer to be in, and some situations it is trying to avoid. The decision making agent assigns a number to each situation (called the "[[utility (economics)|utility]]") that measures how much the agent prefers it. For each possible action, it can calculate the "[[expected utility]]": the [[utility]] of all possible outcomes of the action, weighted by the probability that the outcome will occur. It can then choose the action with the maximum expected utility.<ref>
[[Automated decision making]], [[Decision theory]]:

* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 16–18}}.
</ref>

In [[Automated planning and scheduling#classical planning|classical planning]], the agent knows exactly what the effect of any action will be.<ref>
[[Automated planning and scheduling#classical planning|Classical planning]]:

* {{Harvtxt|Russell|Norvig|2021|loc=Section 11.2}}.
</ref> In most real-world problems, however, the agent may not be certain about the situation they are in (it is "unknown" or "unobservable") and it may not know for certain what will happen after each possible action (it is not "deterministic"). It must choose an action by making a probabilistic guess and then reassess the situation to see if the action worked.<ref>
Sensorless or "conformant" planning, contingent planning, replanning (a.k.a online planning):

* {{Harvtxt|Russell|Norvig|2021|loc=Section 11.5}}.
</ref>

In some problems, the agent's preferences may be uncertain, especially if there are other agents or humans involved. These can be learned (e.g., with [[inverse reinforcement learning]]) or the agent can seek information to improve its preferences.<ref>
Uncertain preferences:
*{{Harvtxt|Russell|Norvig|2021|loc=Section 16.7}}
[[Inverse reinforcement learning]]:
*{{Harvtxt|Russell|Norvig|2021|loc=Section 22.6}}
</ref> [[Information value theory]] can be used to weigh the value of exploratory or experimental actions.<ref>
[[Information value theory]]:

* {{Harvtxt|Russell|Norvig|2021|loc=Section 16.6}}.
</ref> The space of possible future actions and situations is typically [[intractable problem|intractably]] large, so the agents must take actions and evaluate situations while being uncertain what the outcome will be.

A [[Markov decision process]] has a [[Finite-state machine|transition model]] that describes the probability that a particular action will change the state in a particular way, and a [[reward function]] that supplies the utility of each state and the cost of each action. A [[Reinforcement learning#Policy|policy]] associates a decision with each possible state. The policy could be calculated (e.g., by [[policy iteration|iteration]]), be [[heuristic]], or it can be learned.<ref>
[[Markov decision process]]:

* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 17}}.
</ref>

[[Game theory]] describes rational behavior of multiple interacting agents, and is used in AI programs that make decisions that involve other agents.<ref>
[[Game theory]] and multi-agent decision theory:

* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 18}}.
</ref>

=== Учење ===

Постоји више различитих облика учења који су примењени на област вештачке интелигенције. Најједноставнији се односи на учење на грешкама преко покушаја. На пример, најједноставнији рачунарски програм за решавање проблема матирања у једном потезу у [[шах]]у, је истраживање мат позиције случајним потезима. Једном изнађено решење, програм може запамтити позицију и искористити је следећи пут када се нађе у идентичној ситуацији. Једноставно памћење индивидуалних потеза и процедура - познато као [[механичко учење]] - је врло лако имплементирати у рачунарски систем. Приликом покушаја имплементације тзв. уопштавања, јављају се већи проблеми и захтеви. Уопштавање се састоји од примене прошлих искустава на аналогне нове ситуације. На пример, програм који учи прошла времена глагола на српском језику механичким учењем, неће бити способан да изведе прошло време, рецимо глагола скочити, док се не нађе пред обликом глагола скочио, где ће програм који је способан за уопштавање научити „додај -о и уклони -ти“ правило, те тако формирати прошло време глагола скочити, заснивајући се на искуству са сличним глаголима.

[[Machine learning]] is the study of programs that can improve their performance on a given task automatically.<ref name ="machine learning">
[[machine learning|Learning]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 19–22}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=397–438}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=385–542}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 3.3, 10.3, 17.5, 20}}
</ref> It has been a part of AI from the beginning.{{efn
|[[Alan Turing]] discussed the centrality of learning as early as 1950, in his classic paper "[[Computing Machinery and Intelligence]]".{{sfnp|Turing|1950}} In 1956, at the original Dartmouth AI summer conference, [[Ray Solomonoff]] wrote a report on unsupervised probabilistic machine learning: "An Inductive Inference Machine".{{sfnp|Solomonoff|1956}}
}}

There are several kinds of machine learning. [[Unsupervised learning]] analyzes a stream of data and finds patterns and makes predictions without any other guidance.<ref>
[[Unsupervised learning]]:
* {{harvtxt|Russell|Norvig|2021|pp=653}} (definition)
* {{harvtxt|Russell|Norvig|2021|pp=738–740}} ([[cluster analysis]])
* {{harvtxt|Russell|Norvig|2021|pp=846–860}} ([[word embedding]])
</ref> [[Supervised learning]] requires a human to label the input data first, and comes in two main varieties: [[statistical classification|classification]] (where the program must learn to predict what category the input belongs in) and [[Regression analysis|regression]] (where the program must deduce a numeric function based on numeric input).<ref name="Supervised learning">
[[Supervised learning]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§19.2}} (Definition)
* {{Harvtxt|Russell|Norvig|2021|loc=Chpt. 19–20}} (Techniques)
</ref>

In [[reinforcement learning]] the agent is rewarded for good responses and punished for bad ones. The agent learns to choose responses that are classified as "good".<ref>
[[Reinforcement learning]]:
*{{Harvtxt|Russell|Norvig|2021|loc=chpt. 22}}
*{{Harvtxt|Luger|Stubblefield|2004|pp=442–449}}
</ref> [[Transfer learning]] is when the knowledge gained from one problem is applied to a new problem.<ref>
[[Transfer learning]]:
*{{harvtxt|Russell|Norvig|2021|pp=281}}
*{{harvtxt|The Economist|2016}}
</ref> [[Deep learning]] is a type of machine learning that runs inputs through biologically inspired [[artificial neural networks]] for all of these types of learning.<ref>{{Cite web |title=Artificial Intelligence (AI): What Is AI and How Does It Work? {{!}} Built In |url=https://builtin.com/artificial-intelligence |access-date=2023-10-30 |website=builtin.com}}</ref>

[[Computational learning theory]] can assess learners by [[computational complexity]], by [[sample complexity]] (how much data is required), or by other notions of [[optimization theory|optimization]].<ref>
[[Computational learning theory]]:
* {{harvtxt|Russell|Norvig|2021|pp=672–674}}
* {{harvtxt|Jordan|Mitchell|2015}}
</ref>

{{clear}}

=== Natural language processing ===

[[Natural language processing]] (NLP)<ref>
[[Natural language processing]] (NLP):
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 23–24}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=91–104}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=591–632}}
</ref> allows programs to read, write and communicate in human languages such as [[English (language)|English]]. Specific problems include [[speech recognition]], [[speech synthesis]], [[machine translation]], [[information extraction]], [[information retrieval]] and [[question answering]].<ref>
Subproblems of [[Natural language processing|NLP]]:
* {{Harvtxt|Russell|Norvig|2021|pp=849–850}}
</ref>

Early work, based on [[Noam Chomsky]]'s [[generative grammar]] and [[semantic network]]s, had difficulty with [[word-sense disambiguation]]{{efn|See {{section link|AI winter|Machine translation and the ALPAC report of 1966
}}}} unless restricted to small domains called "[[blocks world|micro-worlds]]" (due to the common sense knowledge problem<ref name="Breadth of commonsense knowledge" />). [[Margaret Masterman]] believed that it was meaning, and not grammar that was the key to understanding languages, and that [[thesauri]] and not dictionaries should be the basis of computational language structure.

Modern deep learning techniques for NLP include [[word embedding]] (representing words, typically as [[Vector space|vectors]] encoding their meaning),{{sfnp|Russell|Norvig|2021|p=856–858}} [[transformer (machine learning model)|transformer]]s (a deep learning architecture using an [[Attention (machine learning)|attention]] mechanism),{{sfnp|Dickson|2022}} and others.<ref>Modern statistical and deep learning approaches to [[Natural language processing|NLP]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 24}}
* {{Harvtxt|Cambria|White|2014}}
</ref> In 2019, [[generative pre-trained transformer]] (or "GPT") language models began to generate coherent text,{{sfnp|Vincent|2019}}{{sfnp|Russell|Norvig|2021|p=875–878}} and by 2023 these models were able to get human-level scores on the [[bar exam]], [[scholastic aptitude test|SAT]] test, [[Graduate Record Examinations|GRE]] test, and many other real-world applications.{{sfnp|Bushwick|2023}}

=== Perception ===

[[Machine perception]] is the ability to use input from sensors (such as cameras, microphones, wireless signals, active [[lidar]], sonar, radar, and [[tactile sensor]]s) to deduce aspects of the world. [[Computer vision]] is the ability to analyze visual input.<ref>
[[Computer vision]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 25}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 6}}
</ref>


The field includes [[speech recognition]],{{sfnp|Russell|Norvig|2021|pp=849–850}} [[image classification]],{{sfnp|Russell|Norvig|2021|pp=895–899}} [[facial recognition system|facial recognition]], [[object recognition]],{{sfnp|Russell|Norvig|2021|pp=899–901}} and [[robotic sensing|robotic perception]].{{sfnp|Russell|Norvig|2021|pp=931–938}}
До тог момента рјешавање проблема је било засновано на једном механизму опште претраге преко којег се покушавају повезати, корак по корак, елементарне основе размишљања да би се дошло до коначног рјешења. Наравно такав приступ подразумијева и велике издатке, те да би се смањили, развијају се први алгоритми за потребе контролисања трошкова истраживања. На примјер, [[Едсгер Дајкстра|Едсхер Дајкстра]] [[1959]]. године дизајнира један метод за стабилизацију издатака, Невил и Ернст, [[1965]]. године развијају концепт [[хеуристика|хеуристичке]] претраге и Харт, Нилсон и Рафаел, алгоритам А. У исто вријеме, у вези програма за игре, дефинише се претрага алфа-бета. Творац идеје је иначе био Макарти, [[1956]]. године, а касније ју је користио Невил, [[1958]]. године.


=== Social intelligence ===
Важност схватања сазнања у контексту домена и примјене, као и грађе структуре, којој би било лако приступати, довела је до детаљнијих студија метода представљања сазнања. Између осталих, дефинисале су се семантичке мреже (дефинисане почетком шездесетих година, од стране Килијана) и окружења (које је дефинисао Мински [[1975]]. године). У истом периоду почињу да се користе одређене врсте логике за представљање сазнања.
[[File:Kismet-IMG 6007-gradient.jpg|thumb|[[Kismet (robot)|Kismet]], a robot head which was made in the 1990s; a machine that can recognize and simulate emotions.{{sfnp|MIT AIL|2014}}]]


[[Affective computing]] is an interdisciplinary umbrella that comprises systems that recognize, interpret, process or simulate human [[Affect (psychology)|feeling, emotion and mood]].<ref>
Паралелно с тим, током истих година, настављају се истраживања за стварање система за игру чекерс, за који је заслужан Самуел, оријентисан на имплементацију неке врсте методе учења. Е. Б. Хунт, Ј. Мартин и П. Т. Стоне, [[1969]]. године конструишу хијерархијску структуру одлука (ради класификације), коју је већ идејно поставио Шенон, [[1949]]. године. Килијан, [[1979]], представља метод -{IDZ}- који треба да послужи као основа за конструкцију такве структуре. С друге стране, П. Винстон, 1979. године, развија властити програм за учење описа сложених објеката, и Т. Мичел, [[1977]], развија тзв., простор верзија. Касније, средином осамдесетих, поновна примјена методе учења на неуралне мреже тзв., -{backpropagation}-, доводи до поновног оживљавања ове области.
[[Affective computing]]:
* {{Harvtxt|Thro|1993}}
* {{Harvtxt|Edelson|1991}}
* {{Harvtxt|Tao|Tan|2005}}
* {{Harvtxt|Scassellati|2002}}
</ref> For example, some [[virtual assistant]]s are programmed to speak conversationally or even to banter humorously; it makes them appear more sensitive to the emotional dynamics of human interaction, or to otherwise facilitate [[human–computer interaction]].


However, this tends to give naïve users an unrealistic conception of the intelligence of existing computer agents.{{sfnp|Waddell|2018}} Moderate successes related to affective computing include textual [[sentiment analysis]] and, more recently, [[multimodal sentiment analysis]], wherein AI classifies the affects displayed by a videotaped subject.{{sfnp|Poria|Cambria|Bajpai |Hussain|2017}}
Конструкција апликација за стварна окружења, довела је до потребе разматрања аспеката као што су неизвјесност, или непрецизност (који се такође јављају приликом рјешавања проблема у играма). За рјешавање ових проблема примјењиване су пробабилистичке методе (теорија пробабилитета, или пробабилистичке мреже) и развијали други формализми као дифузни скупови (дефинисани од Л. Задеха [[1965]]. године), или [[Демпстер-Шаферова теорија]] (творац теорије је А. Демпстер, [[1968]], са значајним доприносом Г. Шафера [[1976]]. године).


=== General intelligence ===
На основу ових истраживања, почев од осамдесетих година, конструишу се први комерцијални системи вјештачке интелигенције, углавном тзв., експертски системи.


A machine with [[artificial general intelligence]] should be able to solve a wide variety of problems with breadth and versatility similar to human intelligence.<ref name = "AGI" >
Савремени проблеми који се настоје ријешити у истраживањима вјештачке интелигенције, везани су за настојања конструисања кооперативних система на бази [[агент (рачунарство)|агената]], укључујући системе за управљање подацима, утврђивање редослиједа обраде података и покушаје имитације природног језика, између осталих.
[[Artificial general intelligence]]:
* {{Harvtxt|Russell|Norvig|2021|pp=32–33, 1020–1021}}
Proposal for the modern version:
* {{Harvtxt|Pennachin|Goertzel|2007}}
Warnings of overspecialization in AI from leading researchers:
* {{Harvtxt|Nilsson|1995}}
* {{Harvtxt|McCarthy|2007}}
* {{Harvtxt|Beal|Winston|2009}}
</ref>


== Проблем дефиниције вјештачке интелигенције ==
== Проблем дефиниције вештачке интелигенције ==


За разлику од других области, у вјештачкој интелигенцији не постоји сагласност око једне дефиниције, него их има више зависно од различитих погледа и метода за рјешавање проблема.
За разлику од других области, у вештачкој интелигенцији не постоји сагласност око једне дефиниције, него их има више зависно од различитих погледа и метода за решавање проблема.


=== Дефиниција и циљеви ===
=== Дефиниција и циљеви ===


Упркос времену које је прошло од када је [[Џон Макарти (информатичар)|Џон Макарти]] дао име овој области на конференцији одржаној [[1956]]. године у Дартмуду, није нимало лако тачно дефинисати садржај и достигнућа вјештачке интелигенције.
Упркос времену које је прошло од када је [[Џон Макарти (информатичар)|Џон Макарти]] дао име овој области на конференцији одржаној [[1956]]. године у Дартмуду, није нимало лако тачно дефинисати садржај и достигнућа вештачке интелигенције.


Највјероватније, једна од најкраћих и најједноставнијих карактеристика која се приписује вјештачкој интелигенцији, парафразирајући [[Марвин Мински|Марвина Минског]], (једног од стручњака и најпознатијих истраживача вјештачке интелигенције), је „конструисање рачунарских система са особинама које би код људских бића биле окарактерисане као интелигентне“.
Највероватније, једна од најкраћих и најједноставнијих карактеристика која се приписује вештачкој интелигенцији, парафразирајући [[Марвин Мински|Марвина Минског]], (једног од стручњака и најпознатијих истраживача вештачке интелигенције), је „конструисање рачунарских система са особинама које би код људских бића биле окарактерисане као интелигентне“.


=== Тјурингов тест ===
=== Тјурингов тест ===
[[Датотека:Тјурингов тест.png|мини|десно|Људско и ''вештачко интелигентно'' понашање.]]
[[Датотека:Тјурингов тест.png|мини|десно|Људско и ''вештачко интелигентно'' понашање.]]
У познатом такозваном [[Тјурингов тест|Тјуринговом тесту]], који је [[Алан Тјуринг]] описао и објавио у једном чланку из [[1950]]. године, под насловом ''-{Computing machinery and intelligence}-'' (''Рачунске машине и интелигенција''), предлаже се један експеримент чији је циљ откривање интелигентног понашања једне машине.


Тест полази од једне игре у којој испитивач треба да погоди [[пол]] два интерлокутора, A и Б, а који се налазе у посебним и одвојеним собама. Иако обоје тврде да су женског пола, у ствари ради се о мушкарцу и жени. У изворном Тјуринговом приједлогу урађена је извјесна модификација, те је жену замијенио рачунар. Испитивач треба да погоди ко је од њих машина, полазећи од њиховог међусобног разговора и имајући у виду да обоје тврде да су људи.
У познатом такозваном [[Тјурингов тест|Тјуринговом тесту]], који је [[Алан Тјуринг]] описао и објавио у једном чланку из [[1950]]. године, под насловом ''-{Computing machinery and intelligence}-'' (''Рачунске машине и интелигенција''), предлаже се један експеримент чији је циљ откривање интелигентног понашања једне машине. Тест полази од једне игре у којој испитивач треба да погоди [[пол]] два интерлокутора, A и Б, а који се налазе у посебним и одвојеним собама. Иако обоје тврде да су женског пола, у ствари ради се о мушкарцу и жени. У изворном Тјуринговом предлогу урађена је извесна модификација, те је жену заменио рачунар. Испитивач треба да погоди ко је од њих машина, полазећи од њиховог међусобног разговора и имајући у виду да обоје тврде да су људи. Задатак треба постићи упркос чињеници да ниједан од интерлокутора није обавезан да говори истину, те на пример, машина може одлучити да да погрешан резултат једне аритметичке операције, или чак да га саопшти много касније како би варка била уверљивија.


По оптимистичкој хипотези самог Тјуринга, око [[2000]]. године, већ је требало да постоје рачунари оспособљени за игру ове игре довољно добро, тако да просечан испитивач нема више од 70% шансе да уради исправну идентификацију, након пет минута постављања питања. Када би то данас заиста било тако, налазили би се пред једном истински интелигентном машином, или у најмању руку машином која уме да се представи као интелигентна. Не треба ни поменути да су Тјурингова предвиђања била превише оптимистична, што је био врло чест случај у самим почецима развоја области вештачке интелигенције. У стварности проблем није само везан за способност рачунара за обраду података, него на првом мјесту, за могућност програмирања рачунара са способностима за интелигентно понашање.
Задатак треба постићи упркос чињеници да ниједан од интерлокутора није обавезан да говори истину, те на примјер, машина може одлучити да да погрешан резултат једне аритметичке операције, или чак да га саопшти много касније како би варка била увјерљивија.


== Вештачка интелигенција у образовању ==
По оптимистичкој хипотези самог Тјуринга, око [[2000]]. године, већ је требало да постоје рачунари оспособљени за игру ове игре довољно добро, тако да просјечан испитивач нема више од 70% шансе да уради исправну идентификацију, након пет минута постављања питања.


Сан о рачунарима који би могли да образују ученике и студенте, више деценија је инспирисао научнике [[когнитивна наука|когнитивне науке]]. Прва генерација таквих система (названи ''-{Computer Aided Instruction}-'' или ''-{Computer Based Instruction}-''), углавном су се заснивали на [[хипертекст]]у. Структура тих система се састојала од презентације материјала и питања са више избора, која шаљу ученика на даље информације, у зависности од одговора на постављена питања.
Када би то данас заиста било тако, налазили би се пред једном истински интелигентном машином, или у најмању руку машином која умије да се представи као интелигентна.


Наредна генерација ових система ''-{Intelligent CAI}-'' или ''-{Intelligent Tutoring Systems}-'', заснивали су се на имплементацији знања о одређеној теми, у сам рачунар. Постајала су два типа оваквих система. Први је тренирао ученика у самом процесу решавања сложених проблема, као што је нпр. препознавање грешака дизајна у једном [[електрична кола|електричном колу]] или писање рачунарског програма. Други тип система је покушавао да одржава [[силогизам|силогистички дијалог]] са студентима. Имплементацију другог типа система је било врло тешко спровести у праксу, великим делом због проблема програмирања система за разумевање спонтаног и природног људског језика. Из тог разлога, пројектовано их је само неколико.
Не треба ни поменути да су Тјурингова предвиђања била превише оптимистична, што је био врло чест случај у самим почецима развоја области вјештачке интелигенције.


Типични систем за тренирање ученика и студената се обично састоји од четири основне компоненте.
У стварности проблем није само везан за способност рачунара за обраду података, него на првом мјесту, за могућност програмирања рачунара са способностима за интелигентно понашање.
# Прва компонента је окружење у којем ученик или студент ради на решавању сложених задатака. То може бити симулација компоненте или компонената електронских уређаја представљена као серија проблема које студент треба да реши.
# Друга компонента је [[ekspertski sistemi|експертски систем]] који може решити представљене проблеме на којима студент ради.
# Трећу чини један посебан модул који може упоредити решења која нуди студент са онима које су уграђене у експертски систем и његов циљ је да препозна студентов план за решење проблема, као и које делове знања највероватније студент користи.
# Четврту чини [[педагогија|педагошки]] модул који сугерише задатке које треба решити, одговара на питања студента и указује му на могуће грешке. Одговори на питања студента и сугестије за планирање решавања задатака, заснивају се на прикупљеним подацима из претходног модула.


Свака од ових компонената може користити технологију вештачке интелигенције. Окружење може садржати софистицирану симулацију или [[интелигентни агент|интелигентног агента]], односно симулираног студента или чак опонента студенту. Модул који чини експертски систем се састоји од класичних проблема вештачке интелигенције, као што су препознавање плана и резоновање над проблемима који укључују неизвесност. Задатак педагошког модула је надгледање плана инструкције и његово адаптирање на основу нових информација о компетентности студента за решавање проблема. Упркос сложености система за тренирање ученика и студената, пројектовани су у великом броју, а неки од њих се регуларно користе у школама, [[индустрија|индустрији]] и за [[војска|војне инструкције]].
== Основни циљеви истраживања на пољу вјештачке интелигенције ==


== Технике ==
Тренутно, када су у питању истраживања на пољу вјештачке интелигенције, могуће је постићи два комплементарна циља, који респективно наглашавају два аспекта вјештачке интелигенције, а то су теоријски и технолошки аспект.


AI research uses a wide variety of techniques to accomplish the goals above.{{efn|name="Tools of AI"|This list of tools is based on the topics covered by the major AI textbooks, including: {{Harvtxt|Russell|Norvig|2021}}, {{Harvtxt|Luger|Stubblefield|2004}}, {{Harvtxt|Poole|Mackworth|Goebel|1998}} and {{Harvtxt|Nilsson|1998}}}}
Први циљ је студија људских [[спознаја|когнитивних]] процеса уопште, што потврђује дефиницију [[Патрик Хејес|Патрика Ј. Хејеса]] - „студија интелигенције као компутације“, чиме се вјештачка интелигенција усмјерава ка једној својеврсној студији интелигентног понашања код људи.


=== Search and optimization ===
=== Конструкција програмских рјешења ===
AI can solve many problems by intelligently searching through many possible solutions.<ref>
[[Search algorithm]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=Chpt. 3–5}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=113–163}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=79–164, 193–219}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 7–12}}
</ref> There are two very different kinds of search used in AI: [[state space search]] and [[Local search (optimization)|local search]].


==== State space search ====
Вјештачка интелигенција, као област информатике, бави се пројектовањем програмских рјешења за проблеме које настоји ријешити.
[[State space search]] searches through a tree of possible states to try to find a goal state.<ref name="State space search">
[[State space search]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 3}}
</ref> For example, [[Automated planning and scheduling|planning]] algorithms search through trees of goals and subgoals, attempting to find a path to a target goal, a process called [[means-ends analysis]].{{sfnp|Russell|Norvig|2021|loc=§11.2}}


[[Brute force search|Simple exhaustive searches]]<ref name="Uninformed search">[[Uninformed search]]es ([[breadth first search]], [[depth-first search]] and general [[state space search]]):
== Вјештачка интелигенција у образовању ==
* {{Harvtxt|Russell|Norvig|2021|loc=§3.4}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=113–132}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=79–121}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 8}}
</ref> are rarely sufficient for most real-world problems: the [[Search algorithm|search space]] (the number of places to search) quickly grows to [[Astronomically large|astronomical numbers]]. The result is a search that is [[Computation time|too slow]] or never completes.<ref name="Intractability"/> "[[Heuristics]]" or "rules of thumb" can help to prioritize choices that are more likely to reach a goal.<ref name="Informed search">
[[Heuristic]] or informed searches (e.g., greedy [[Best-first search|best first]] and [[A* search algorithm|A*]]):


* {{Harvtxt|Russell|Norvig|2021|loc=s§3.5}}
Сан о рачунарима који би могли да образују ученике и студенте, више деценија је инспирисао научнике [[когнитивна наука|когнитивне науке]]. Прва генерација таквих система (названи ''-{Computer Aided Instruction}-'' или ''-{Computer Based Instruction}-''), углавном су се заснивали на [[хипертекст]]у. Структура тих система се састојала од презентације материјала и питања са више избора, која шаљу ученика на даље информације, у зависности од одговора на постављена питања.
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=132–147}}
* {{Harvtxt|Poole|Mackworth|2017|loc=§3.6}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=133–150}}
</ref>


[[Adversarial search]] is used for [[game AI|game-playing]] programs, such as chess or Go. It searches through a [[Game tree|tree]] of possible moves and counter-moves, looking for a winning position.<ref>
Наредна генерација ових система ''-{Intelligent CAI}-'' или ''-{Intelligent Tutoring Systems}-'', заснивали су се на имплементацији знања о одређеној теми, у сам рачунар. Постајала су два типа оваквих система. Први је тренирао ученика у самом процесу рјешавања сложених проблема, као што је нпр., препознавање грешака дизајна у једном [[електрична кола|електричном колу]] или писање рачунарског програма. Други тип система је покушавао да одржава [[силогизам|силогистички дијалог]] са студентима. Имплементацију другог типа система је било врло тешко спровести у праксу, великим дијелом због проблема програмирања система за разумијевање спонтаног и природног људског језика. Из тог разлога, пројектовано их је само неколико.
[[Adversarial search]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 5}}
</ref>


==== Local search ====
Типични систем за тренирање ученика и студената се обично састоји од четири основне компоненте.
[[File:Gradient descent.gif|thumb|Illustration of [[gradient descent]] for 3 different starting points. Two parameters (represented by the plan coordinates) are adjusted in order to minimize the [[loss function]] (the height).]][[Local search (optimization)|Local search]] uses [[mathematical optimization]] to find a solution to a problem. It begins with some form of guess and refines it incrementally.<ref name="Local search2">[[Local search (optimization)|Local]] or "[[Mathematical optimization|optimization]]" search:
# Прва компонента је окружење у којем ученик или студент ради на рјешавању сложених задатака. То може бити симулација компоненте или компонената електронских уређаја представљена као серија проблема које студент треба да ријеши.
# Друга компонента је [[ekspertski sistemi|експертски систем]] који може ријешити представљене проблеме на којима студент ради.
# Трећу чини један посебан модул који може упоредити рјешења која нуди студент са онима које су уграђене у експертски систем и његов циљ је да препозна студентов план за рјешење проблема, као и које дијелове знања највјероватније студент користи.
# Четврту чини [[педагогија|педагошки]] модул који сугерише задатке које треба ријешити, одговара на питања студента и указује му на могуће грешке. Одговори на питања студента и сугестије за планирање рјешавања задатака, заснивају се на прикупљеним подацима из претходног модула.


* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 4}}</ref>
Свака од ових компонената може користити технологију вјештачке интелигенције. Окружење може садржати софистицирану симулацију или [[интелигентни агент|интелигентног агента]], односно симулираног студента или чак опонента студенту. Модул који чини експертски систем се састоји од класичних проблема вјештачке интелигенције, као што су препознавање плана и резоновање над проблемима који укључују неизвјесност. Задатак педагошког модула је надгледање плана инструкције и његово адаптирање на основу нових информација о компетентности студента за рјешавање проблема. Упркос сложености система за тренирање ученика и студената, пројектовани су у великом броју, а неки од њих се регуларно користе у школама, [[индустрија|индустрији]] и за [[војска|војне инструкције]].

[[Gradient descent]] is a type of local search that optimizes a set of numerical parameters by incrementally adjusting them to minimize a [[loss function]]. Variants of gradient descent are commonly used to train neural networks.<ref>{{Cite web |last=Singh Chauhan |first=Nagesh |date=December 18, 2020 |title=Optimization Algorithms in Neural Networks |url=https://www.kdnuggets.com/optimization-algorithms-in-neural-networks |access-date=2024-01-13 |website=KDnuggets |language=en-US}}</ref>

Another type of local search is [[evolutionary computation]], which aims to iteratively improve a set of candidate solutions by "mutating" and "recombining" them, [[Artificial selection|selecting]] only the fittest to survive each generation.<ref>
[[Evolutionary computation]]:
*{{Harvtxt|Russell|Norvig|2021|loc=§4.1.2}}
</ref>

Distributed search processes can coordinate via [[swarm intelligence]] algorithms. Two popular swarm algorithms used in search are [[particle swarm optimization]] (inspired by bird [[Flocking (behavior)|flocking]]) and [[ant colony optimization]] (inspired by [[ant trail]]s).{{sfnp|Merkle|Middendorf|2013}}

=== Logic ===
Formal [[Logic]] is used for [[automatic reasoning|reasoning]] and [[knowledge representation]].<ref name="Logic">
[[Logic]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 6–9}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=35–77}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 13–16}}
</ref>
Formal logic comes in two main forms: [[propositional logic]] (which operates on statements that are true or false and uses [[logical connective]]s such as "and", "or", "not" and "implies")<ref name="Propositional logic">
[[Propositional logic]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 6}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=45–50}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 13}}</ref>
and [[predicate logic]] (which also operates on objects, predicates and relations and uses [[Quantifier (logic)|quantifier]]s such as "''Every'' ''X'' is a ''Y''" and "There are ''some'' ''X''s that are ''Y''s").<ref name="Predicate logic">
[[First-order logic]] and features such as [[Equality (mathematics)|equality]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 7}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=268–275}},
* {{Harvtxt|Luger|Stubblefield|2004|pp=50–62}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 15}}
</ref>

Logical [[inference]] (or [[Deductive reasoning|deduction]]) is the process of [[logical proof|proving]] a new statement ([[Logical consequence|conclusion]]) from other statements that are already known to be true (the [[premise]]s).<ref name="Inference">
[[Logical inference]]:
* {{Harvtxt|Russell|Norvig|2021|loc = chpt. 10}}
</ref>
A logical [[knowledge base]] also handles queries and assertions as a special case of inference.{{sfnp|Russell|Norvig|2021|loc=§8.3.1}}
An [[inference rule]] describes what is a [[validity (logic)|valid]] step in a proof. The most general inference rule is [[resolution (logic)|resolution]].<ref name="Resolution">
[[Resolution (logic)|Resolution]] and [[unification (computer science)|unification]]:
* {{Harvtxt|Russell|Norvig|2021|loc = §7.5.2, §9.2, §9.5}}
</ref>
Inference can be reduced to performing a search to find a path that leads from premises to conclusions, where each step is the application of an [[inference rule]].<ref name="Logic as search">[[Forward chaining]], [[backward chaining]], [[Horn clause]]s, and logical deduction as search:
* {{Harvtxt|Russell|Norvig|2021|loc= §9.3, §9.4}}
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=~46–52}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=62–73}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 4.2, 7.2}}
</ref>
Inference performed this way is [[Intractable problem|intractable]] except for short proofs in restricted domains. No efficient, powerful and general method has been discovered.

[[Fuzzy logic]] assigns a "degree of truth" between 0 and 1. It can therefore handle propositions that are vague and partially true.<ref name="Fuzzy logic">
Fuzzy logic:
* {{Harvtxt|Russell|Norvig|2021|pp=214, 255, 459}}
* {{Harvtxt|Scientific American|1999}}
</ref>
[[Non-monotonic logic]]s are designed to handle [[default reasoning]].<ref name="Default reasoning and non-monotonic logic"/>
Other specialized versions of logic have been developed to describe many complex domains (see [[#Knowledge representation|knowledge representation]] above).

=== Probabilistic methods for uncertain reasoning ===
[[File:SimpleBayesNet.svg|thumb|380x380px|A simple [[Bayesian network]], with the associated [[Conditional probability table|conditional probability tables]]]]
Many problems in AI (including in reasoning, planning, learning, perception, and robotics) require the agent to operate with incomplete or uncertain information. AI researchers have devised a number of tools to solve these problems using methods from [[probability]] theory and economics.<ref name="Uncertain reasoning">
Stochastic methods for uncertain reasoning:
* {{Harvtxt|Russell|Norvig|2021|loc=Chpt. 12–18 and 20}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=345–395}},
* {{Harvtxt|Luger|Stubblefield|2004|pp=165–191, 333–381}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 19}}
</ref>

[[Bayesian network]]s<ref name="Bayesian networks">
[[Bayesian network]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§12.5–12.6, §13.4–13.5, §14.3–14.5, §16.5, §20.2 -20.3}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=361–381}},
* {{Harvtxt|Luger|Stubblefield|2004|pp=~182–190, ≈363–379}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 19.3–4}}
</ref>
are a very general tool that can be used for many problems, including [[automated reasoning|reasoning]] (using the [[Bayesian inference]] algorithm),{{efn|
Compared with symbolic logic, formal Bayesian inference is computationally expensive. For inference to be tractable, most observations must be [[conditionally independent]] of one another. [[Google AdSense|AdSense]] uses a Bayesian network with over 300&nbsp;million edges to learn which ads to serve.{{sfnp|Domingos|2015|loc=chapter 6}}
}}<ref name="Bayesian inference">
[[Bayesian inference]] algorithm:
* {{Harvtxt|Russell|Norvig|2021|loc=§13.3–13.5}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=361–381}},
* {{Harvtxt|Luger|Stubblefield|2004|pp=~363–379}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 19.4 & 7}}
</ref> [[Machine learning|learning]] (using the [[expectation-maximization algorithm]]),{{efn|Expectation-maximization, one of the most popular algorithms in machine learning, allows clustering in the presence of unknown [[latent variables]].{{sfnp|Domingos|2015|p=210}}}}<ref name="Bayesian learning">
[[Bayesian learning]] and the [[expectation-maximization algorithm]]:
* {{Harvtxt|Russell|Norvig|2021|loc = Chpt. 20}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=424–433}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 20}}
* {{Harvtxt|Domingos|2015|p=210}}
</ref> [[Automated planning and scheduling|planning]] (using [[decision network]]s)<ref name="Bayesian decision networks">[[Bayesian decision theory]] and Bayesian [[decision network]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§16.5}}
</ref>
and [[Machine perception|perception]] (using [[dynamic Bayesian network]]s).<ref name="Stochastic temporal models"/>

Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding explanations for streams of data, helping [[Machine perception|perception]] systems to analyze processes that occur over time (e.g., [[hidden Markov model]]s or [[Kalman filter]]s).<ref name="Stochastic temporal models">
Stochastic temporal models:
* {{Harvtxt|Russell|Norvig|2021|loc=Chpt. 14}}
[[Hidden Markov model]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§14.3}}
[[Kalman filter]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§14.4}}
[[Dynamic Bayesian network]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§14.5}}
</ref>

Precise mathematical tools have been developed that analyze how an agent can make choices and plan, using [[decision theory]], [[decision analysis]],<ref name="Decisions theory and analysis">
[[decision theory]] and [[decision analysis]]:
* {{Harvtxt|Russell|Norvig|2021|loc=Chpt. 16–18}},
* {{Harvtxt|Poole|Mackworth|Goebel|1998|pp=381–394}}
</ref> and [[information value theory]].<ref name="Information value theory">
[[Information value theory]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§16.6}}
</ref> These tools include models such as [[Markov decision process]]es,<ref name="Markov decision process">[[Markov decision process]]es and dynamic [[decision network]]s:
*{{Harvtxt|Russell|Norvig|2021|loc=chpt. 17}}
</ref> dynamic [[decision network]]s,<ref name="Stochastic temporal models" /> [[game theory]] and [[mechanism design]].<ref name="Game theory and mechanism design">[[Game theory]] and [[mechanism design]]:
*{{Harvtxt|Russell|Norvig|2021|loc=chpt. 18}}
</ref>[[File:EM_Clustering_of_Old_Faithful_data.gif|thumb|upright=1.2|[[Expectation-maximization]] [[Cluster analysis|clustering]] of [[Old Faithful]] eruption data starts from a random guess but then successfully converges on an accurate clustering of the two physically distinct modes of eruption.]]

=== Класификатори и статистичке методе учења ===

The simplest AI applications can be divided into two types: classifiers (e.g., "if shiny then diamond"), on one hand, and controllers (e.g., "if diamond then pick up"), on the other hand. [[Classifier (mathematics)|Classifiers]]<ref name="Statistical classifiers">
Statistical learning methods and [[Classifier (mathematics)|classifiers]]:
* {{Harvtxt|Russell|Norvig|2021|loc=chpt. 20}},
</ref>
are functions that use [[pattern matching]] to determine the closest match. They can be fine-tuned based on chosen examples using [[supervised learning]]. Each pattern (also called an "[[random variate|observation]]") is labeled with a certain predefined class. All the observations combined with their class labels are known as a [[data set]]. When a new observation is received, that observation is classified based on previous experience.<ref name="Supervised learning"/>

There are many kinds of classifiers in use. The [[decision tree]] is the simplest and most widely used symbolic machine learning algorithm.<ref>
[[Alternating decision tree|Decision tree]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§19.3}}
* {{Harvtxt|Domingos|2015|p=88}}
</ref> [[K-nearest neighbor]] algorithm was the most widely used analogical AI until the mid-1990s, and [[Kernel methods]] such as the [[support vector machine]] (SVM) displaced k-nearest neighbor in the 1990s.<ref>
[[Nonparametric statistics|Non-parameteric]] learning models such as [[K-nearest neighbor]] and [[support vector machines]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§19.7}}
* {{Harvtxt|Domingos|2015|p=187}} (k-nearest neighbor)
* {{Harvtxt|Domingos|2015|p=88}} (kernel methods)
</ref>
The [[naive Bayes classifier]] is reportedly the "most widely used learner"{{sfnp|Domingos|2015|p=152}} at Google, due in part to its scalability.<ref>
[[Naive Bayes classifier]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§12.6}}
* {{Harvtxt|Domingos|2015|p=152}}
</ref>
[[Artificial neural network|Neural networks]] are also used as classifiers.<ref name="Neural networks"/>

=== Вештачке неуронске мреже ===
[[File:Artificial_neural_network.svg|right|thumb|A neural network is an interconnected group of nodes, akin to the vast network of [[neuron]]s in the [[human brain]].]]

An artificial neural network is based on a collection of nodes also known as [[artificial neurons]], which loosely model the [[neurons]] in a biological brain. It is trained to recognise patterns; once trained, it can recognise those patterns in fresh data. There is an input, at least one hidden layer of nodes and an output. Each node applies a function and once the [[Weighting|weight]] crosses its specified threshold, the data is transmitted to the next layer. A network is typically called a deep neural network if it has at least 2 hidden layers.<ref name="Neural networks">
Neural networks:
* {{Harvtxt|Russell|Norvig|2021|loc=Chpt. 21}},
* {{Harvtxt|Domingos|2015|loc=Chapter 4}}
</ref>

Learning algorithms for neural networks use [[local search (optimization)|local search]] to choose the weights that will get the right output for each input during training. The most common training technique is the [[backpropagation]] algorithm.<ref name="Backpropagation">
Gradient calculation in computational graphs, [[backpropagation]], [[automatic differentiation]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§21.2}},
* {{Harvtxt|Luger|Stubblefield|2004|pp=467–474}},
* {{Harvtxt|Nilsson|1998|loc=chpt. 3.3}}
</ref>
Neural networks learn to model complex relationships between inputs and outputs and [[Pattern recognition|find patterns]] in data. In theory, a neural network can learn any function.<ref>
[[Universal approximation theorem]]:
* {{Harvtxt|Russell|Norvig|2021|p=752}}
The theorem:
* {{Harvtxt|Cybenko|1988}}
* {{Harvtxt|Hornik|Stinchcombe|White|1989}}
</ref>

In [[feedforward neural network]]s the signal passes in only one direction.<ref>
[[Feedforward neural network]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§21.1}}
</ref>
[[Recurrent neural network]]s feed the output signal back into the input, which allows short-term memories of previous input events. [[Long short term memory]] is the most successful network architecture for recurrent networks.<ref>
[[Recurrent neural network]]s:
* {{Harvtxt|Russell|Norvig|2021|loc=§21.6}}
</ref>
[[Perceptron]]s<ref>
[[Perceptron]]s:
* {{Harvtxt|Russell|Norvig|2021|pp=21, 22, 683, 22}}
</ref>
use only a single layer of neurons, deep learning<ref name="Deep learning"/> uses multiple layers.
[[Convolutional neural network]]s strengthen the connection between neurons that are "close" to each other – this is especially important in [[image processing]], where a local set of neurons must [[edge detection|identify an "edge"]] before the network can identify an object.<ref>
[[Convolutional neural networks]]:
* {{Harvtxt|Russell|Norvig|2021|loc=§21.3}}
</ref>

=== Дубоко учење ===
[[File:AI_hierarchy.svg|thumb|upright]]

Дубоко учење<ref name="Deep learning">
[[Deep learning]]:
*{{Harvtxt|Russell|Norvig|2021|loc=Chpt. 21}}
*{{Harvtxt|Goodfellow|Bengio|Courville|2016}}
*{{Harvtxt|Hinton ''et al.''|2016}}
*{{Harvtxt|Schmidhuber|2015}}
</ref>
uses several layers of neurons between the network's inputs and outputs. The multiple layers can progressively extract higher-level features from the raw input. For example, in [[image processing]], lower layers may identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters or faces.{{sfnp|Deng|Yu|2014|pp=199–200}}

Дубоко учење has profoundly improved the performance of programs in many important subfields of artificial intelligence, including [[computer vision]], [[speech recognition]], [[natural language processing]], [[image classification]]{{sfnp|Ciresan|Meier|Schmidhuber|2012}}
and others. The reason that deep learning performs so well in so many applications is not known as of 2023.{{sfnp|Russell|Norvig|2021|p=751}}
The sudden success of deep learning in 2012–2015 did not occur because of some new discovery or theoretical breakthrough (deep neural networks and backpropagation had been described by many people, as far back as the 1950s){{efn|
Some form of deep neural networks (without a specific learning algorithm) were described by:
[[Alan Turing]] (1948);{{sfnp|Russell|Norvig|2021|p=785}}
[[Frank Rosenblatt]](1957);{{sfnp|Russell|Norvig|2021|p=785}}
[[Karl Steinbuch]] and [[Roger David Joseph]] (1961).{{sfnp|Schmidhuber|2022|loc=§5}}
Deep or recurrent networks that learned (or used gradient descent) were developed by:
[[Ernst Ising]] and [[Wilhelm Lenz]] (1925);{{sfnp|Schmidhuber|2022|loc=§6}}
[[Oliver Selfridge]] (1959);{{sfnp|Schmidhuber|2022|loc=§5}}
[[Alexey Ivakhnenko]] and [[Valentin Lapa]] (1965);{{sfnp|Schmidhuber|2022|loc=§6}}
[[Kaoru Nakano]] (1977);{{sfnp|Schmidhuber|2022|loc=§7}}
[[Shun-Ichi Amari]] (1972);{{sfnp|Schmidhuber|2022|loc=§7}}
[[John Joseph Hopfield]] (1982).{{sfnp|Schmidhuber|2022|loc=§7}}
Backpropagation was independently discovered by:
[[Henry J. Kelley]] (1960);{{sfnp|Russell|Norvig|2021|p=785}}
[[Arthur E. Bryson]] (1962);{{sfnp|Russell|Norvig|2021|p=785}}
[[Stuart Dreyfus]] (1962);{{sfnp|Russell|Norvig|2021|p=785}}
[[Arthur E. Bryson]] and [[Yu-Chi Ho]] (1969);{{sfnp|Russell|Norvig|2021|p=785}}
[[Seppo Linnainmaa]] (1970);{{sfnp|Schmidhuber|2022|loc=§8}}
[[Paul Werbos]] (1974).{{sfnp|Russell|Norvig|2021|p=785}}
In fact, backpropagation and gradient descent are straight forward applications of [[Gottfried Leibniz]]' [[chain rule]] in calculus (1676),{{sfnp|Schmidhuber|2022|loc=§2}} and is essentially identical (for one layer) to the [[method of least squares]], developed independently by [[Johann Carl Friedrich Gauss]] (1795) and [[Adrien-Marie Legendre]] (1805).{{sfnp|Schmidhuber|2022|loc=§3}} There are probably many others, yet to be discovered by historians of science.
}}
but because of two factors: the incredible increase in computer power (including the hundred-fold increase in speed by switching to [[Graphics processing units|GPU]]s) and the availability of vast amounts of training data, especially the giant [[List of datasets for machine-learning research|curated datasets]] used for benchmark testing, such as [[ImageNet]].{{efn|[[Geoffrey Hinton]] said, of his work on neural networks in the 1990s, "our labeled datasets were thousands of times too small. [And] our computers were millions of times too slow"<ref>Quoted in {{Harvtxt|Christian|2020|p=22}}</ref>}}

===GPT===
[[Generative pre-trained transformer|Generative pre-trained transformers]] (GPT) are [[Large language model|large language models]] that are based on the semantic relationships between words in sentences ([[natural language processing]]). Text-based GPT models are pre-trained on a large corpus of text which can be from the internet. The pre-training consists in predicting the next [[Lexical analysis|token]] (a token being usually a word, subword, or punctuation). Throughout this pre-training, GPT models accumulate knowledge about the world, and can then generate human-like text by repeatedly predicting the next token. Typically, a subsequent training phase makes the model more truthful, useful and harmless, usually with a technique called [[reinforcement learning from human feedback]] (RLHF). Current GPT models are still prone to generating falsehoods called "[[Hallucination (artificial intelligence)|hallucinations]]", although this can be reduced with RLHF and quality data. They are used in [[chatbot|chatbots]], which allow you to ask a question or request a task in simple text.{{sfnp|Smith|2023}}<ref>{{Cite web|url=https://news.mit.edu/2023/explained-generative-ai-1109 |date=9 November 2023|title=Explained: Generative AI}}</ref>

Current models and services include: [[Gemini (chatbot)|Gemini (formerly Bard)]], [[ChatGPT]], [[Grok (chatbot)|Grok]], [[Anthropic#Claude|Claude]], [[Microsoft Copilot|Copilot]] and [[LLaMA]].<ref>{{Cite web|url=https://mitsloanedtech.mit.edu/ai/tools/writing/ |access-date=25 December 2023|title=AI Writing and Content Creation Tools|publisher= MIT Sloan Teaching & Learning Technologies}}</ref> [[Multimodal learning|Multimodal]] GPT models can process different types of data ([[Modality (human–computer interaction)|modalities]]) such as images, videos, sound and text.{{sfnp|Marmouyet|2023}}

===Specialized hardware and software===
{{Main|Programming languages for artificial intelligence|Hardware for artificial intelligence}}

In the late 2010s, [[graphics processing unit]]s (GPUs) that were increasingly designed with AI-specific enhancements and used with specialized [[TensorFlow]] software, had replaced previously used [[central processing unit]] (CPUs) as the dominant means for large-scale (commercial and academic) [[machine learning]] models' training.{{sfnp|Kobielus|2019}} Historically, specialized languages, such as [[Lisp (programming language)|Lisp]], [[Prolog]], [[Python (programming language)|Python]] and others, had been used.

== Примене ==
{{Main|Примене вештачке интелигенције}}

AI and machine learning technology is used in most of the essential applications of the 2020s, including: [[search engines]] (such as [[Google Search]]), [[Targeted advertising|targeting online advertisements]], [[Recommender system|recommendation systems]] (offered by [[Netflix]], [[YouTube]] or [[Amazon (company)|Amazon]]), driving [[internet traffic]], [[Marketing and artificial intelligence|targeted advertising]] ([[AdSense]], [[Facebook]]), [[virtual assistant]]s (such as [[Siri]] or [[Amazon Alexa|Alexa]]), [[autonomous vehicles]] (including [[Unmanned aerial vehicle|drones]], [[Advanced driver-assistance system|ADAS]] and [[self-driving cars]]), [[Machine translation|automatic language translation]] ([[Microsoft Translator]], [[Google Translate]]), [[Facial recognition system|facial recognition]] ([[Apple Computer|Apple]]'s [[Face ID]] or [[Microsoft]]'s [[DeepFace]] and [[Google]]'s [[FaceNet]]) and [[Automatic image annotation|image labeling]] (used by [[Facebook]], [[Apple Computer|Apple]]'s [[iPhoto]] and [[TikTok]]).

===Health and medicine===
{{Main|Artificial intelligence in healthcare}}
The application of AI in [[medicine]] and [[medical research]] has the potential to increase patient care and quality of life.<ref>{{cite journal |last1=Davenport|first1=T |last2=Kalakota |first2=R |title=The potential for artificial intelligence in healthcare |journal=Future Healthc J. |date=June 2019 |volume=6 |issue=2 |pages=94–98 |doi=10.7861/futurehosp.6-2-94 |pmid= 31363513 |pmc=6616181|bibcode=|language=en |issn=}}</ref> Through the lens of the [[Hippocratic Oath]], medical professionals are ethically compelled to use AI, if applications can more accurately diagnose and treat patients.

For medical research, AI is an important tool for processing and integrating [[Big Data]]. This is particularly important for [[organoid]] and [[tissue engineering]] development which use [[microscopy]] imaging as a key technique in fabrication.<ref name="The future of personalized cardiova">{{cite journal |last1=Bax|first1=Monique |last2=Thorpe |first2=Jordan|last3=Romanov |first3=Valentin |title=The future of personalized cardiovascular medicine demands 3D and 4D printing, stem cells, and artificial intelligence |journal=Frontiers in Sensors |date=December 2023 |volume=4 |issue= |pages= |doi=10.3389/fsens.2023.1294721 |pmid= |pmc=|bibcode=|language=en |issn=2673-5067 |doi-access=free }}</ref>
It has been suggested that AI can overcome discrepancies in funding allocated to different fields of research.<ref name="The future of personalized cardiova"/> New AI tools can deepen our understanding of biomedically relevant pathways. For example, [[AlphaFold 2]] (2021) demonstrated the ability to approximate, in hours rather than months, the 3D structure of a protein.<ref>{{cite journal |last1=Jumper|first1=J |last2=Evans |first2=R|last3=Pritzel |first3=A |title=Highly accurate protein structure prediction with AlphaFold |journal=Nature |date=2021 |volume=596 |issue= 7873|pages=583–589 |doi=10.1038/s41586-021-03819-2 |pmid= 34265844|pmc=8371605|bibcode=2021Natur.596..583J|language=en |issn=}}</ref> In 2023 it was reported that AI guided drug discovery helped find a class of antibiotics capable of killing two different types of drug-resistant bacteria.<ref>{{Cite web|url=https://www.newscientist.com/article/2409706-ai-discovers-new-class-of-antibiotics-to-kill-drug-resistant-bacteria/|date=2023-12-20|title=AI discovers new class of antibiotics to kill drug-resistant bacteria }}</ref>

===Games===
{{Main|Game artificial intelligence}}

[[Game AI|Game playing]] programs have been used since the 1950s to demonstrate and test AI's most advanced techniques.<ref>{{Cite news |last=Grant |first=Eugene F. |last2=Lardner |first2=Rex |date=1952-07-25 |title=The Talk of the Town – It |url=https://www.newyorker.com/magazine/1952/08/02/it |access-date=2024-01-28 |work=The New Yorker |language=en-US |issn=0028-792X}}</ref> [[IBM Deep Blue|Deep Blue]] became the first computer chess-playing system to beat a reigning world chess champion, [[Garry Kasparov]], on 11 May 1997.<ref>{{Cite web |last=Anderson |first=Mark Robert |date=2017-05-11 |title=Twenty years on from Deep Blue vs Kasparov: how a chess match started the big data revolution |url=http://theconversation.com/twenty-years-on-from-deep-blue-vs-kasparov-how-a-chess-match-started-the-big-data-revolution-76882 |access-date=2024-01-28 |website=The Conversation |language=en-US}}</ref> In 2011, in a ''[[Jeopardy!]]'' [[quiz show]] exhibition match, [[IBM]]'s [[question answering system]], [[Watson (artificial intelligence software)|Watson]], defeated the two greatest ''Jeopardy!'' champions, [[Brad Rutter]] and [[Ken Jennings]], by a significant margin.<ref>{{Cite news |last=Markoff |first=John |date=2011-02-16 |title=Computer Wins on 'Jeopardy!': Trivial, It's Not |url=https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html |url-access=subscription |access-date=2024-01-28 |work=The New York Times |language=en-US |issn=0362-4331}}</ref> In March 2016, [[AlphaGo]] won 4 out of 5 games of [[Go (game)|Go]] in a match with Go champion [[Lee Sedol]], becoming the first [[computer Go]]-playing system to beat a professional Go player without [[Go handicaps|handicaps]]. Then in 2017 it [[AlphaGo versus Ke Jie|defeated Ke Jie]], who was the best Go player in the world.<ref>{{Cite web |last=Byford |first=Sam |date=2017-05-27 |title=AlphaGo retires from competitive Go after defeating world number one 3-0 |url=https://www.theverge.com/2017/5/27/15704088/alphago-ke-jie-game-3-result-retires-future |access-date=2024-01-28 |website=The Verge |language=en}}</ref> Other programs handle [[Imperfect information|imperfect-information]] games, such as the [[poker]]-playing program [[Pluribus (poker bot)|Pluribus]].<ref>{{Cite journal |last=Brown |first=Noam |last2=Sandholm |first2=Tuomas |date=2019-08-30 |title=Superhuman AI for multiplayer poker |url=https://www.science.org/doi/10.1126/science.aay2400 |journal=Science |language=en |volume=365 |issue=6456 |pages=885–890 |doi=10.1126/science.aay2400 |issn=0036-8075}}</ref> [[DeepMind]] developed increasingly generalistic [[Reinforcement learning|reinforcement learning]] models, such as with [[MuZero]], which could be trained to play chess, Go, or [[Atari]] games.<ref>{{Cite web |date=2020-12-23 |title=MuZero: Mastering Go, chess, shogi and Atari without rules |url=https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/ |access-date=2024-01-28 |website=Google DeepMind |language=en}}</ref> In 2019, DeepMind's AlphaStar achieved grandmaster level in [[StarCraft II]], a particularly challenging real-time strategy game that involves incomplete knowledge of what happens on the map.<ref>{{Cite news |last=Sample |first=Ian |date=2019-10-30 |title=AI becomes grandmaster in 'fiendishly complex' StarCraft II |url=https://www.theguardian.com/technology/2019/oct/30/ai-becomes-grandmaster-in-fiendishly-complex-starcraft-ii |access-date=2024-01-28 |work=The Guardian |language=en-GB |issn=0261-3077}}</ref> In 2021 an AI agent competed in a Playstation Gran Turismo competition, winning against four of the world's best Gran Turismo drivers using deep reinforcement learning.<ref>{{cite journal |last1=Wurman |first1=P.R. |last2=Barrett |first2=S. |last3=Kawamoto |first3=K. |date=2022 |title=Outracing champion Gran Turismo drivers with deep reinforcement learning |journal=Nature 602 |volume=602 |issue=7896 |pages=223–228 |doi=10.1038/s41586-021-04357-7}}</ref>

=== Military ===
{{Main|Military artificial intelligence}}
Various countries are deploying AI military applications.<ref name=":22">{{Cite book |last=Congressional Research Service |url=https://fas.org/sgp/crs/natsec/R45178.pdf |title=Artificial Intelligence and National Security |publisher=Congressional Research Service |year=2019 |location=Washington, DC}}[[Template:PD-notice|PD-notice]]</ref> The main applications enhance [[command and control]], communications, sensors, integration and interoperability.<ref name="AI">{{cite journal |last1=Slyusar |first1=Vadym |year=2019 |title=Artificial intelligence as the basis of future control networks |url=https://www.researchgate.net/publication/334573170 |doi=10.13140/RG.2.2.30247.50087 |website=ResearchGate}}</ref> Research is targeting intelligence collection and analysis, logistics, cyber operations, information operations, and semiautonomous and [[Vehicular automation|autonomous vehicles]].<ref name=":22" /> AI technologies enable coordination of sensors and effectors, threat detection and identification, marking of enemy positions, [[target acquisition]], coordination and deconfliction of distributed [[Forward observers in the U.S. military|Joint Fires]] between networked combat vehicles involving manned and unmanned teams.<ref name="AI" /> AI was incorporated into military operations in Iraq and Syria.<ref name=":22" />

In November 2023, US Vice President [[Kamala Harris]] disclosed a declaration signed by 31 nations to set guardrails for the military use of IA. The commitments include using legal reviews to ensure the compliance of military AI with international laws, and being cautious and transparent in the development of this technology.<ref>{{Cite news |last=Knight |first=Will |title=The US and 30 Other Nations Agree to Set Guardrails for Military AI |url=https://www.wired.com/story/the-us-and-30-other-nations-agree-to-set-guardrails-for-military-ai/ |access-date=2024-01-24 |work=Wired |language=en-US |issn=1059-1028}}</ref>

=== Generative AI ===
{{Main|Generative artificial intelligence}}
[[File:Vincent van Gogh in watercolour.png|thumb|Vincent van Gogh in watercolour created by generative AI software]]
In the early 2020s, [[generative AI]] gained widespread prominence. In March 2023, 58% of US adults had heard about [[ChatGPT]] and 14% had tried it.<ref>{{Cite web |last=Marcelline |first=Marco |date=May 27, 2023 |title=ChatGPT: Most Americans Know About It, But Few Actually Use the AI Chatbot |url=https://www.pcmag.com/news/few-americans-have-actually-tried-chatgpt-despite-most-knowing-about-it |access-date=2024-01-28 |website=PCMag |language=en}}</ref> The increasing realism and ease-of-use of AI-based [[Text-to-image model|text-to-image]] generators such as [[Midjourney]], [[DALL-E]], and [[Stable Diffusion]] sparked a trend of [[Viral phenomenon|viral]] AI-generated photos. Widespread attention was gained by a fake photo of [[Pope Francis]] wearing a white puffer coat, the fictional arrest of [[Donald Trump]], and a hoax of an attack on the [[The Pentagon|Pentagon]], as well as the usage in professional creative arts.<ref>{{Cite news |last=Lu |first=Donna |date=2023-03-31 |title=Misinformation, mistakes and the Pope in a puffer: what rapidly evolving AI can – and can't – do |url=https://www.theguardian.com/technology/2023/apr/01/misinformation-mistakes-and-the-pope-in-a-puffer-what-rapidly-evolving-ai-can-and-cant-do |access-date=2024-01-28 |work=The Guardian |language=en-GB |issn=0261-3077}}</ref><ref>{{Cite web |date=2023-05-23 |title=How a fake image of a Pentagon explosion shared on Twitter caused a real dip on Wall Street |first1=Luke |last1=Hurst |url=https://www.euronews.com/next/2023/05/23/fake-news-about-an-explosion-at-the-pentagon-spreads-on-verified-accounts-on-twitter |access-date=2024-01-28 |website=euronews |language=en}}</ref>

===Industry-specific tasks===
There are also thousands of successful AI applications used to solve specific problems for specific industries or institutions. In a 2017 survey, one in five companies reported they had incorporated "AI" in some offerings or processes.<ref>{{Cite journal |last=Ransbotham |first=Sam |last2=Kiron |first2=David |last3=Gerbert |first3=Philipp |last4=Reeves |first4=Martin |date=2017-09-06 |title=Reshaping Business With Artificial Intelligence |url=https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence/ |journal=MIT Sloan Management Review |language=en-US |url-status=live |archive-url=https://web.archive.org/web/20240213070751/https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence/ |archive-date= Feb 13, 2024 }}</ref> A few examples are [[energy storage]], medical diagnosis, military logistics, applications that predict the result of judicial decisions, [[foreign policy]], or supply chain management.

In agriculture, AI has helped farmers identify areas that need irrigation, fertilization, pesticide treatments or increasing yield. Agronomists use AI to conduct research and development. AI has been used to predict the ripening time for crops such as tomatoes, monitor soil moisture, operate agricultural robots, conduct predictive analytics, classify livestock pig call emotions, automate greenhouses, detect diseases and pests, and save water.

Artificial intelligence is used in astronomy to analyze increasing amounts of available data and applications, mainly for "classification, regression, clustering, forecasting, generation, discovery, and the development of new scientific insights" for example for discovering exoplanets, forecasting solar activity, and distinguishing between signals and instrumental effects in gravitational wave astronomy. It could also be used for activities in space such as space exploration, including analysis of data from space missions, real-time science decisions of spacecraft, space debris avoidance, and more autonomous operation.

== Етика ==
AI, like any powerful technology, has potential benefits and potential risks. AI may be able to advance science and find solutions for serious problems: [[Demis Hassabis]] of [[DeepMind|Deep Mind]] hopes to "solve intelligence, and then use that to solve everything else".{{sfnp|Simonite|2016}} However, as the use of AI has become widespread, several unintended consequences and risks have been identified.{{sfnp|Russell|Norvig|2021|p=987}}

Anyone looking to use machine learning as part of real-world, in-production systems needs to factor ethics into their AI training processes and strive to avoid bias. This is especially true when using AI algorithms that are inherently unexplainable in deep learning.{{sfnp|Laskowski|2023}}

=== Risks and harm ===
==== Privacy and copyright ====
{{Further|Information privacy|Artificial intelligence and copyright}}

Machine learning algorithms require large amounts of data. The techniques used to acquire this data have raised concerns about [[privacy]], [[surveillance]] and [[copyright]].

Technology companies collect a wide range of data from their users, including online activity, geolocation data, video and audio.{{sfnp|GAO|2022}}
For example, in order to build [[speech recognition]] algorithms, [[Amazon (company)|Amazon]] have recorded millions of private conversations and allowed [[temporary worker]]s to listen to and transcribe some of them.{{sfnp|Valinsky|2019}}
Opinions about this widespread [[surveillance]] range from those who see it as a [[necessary evil]] to those for whom it is clearly [[unethical]] and a violation of the [[right to privacy]].{{sfnp|Russell|Norvig|2021|p=991}}

AI developers argue that this is the only way to deliver valuable applications. and have developed several techniques that attempt to preserve privacy while still obtaining the data, such as [[data aggregation]], [[de-identification]] and [[differential privacy]].{{sfnp|Russell|Norvig|2021|p=991–992}} Since 2016, some privacy experts, such as [[Cynthia Dwork]], began to view privacy in terms of [[fairness (machine learning)|fairness]]. [[Brian Christian]] wrote that experts have pivoted "from the question of 'what they know' to the question of 'what they're doing with it'.".{{sfnp|Christian|2020|p=63}}

Generative AI is often trained on unlicensed copyrighted works, including in domains such as images or computer code; the output is then used under a rationale of "[[fair use]]". Also website owners who do not wish to have their copyrighted content be AI indexed or 'scraped' can add code to their site, as you would, if you did not want your website to be indexed by a search engine which is currently available to certain services such as [[OpenAI]]. Experts disagree about how well, and under what circumstances, this rationale will hold up in courts of law; relevant factors may include "the purpose and character of the use of the copyrighted work" and "the effect upon the potential market for the copyrighted work".{{sfnp|Vincent|2022}} In 2023, leading authors (including [[John Grisham]] and [[Jonathan Franzen]]) sued AI companies for using their work to train generative AI.{{sfnp|Reisner|2023}}{{sfnp|Alter|Harris|2023}}

==== Misinformation ====
{{See also|YouTube#Moderation and offensive content}}

[[YouTube]], [[Facebook]] and others use [[recommender system]]s to guide users to more content. These AI programs were given the goal of [[mathematical optimization|maximizing]] user engagement (that is, the only goal was to keep people watching). The AI learned that users tended to choose [[misinformation]], [[conspiracy theory|conspiracy theories]], and extreme [[partisan (politics)|partisan]] content, and, to keep them watching, the AI recommended more of it. Users also tended to watch more content on the same subject, so the AI led people into [[filter bubbles]] where they received multiple versions of the same misinformation.{{sfnp|Nicas|2018}} This convinced many users that the misinformation was true, and ultimately undermined trust in institutions, the media and the government.<ref>{{Cite web |date=July 22, 2019 |title=Trust and Distrust in America |first1=Lee |last1=Rainie |first2=Scott |last2=Keeter |first3=Andrew |last3=Perrin |url=https://www.pewresearch.org/politics/2019/07/22/trust-and-distrust-in-america/ |url-status=live |archive-url=https://web.archive.org/web/20240222000601/https://www.pewresearch.org/politics/2019/07/22/trust-and-distrust-in-america/ |archive-date=Feb 22, 2024 |website=Pew Research Center}}</ref> The AI program had correctly learned to maximize its goal, but the result was harmful to society. After the U.S. election in 2016, major technology companies took steps to mitigate the problem.

In 2022, [[generative AI]] began to create images, audio, video and text that are indistinguishable from real photographs, recordings, films or human writing. It is possible for bad actors to use this technology to create massive amounts of misinformation or propaganda.{{sfnp|Williams|2023}} AI pioneer [[Geoffrey Hinton]] expressed concern about AI enabling "authoritarian leaders to manipulate their electorates" on a large scale, among other risks.{{sfnp|Taylor|Hern|2023}}

====Algorithmic bias and fairness====
{{Main|Algorithmic bias|Fairness (machine learning)}}

Machine learning applications will be biased if they learn from biased data.{{sfnp|Rose|2023}}
The developers may not be aware that the bias exists.{{sfnp|CNA|2019}}
Bias can be introduced by the way [[training data]] is selected and by the way a model is deployed.{{sfnp|Goffrey|2008|p=17}}{{sfnp|Rose|2023}} If a biased algorithm is used to make decisions that can seriously [[harm]] people (as it can in [[health equity|medicine]], [[credit rating|finance]], [[recruitment]], [[public housing|housing]] or [[policing]]) then the algorithm may cause [[discrimination]].<ref>{{Harvtxt|Berdahl|Baker|Mann|Osoba|2023}}; {{Harvtxt|Goffrey|2008|p=17}}; {{Harvtxt|Rose|2023}}; {{Harvtxt|Russell|Norvig|2021|p=995}}</ref>
[[Fairness (machine learning)|Fairness]] in machine learning is the study of how to prevent the harm caused by algorithmic bias. It has become serious area of academic study within AI. Researchers have discovered it is not always possible to define "fairness" in a way that satisfies all stakeholders.<ref>
[[Algorithmic bias]] and [[Fairness (machine learning)]]:
* {{Harvtxt|Russell|Norvig|2021|loc=section 27.3.3}}
* {{Harvtxt|Christian|2020|loc=Fairness}}
</ref>

On June 28, 2015, [[Google Photos]]'s new image labeling feature mistakenly identified Jacky Alcine and a friend as "gorillas" because they were black. The system was trained on a dataset that contained very few images of black people,{{sfnp|Christian|2020|p=25}} a problem called "sample size disparity".{{sfnp|Russell|Norvig|2021|p=995}} Google "fixed" this problem by preventing the system from labelling ''anything'' as a "gorilla". Eight years later, in 2023, Google Photos still could not identify a gorilla, and neither could similar products from Apple, Facebook, Microsoft and Amazon.{{sfnp|Grant|Hill|2023}}

[[COMPAS (software)|COMPAS]] is a commercial program widely used by [[U.S. court]]s to assess the likelihood of a [[defendant]] becoming a [[recidivist]].
In 2016, [[Julia Angwin]] at [[ProPublica]] discovered that COMPAS exhibited racial bias, despite the fact that the program was not told the races of the defendants. Although the error rate for both whites and blacks was calibrated equal at exactly 61%, the errors for each race were different—the system consistently overestimated the chance that a black person would re-offend and would underestimate the chance that a white person would not re-offend.{{sfnp|Larson|Angwin|2016}} In 2017, several researchers{{efn|Including [[Jon Kleinberg]] ([[Cornell]]), Sendhil Mullainathan ([[University of Chicago]]), Cynthia Chouldechova ([[Carnegie Mellon]]) and Sam Corbett-Davis ([[Stanford]]){{sfnp|Christian|2020|p=67–70}}}} showed that it was mathematically impossible for COMPAS to accommodate all possible measures of fairness when the base rates of re-offense were different for whites and blacks in the data.<ref>{{Harvtxt|Christian|2020|pp=67–70}}; {{Harvtxt|Russell|Norvig|2021|pp=993–994}}</ref>

A program can make biased decisions even if the data does not explicitly mention a problematic feature (such as "race" or "gender"). The feature will correlate with other features (like "address", "shopping history" or "first name"), and the program will make the same decisions based on these features as it would on "race" or "gender".<ref>{{Harvtxt|Russell|Norvig|2021|p=995}}; {{Harvtxt|Lipartito|2011|p=36}}; {{Harvtxt|Goodman|Flaxman|2017|p=6}}; {{Harvtxt|Christian|2020|pp=39–40, 65}}</ref> Moritz Hardt said "the most robust fact in this research area is that fairness through blindness doesn't work."<ref>Quoted in {{Harvtxt|Christian|2020|p=65}}.</ref>

Criticism of COMPAS highlighted a deeper problem with the misuse of AI. Machine learning models are designed to make "predictions" that are only valid if we assume that the future will resemble the past. If they are trained on data that includes the results of racist decisions in the past, machine learning models must predict that racist decisions will be made in the future. Unfortunately, if an application then uses these predictions as ''recommendations'', some of these "recommendations" will likely be racist.<ref>{{Harvtxt|Russell|Norvig|2021|p=994}}; {{Harvtxt|Christian|2020|pp=40, 80–81}}</ref> Thus, machine learning is not well suited to help make decisions in areas where there is hope that the future will be ''better'' than the past. It is necessarily descriptive and not proscriptive.{{efn|Moritz Hardt (a director at the [[Max Planck Institute for Intelligent Systems]]) argues that machine learning "is fundamentally the wrong tool for a lot of domains, where you're trying to design interventions and mechanisms that change the world."<ref>Quoted in {{Harvtxt|Christian|2020|p=80}}</ref>}}

Bias and unfairness may go undetected because the developers are overwhelmingly white and male: among AI engineers, about 4% are black and 20% are women.{{sfnp|Russell|Norvig|2021|p=995}}

At its 2022 Conference on Fairness, Accountability, and Transparency (ACM FAccT 2022) the [[Association for Computing Machinery]], in Seoul, South Korea, presented and published findings recommending that until AI and robotics systems are demonstrated to be free of bias mistakes, they are unsafe and the use of self-learning neural networks trained on vast, unregulated sources of flawed internet data should be curtailed.{{sfnp|Dockrill|2022}}

==== Недостатак транспарентности ====
{{See also|Explainable AI|Algorithmic transparency|Right to explanation}}
[[File:HiPhi Z, IAA Summit 2023, Munich (P1120237).jpg|upright=1.2|thumb|[[Lidar]] testing vehicle for autonomous driving]]
Many AI systems are so complex that their designers cannot explain how they reach their decisions.{{sfnp|Sample|2017}} Particularly with [[deep neural networks]], in which there are a large amount of non-[[linear]] relationships between inputs and outputs. But some popular explainability techniques exist.<ref>{{cite web | url=https://www.techopedia.com/definition/34940/black-box-ai | title=Black Box AI | date=16 June 2023 }}</ref>

There have been many cases where a machine learning program passed rigorous tests, but nevertheless learned something different than what the programmers intended. For example, a system that could identify skin diseases better than medical professionals was found to actually have a strong tendency to classify images with a [[ruler]] as "cancerous", because pictures of malignancies typically include a ruler to show the scale.{{sfnp|Christian|2020|p=110}} Another machine learning system designed to help effectively allocate medical resources was found to classify patients with asthma as being at "low risk" of dying from pneumonia. Having asthma is actually a severe risk factor, but since the patients having asthma would usually get much more medical care, they were relatively unlikely to die according to the training data. The correlation between asthma and low risk of dying from pneumonia was real, but misleading.{{sfnp|Christian|2020|pp=88-91}}

People who have been harmed by an algorithm's decision have a [[Right to explanation|right to an explanation]]. Doctors, for example, are required to clearly and completely explain the reasoning behind any decision they make.<ref>{{Harvtxt|Christian|2020|p=83}}; {{Harvtxt|Russell|Norvig|2021|p=997}}</ref> Early drafts of the European Union's [[General Data Protection Regulation]] in 2016 included an explicit statement that this right exists.{{efn|When the law was passed in 2018, it still contained a form of this provision.}} Industry experts noted that this is an unsolved problem with no solution in sight. Regulators argued that nevertheless the harm is real: if the problem has no solution, the tools should not be used.{{sfnp|Christian|2020|p=91}}

[[DARPA]] established the [[Explainable Artificial Intelligence|XAI]] ("Explainable Artificial Intelligence") program in 2014 to try and solve these problems.{{sfnp|Christian|2020|p=83}}

There are several potential solutions to the transparency problem. SHAP helps visualise the contribution of each feature to the output.{{sfnp|Verma|2021}} LIME can locally approximate a model with a simpler, interpretable model.{{sfnp|Rothman|2020}} [[Multitask learning]] provides a large number of outputs in addition to the target classification. These other outputs can help developers deduce what the network has learned.{{sfnp|Christian|2020|p=105-108}} [[Deconvolution]], [[DeepDream]] and other [[generative AI|generative]] methods can allow developers to see what different layers of a deep network have learned and produce output that can suggest what the network is learning.{{sfnp|Christian|2020|pp=108-112}}

==== Конфликт, присмотра и наоружана вештачка интелигенција ====
{{Main|Lethal autonomous weapon|Artificial intelligence arms race|AI safety}}

A [[lethal autonomous weapon]] is a machine that locates, selects and engages human targets without human supervision.{{efn|This is the [[United Nations]]' definition, and includes things like [[land mines]] as well.{{sfnp|Russell|Norvig|2021|p=989}}}} By 2015, over fifty countries were reported to be researching battlefield robots.<ref>{{harvtxt|Robitzski|2018}}; {{harvtxt|Sainato|2015}}</ref> These weapons are considered especially dangerous for several reasons: if they [[murder|kill an innocent person]] it is not clear who should be held [[accountability|accountable]], it is unlikely they will reliably choose targets, and, if produced at scale, they are potentially [[weapons of mass destruction]].{{sfnp|Russell|Norvig|2021|p=987-990}} In 2014, 30 nations (including China) supported a ban on autonomous weapons under the [[United Nations]]' [[Convention on Certain Conventional Weapons]], however the [[United States]] and others disagreed.{{sfnp|Russell|Norvig|2021|p=988}}

AI provides a number of tools that are particularly useful for [[authoritarian]] governments: smart [[spyware]], [[Facial recognition system|face recognition]] and [[Speaker recognition|voice recognition]] allow widespread [[surveillance]]; such surveillance allows [[machine learning]] to [[classifier (machine learning)|classify]] potential enemies of the state and can prevent them from hiding; [[recommender system|recommendation systems]] can precisely target [[propaganda]] and [[misinformation]] for maximum effect; [[deepfakes]] and [[generative AI]] aid in producing misinformation; advanced AI can make authoritarian [[technocracy|centralized decision making]] more competitive with liberal and decentralized systems such as [[market (economics)|market]]s.{{sfnp|Harari|2018}}

AI [[facial recognition system]]s are used for [[mass surveillance]], notably in China.<ref>{{Cite news |last1=Buckley |first1=Chris |last2=Mozur |first2=Paul |date=22 May 2019 |title=How China Uses High-Tech Surveillance to Subdue Minorities |work=The New York Times |url=https://www.nytimes.com/2019/05/22/world/asia/china-surveillance-xinjiang.html}}</ref><ref>{{Cite web |date=3 May 2019 |title=Security lapse exposed a Chinese smart city surveillance system |url=https://social.techcrunch.com/2019/05/03/china-smart-city-exposed/ |url-status=dead |archive-url=https://web.archive.org/web/20210307203740/https://consent.yahoo.com/v2/collectConsent?sessionId=3_cc-session_c8562b93-9863-4915-8523-6c7b930a3efc |archive-date=7 March 2021 |access-date=14 September 2020}}</ref> In 2019, [[Bangalore|Bengaluru, India]] deployed AI-managed traffic signals. This system uses cameras to monitor traffic density and adjust signal timing based on the interval needed to clear traffic.<ref>{{Cite web |date=24 September 2019 |title=AI traffic signals to be installed in Bengaluru soon |url=https://nextbigwhat.com/ai-traffic-signals-to-be-installed-in-bengaluru-soon/ |access-date=1 October 2019 |website=NextBigWhat |language=en-US}}</ref> Terrorists, criminals and rogue states can use weaponized AI such as advanced [[digital warfare]] and [[lethal autonomous weapon]]s. Machine-learning AI is also able to design tens of thousands of toxic molecules in a matter of hours.{{sfnp|Urbina|Lentzos|Invernizzi|Ekins|2022}}

==== Technological unemployment ====
{{Main|Workplace impact of artificial intelligence|Technological unemployment}}
From the early days of the development of artificial intelligence there have been arguments, for example those put forward by [[Joseph Weizenbaum]], about whether tasks that can be done by computers actually should be done by them, given the difference between computers and humans, and between quantitative calculation and qualitative, value-based judgement.<ref>{{Cite news |last=Tarnoff |first=Ben |date=4 August 2023 |title=Lessons from Eliza |pages=34–9 |work=[[The Guardian Weekly]]}}</ref>

Economists have frequently highlighted the risks of redundancies from AI, and speculated about unemployment if there is no adequate social policy for full employment.<ref name="auto1">E McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2022) [https://academic.oup.com/ilj/article/51/3/511/6321008 51(3) Industrial Law Journal 511–559] {{Webarchive|url=https://web.archive.org/web/20230527163045/https://academic.oup.com/ilj/article/51/3/511/6321008 |date=27 May 2023 }}</ref>

In the past, technology has tended to increase rather than reduce total employment, but economists acknowledge that "we're in uncharted territory" with AI.<ref>{{Harvtxt|Ford|Colvin|2015}};{{Harvtxt|McGaughey|2022}}</ref> A survey of economists showed disagreement about whether the increasing use of robots and AI will cause a substantial increase in long-term [[unemployment]], but they generally agree that it could be a net benefit if [[productivity]] gains are [[Redistribution of income and wealth|redistributed]].{{sfnp|IGM Chicago|2017}} Risk estimates vary; for example, in the 2010s, Michael Osborne and [[Carl Benedikt Frey]] estimated 47% of U.S. jobs are at "high risk" of potential automation, while an OECD report classified only 9% of U.S. jobs as "high risk".{{efn|See table 4; 9% is both the OECD average and the US average.{{sfnp|Arntz|Gregory|Zierahn|2016|p=33}}}}<ref>{{Harvtxt|Lohr|2017}}; {{Harvtxt|Frey|Osborne|2017}}; {{Harvtxt|Arntz|Gregory|Zierahn|2016|p=33}}</ref> The methodology of speculating about future employment levels has been criticised as lacking evidential foundation, and for implying that technology, rather than social policy, creates unemployment, as opposed to redundancies.<ref name="auto1"/>

Unlike previous waves of automation, many middle-class jobs may be eliminated by artificial intelligence; ''[[The Economist]]'' stated in 2015 that "the worry that AI could do to white-collar jobs what steam power did to blue-collar ones during the Industrial Revolution" is "worth taking seriously".{{sfnp|Morgenstern|2015}} Jobs at extreme risk range from [[paralegal]]s to fast food cooks, while job demand is likely to increase for care-related professions ranging from personal healthcare to the clergy.<ref>{{Harvtxt|Mahdawi|2017}}; {{Harvtxt|Thompson|2014}}</ref>

In April 2023, it was reported that 70% of the jobs for Chinese video game illustrators had been eliminated by generative artificial intelligence.<ref>{{Cite web |last=Zhou |first=Viola |date=2023-04-11 |title=AI is already taking video game illustrators' jobs in China |url=https://restofworld.org/2023/ai-image-china-video-game-layoffs/ |access-date=2023-08-17 |website=Rest of World |language=en-US}}</ref><ref>{{Cite web |last=Carter |first=Justin |date=2023-04-11 |title=China's game art industry reportedly decimated by growing AI use |url=https://www.gamedeveloper.com/art/china-s-game-art-industry-reportedly-decimated-ai-art-use |access-date=2023-08-17 |website=Game Developer |language=en}}</ref>

==== Existential risk ====
{{Main|Existential risk from artificial general intelligence}}

It has been argued AI will become so powerful that humanity may irreversibly lose control of it. This could, as physicist [[Stephen Hawking]] stated, "[[Global catastrophic risk|spell the end of the human race]]".{{sfnp|Cellan-Jones|2014}} This scenario has been common in science fiction, when a computer or robot suddenly develops a human-like "self-awareness" (or "sentience" or "consciousness") and becomes a malevolent character.{{efn|Sometimes called a "[[robopocalypse]]".{{sfn|Russell|Norvig|2021|p=1001}}}} These sci-fi scenarios are misleading in several ways.

First, AI does not require human-like "sentience" to be an existential risk. Modern AI programs are given specific goals and use learning and intelligence to achieve them. Philosopher [[Nick Bostrom]] argued that if one gives ''almost any'' goal to a sufficiently powerful AI, it may choose to destroy humanity to achieve it (he used the example of a [[Instrumental convergence#Paperclip maximizer|paperclip factory manager]]).{{sfnp|Bostrom|2014}} [[Stuart J. Russell|Stuart Russell]] gives the example of household robot that tries to find a way to kill its owner to prevent it from being unplugged, reasoning that "you can't fetch the coffee if you're dead."{{sfnp|Russell|2019}} In order to be safe for humanity, a [[superintelligence]] would have to be genuinely [[AI alignment|aligned]] with humanity's morality and values so that it is "fundamentally on our side".<ref>{{Harvtxt|Bostrom|2014}}; {{Harvtxt|Müller|Bostrom|2014}}; {{Harvtxt|Bostrom|2015}}.</ref>

Second, [[Yuval Noah Harari]] argues that AI does not require a robot body or physical control to pose an existential risk. The essential parts of civilization are not physical. Things like [[ideology|ideologies]], [[law]], [[government]], [[money]] and the [[economy]] are made of [[language]]; they exist because there are stories that billions of people believe. The current prevalence of [[misinformation]] suggests that an AI could use language to convince people to believe anything, even to take actions that are destructive.{{sfnp|Harari|2023}}

The opinions amongst experts and industry insiders are mixed, with sizable fractions both concerned and unconcerned by risk from eventual superintelligent AI.{{sfnp|Müller|Bostrom|2014}} Personalities such as [[Stephen Hawking]], [[Bill Gates]], and [[Elon Musk]] have expressed concern about existential risk from AI.<ref>
Leaders' concerns about the existential risks of AI around 2015:
*{{harvtxt|Rawlinson|2015}}
*{{Harvtxt|Holley|2015}}
*{{Harvtxt|Gibbs|2014}}
*{{harvtxt|Sainato|2015}}
</ref>

In the early 2010s, experts argued that the risks are too distant in the future to warrant research or that humans will be valuable from the perspective of a superintelligent machine.<ref>
Arguments that AI is not an imminent risk:
*{{Harvtxt|Brooks|2014}}
*{{Harvtxt|Geist |2015}}
*{{Harvtxt|Madrigal|2015}}
*{{Harvtxt|Lee|2014}}
</ref> However, after 2016, the study of current and future risks and possible solutions became a serious area of research.{{sfnp|Christian|2020|pp=67, 73}}

AI pioneers including [[Fei-Fei Li]], [[Geoffrey Hinton]], [[Yoshua Bengio]], [[Cynthia Breazeal]], [[Rana el Kaliouby]], [[Demis Hassabis]], [[Joy Buolamwini]], and [[Sam Altman]] have expressed concerns about the risks of AI. In 2023, many leading AI experts issued the joint statement that "Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war".{{sfnp|Valance|2023}}

Other researchers, however, spoke in favor of a less dystopian view. AI pioneer [[Juergen Schmidhuber]] did not sign the joint statement, emphasising that in 95% of all cases, AI research is about making "human lives longer and healthier and easier."<ref name="guardian2023">{{cite news|url=https://www.theguardian.com/technology/2023/may/07/rise-of-artificial-intelligence-is-inevitable-but-should-not-be-feared-father-of-ai-says|title=Rise of artificial intelligence is inevitable but should not be feared, 'father of AI' says|last1=Taylor|first1=Josh|date=7 May 2023|work=The Guardian|access-date=26 May 2023|language=en}}</ref> While the tools that are now being used to improve lives can also be used by bad actors, "they can also be used against the bad actors."<ref name="foxnews2023">{{cite news|url=https://www.foxnews.com/tech/father-ai-jurgen-schmidhuber-says-tech-fears-misplaced-cannot-stop|title='Father of AI' says tech fears misplaced: 'You cannot stop it'|last1=Colton|first1=Emma|date=7 May 2023|work=Fox News|access-date=26 May 2023|language=en}}</ref><ref name="forbes2023">{{cite news|url=https://www.forbes.com/sites/hessiejones/2023/05/23/juergen-schmidhuber-renowned-father-of-modern-ai-says-his-lifes-work-wont-lead-to-dystopia/|title=Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life's Work Won't Lead To Dystopia|last1=Jones|first1=Hessie|date=23 May 2023|work=Forbes|access-date=26 May 2023|language=en}}</ref> [[Andrew Ng]] also argued that "it's a mistake to fall for the doomsday hype on AI—and that regulators who do will only benefit vested interests."<ref name="andrewng2023">{{cite news|url=https://www.ft.com/content/2dc07f9e-d2a9-4d98-b746-b051f9352be3|title=Andrew Ng: 'Do we think the world is better off with more or less intelligence?'|last1=McMorrow|first1=Ryan |date=19 Dec 2023|work=Financial Times|access-date=30 Dec 2023|language=en}}</ref> [[Yann LeCun]] "scoffs at his peers' dystopian scenarios of supercharged misinformation and even, eventually, human extinction."<ref name="lecun2023">{{cite magazine|url=https://www.wired.com/story/artificial-intelligence-meta-yann-lecun-interview/|title=How Not to Be Stupid About AI, With Yann LeCun|last1=Levy|first1=Steven |date=22 Dec 2023|magazine=Wired|access-date=30 Dec 2023|language=en}}</ref>

==== Limiting AI ====
Possible options for limiting AI include: using Embedded Ethics or Constitutional AI where companies or governments can add a policy, restricting high levels of compute power in training, restricting the ability to rewrite its own code base, restrict certain AI techniques but not in the training phase, open-source (transparency) vs proprietary (could be more restricted), backup model with redundancy, restricting security, privacy and copyright, restricting or controlling the memory, real-time monitoring, risk analysis, emergency shut-off, rigorous simulation and testing, model certification, assess known vulnerabilities, restrict the training material, restrict access to the internet, issue terms of use.

=== Ethical machines and alignment ===
{{Main|Machine ethics|AI safety|Friendly artificial intelligence|Artificial moral agents|Human Compatible}}

Friendly AI are machines that have been designed from the beginning to minimize risks and to make choices that benefit humans. [[Eliezer Yudkowsky]], who coined the term, argues that developing friendly AI should be a higher research priority: it may require a large investment and it must be completed before AI becomes an existential risk.{{sfnp|Yudkowsky|2008}}

Machines with intelligence have the potential to use their intelligence to make ethical decisions. The field of machine ethics provides machines with ethical principles and procedures for resolving ethical dilemmas.{{sfnp|Anderson|Anderson|2011}}
The field of machine ethics is also called computational morality,{{sfnp|Anderson|Anderson|2011}}
and was founded at an [[AAAI]] symposium in 2005.{{sfnp|AAAI|2014}}

Other approaches include [[Wendell Wallach]]'s "artificial moral agents"{{sfnp|Wallach|2010}}
and [[Stuart J. Russell]]'s [[Human Compatible#Russell's three principles|three principles]] for developing provably beneficial machines.{{sfnp|Russell|2019|p=173}}

=== Frameworks ===

Artificial Intelligence projects can have their ethical permissibility tested while designing, developing, and implementing an AI system. An AI framework such as the Care and Act Framework containing the SUM values – developed by the [[Alan Turing Institute]] tests projects in four main areas:<ref>{{cite web |date=2019 |title=Understanding artificial intelligence ethics and safety |author=Alan Turing Institute|url=https://www.turing.ac.uk/sites/default/files/2019-06/understanding_artificial_intelligence_ethics_and_safety.pdf}}</ref><ref>{{cite web |date=2023 |title=AI Ethics and Governance in Practice|author=Alan Turing Institute|url=https://www.turing.ac.uk/sites/default/files/2023-12/aieg-ati-ai-ethics-an-intro_1.pdf}}</ref>

* RESPECT the dignity of individual people
* CONNECT with other people sincerely, openly and inclusively
* CARE for the wellbeing of everyone
* PROTECT social values, justice and the public interest

Other developments in ethical frameworks include those decided upon during the [[Asilomar Conference on Beneficial AI|Asilomar Conference]], the Montreal Declaration for Responsible AI, and the IEEE's Ethics of Autonomous Systems initiative, among others;<ref>{{Cite journal |last1=Floridi |first1=Luciano |last2=Cowls |first2=Josh |date=2019-06-23 |title=A Unified Framework of Five Principles for AI in Society |url=https://hdsr.mitpress.mit.edu/pub/l0jsh9d1 |journal=Harvard Data Science Review |volume=1 |issue=1 |language=en |doi=10.1162/99608f92.8cd550d1|s2cid=198775713 |doi-access=free }}</ref> however, these principles do not go without their criticisms, especially regards to the people chosen contributes to these frameworks.<ref>{{Cite journal |last1=Buruk |first1=Banu |last2=Ekmekci |first2=Perihan Elif |last3=Arda |first3=Berna |date=2020-09-01 |title=A critical perspective on guidelines for responsible and trustworthy artificial intelligence |url=https://doi.org/10.1007/s11019-020-09948-1 |journal=Medicine, Health Care and Philosophy |language=en |volume=23 |issue=3 |pages=387–399 |doi=10.1007/s11019-020-09948-1 |pmid=32236794 |s2cid=214766800 |issn=1572-8633}}</ref>

Promotion of the wellbeing of the people and communities that these technologies affect requires consideration of the social and ethical implications at all stages of AI system design, development and implementation, and collaboration between job roles such as data scientists, product managers, data engineers, domain experts, and delivery managers.<ref>{{Cite journal |last1=Kamila |first1=Manoj Kumar |last2=Jasrotia |first2=Sahil Singh |date=2023-01-01 |title=Ethical issues in the development of artificial intelligence: recognizing the risks |url=https://doi.org/10.1108/IJOES-05-2023-0107 |journal=International Journal of Ethics and Systems |volume=ahead-of-print |issue=ahead-of-print |doi=10.1108/IJOES-05-2023-0107 |s2cid=259614124 |issn=2514-9369}}</ref>

=== Regulation ===
{{Main|Regulation of artificial intelligence|Regulation of algorithms|AI safety}}
[[File:Vice President Harris at the group photo of the 2023 AI Safety Summit.jpg|upright=1.2|thumb|alt=AI Safety Summit|The first global [[AI Safety Summit]] was held in 2023 with a declaration calling for international co-operation.]]
The regulation of artificial intelligence is the development of public sector policies and laws for promoting and regulating artificial intelligence (AI); it is therefore related to the broader regulation of algorithms.<ref>
Regulation of AI to mitigate risks:
* {{Harvtxt|Berryhill|Heang|Clogher|McBride|2019}}
* {{Harvtxt|Barfield|Pagallo|2018}}
* {{Harvtxt|Iphofen|Kritikos|2019}}
* {{Harvtxt|Wirtz|Weyerer|Geyer|2018}}
* {{Harvtxt|Buiten|2019}}
</ref>
The regulatory and policy landscape for AI is an emerging issue in jurisdictions globally.{{sfnp|Law Library of Congress (U.S.). Global Legal Research Directorate|2019}} According to AI Index at [[Stanford]], the annual number of AI-related laws passed in the 127 survey countries jumped from one passed in 2016 to 37 passed in 2022 alone.{{sfnp|Vincent|2023}}{{sfnp|Stanford University|2023}}
Between 2016 and 2020, more than 30 countries adopted dedicated strategies for AI.{{sfnp|UNESCO|2021}}
Most EU member states had released national AI strategies, as had Canada, China, India, Japan, Mauritius, the Russian Federation, Saudi Arabia, United Arab Emirates, US and Vietnam. Others were in the process of elaborating their own AI strategy, including Bangladesh, Malaysia and Tunisia.{{sfnp|UNESCO|2021}}
The [[Global Partnership on Artificial Intelligence]] was launched in June 2020, stating a need for AI to be developed in accordance with human rights and democratic values, to ensure public confidence and trust in the technology.{{sfnp|UNESCO|2021}} [[Henry Kissinger]], [[Eric Schmidt]], and [[Daniel P. Huttenlocher|Daniel Huttenlocher]] published a joint statement in November 2021 calling for a government commission to regulate AI.{{sfnp|Kissinger|2021}}
In 2023, OpenAI leaders published recommendations for the governance of superintelligence, which they believe may happen in less than 10 years.{{sfnp|Altman|Brockman|Sutskever |2023}} In 2023, the United Nations also launched an advisory body to provide recommendations on AI governance; the body comprises technology company executives, governments officials and academics.<ref>{{Cite web |last=VOA News |date=October 25, 2023 |title=UN Announces Advisory Body on Artificial Intelligence |url=https://www.voanews.com/a/un-announces-advisory-body-on-artificial-intelligence-/7328732.html}}</ref>

In a 2022 [[Ipsos]] survey, attitudes towards AI varied greatly by country; 78% of Chinese citizens, but only 35% of Americans, agreed that "products and services using AI have more benefits than drawbacks".{{sfnp|Vincent|2023}} A 2023 [[Reuters]]/Ipsos poll found that 61% of Americans agree, and 22% disagree, that AI poses risks to humanity.{{sfnp|Edwards|2023}}
In a 2023 [[Fox News]] poll, 35% of Americans thought it "very important", and an additional 41% thought it "somewhat important", for the federal government to regulate AI, versus 13% responding "not very important" and 8% responding "not at all important".{{sfnp|Kasperowicz|2023}}{{sfnp|Fox News|2023}}

In November 2023, the first global [[2023 AI Safety Summit|AI Safety Summit]] was held in [[Bletchley Park]] in the UK to discuss the near and far term risks of AI and the possibility of mandatory and voluntary regulatory frameworks.<ref>{{Cite news |last=Milmo |first=Dan |date=3 November 2023 |title=Hope or Horror? The great AI debate dividing its pioneers |pages=10–12 |work=[[The Guardian Weekly]]}}</ref> 28 countries including the United States, China, and the European Union issued a declaration at the start of the summit, calling for international co-operation to manage the challenges and risks of artificial intelligence.<ref name="2023-11-01-bletchley-declaration-full">{{cite web |title=The Bletchley Declaration by Countries Attending the AI Safety Summit, 1-2 November 2023 |url=https://www.gov.uk/government/publications/ai-safety-summit-2023-the-bletchley-declaration/the-bletchley-declaration-by-countries-attending-the-ai-safety-summit-1-2-november-2023 |website=GOV.UK |access-date=2 November 2023 |archive-url=https://web.archive.org/web/20231101123904/https://www.gov.uk/government/publications/ai-safety-summit-2023-the-bletchley-declaration/the-bletchley-declaration-by-countries-attending-the-ai-safety-summit-1-2-november-2023 |archive-date=1 November 2023 |date=1 November 2023}}</ref><ref>{{Cite press release |title=Countries agree to safe and responsible development of frontier AI in landmark Bletchley Declaration |url=https://www.gov.uk/government/news/countries-agree-to-safe-and-responsible-development-of-frontier-ai-in-landmark-bletchley-declaration |access-date=1 November 2023 |website=GOV.UK |archive-date=1 November 2023 |archive-url=https://web.archive.org/web/20231101115016/https://www.gov.uk/government/news/countries-agree-to-safe-and-responsible-development-of-frontier-ai-in-landmark-bletchley-declaration |url-status=live }}</ref>

== Историја ==

=== Историјски преглед развоја ===

Појам '''вештачка интелигенција (VI)''', настаје лета [[1956]]. године у [[Дартмуд]]у, [[Хановер (САД)]], на скупу истраживача заинтересованих за теме [[интелигенција|интелигенције]], [[неуронска мрежа (вештачка интелигенција)|неуронских мрежа]] и [[теорија аутомата|теорије аутомата]]. Скуп је организовао [[Џон Макарти (информатичар)|Џон Макарти]], уједно са [[Klod Elvud Šenon|Клодом Шеноном]], [[Марвин Мински|Марвином Минским]] и Н. Рочестером. На скупу су такође учествовали Т. Мур ([[Универзитет Принстон|Принстон]]), А. Семјуел ([[IBM]]), Р. Соломоноф и О. Селфриџ ([[Масачусетски институт технологије|МИТ]]), као и А. Невил, Х. Сајмон (-{Carnegie Tech}-, данас Карнеги Мелон универзитет). На скупу су постављене основе области вештачке интелигенције и трасиран пут за њен даљи развој.

Раније, [[1950]]. године, [[Алан Тјуринг]] је објавио један чланак у ревији Мајнд (''(-{Mind}-)''), под насловом „Рачунари и интелигенција“, где говори о концепту вештачке интелигенције и поставља основе једне врсте пробе, преко које би се утврђивало да ли се одређени рачунарски систем понаша у складу са оним што се подразумева под вештачком интелигенцијом, или не. Касније ће та врста пробе добити име, [[Тјурингов тест]].

Скуп је последица првих радова у области. Невил и Сајмон су на њему представили свој програм за [[аутоматско резоновање]], ''Логик Теорист'' (који је направио сензацију). Данас се сматра да су концепт вештачке интелигенције поставили В. Мекулок и M. Питс, [[1943]]. године, у раду у ком се представља модел вештачких неурона на бази три извора: [[спознаја]] о физиологији и функционисању можданих неурона, [[исказна логика]] [[Бертранд Расел|Расела]] и Вајтехеда, и Тјурингова [[компутациона теорија]]. Неколико година касније створен је први неурални рачунар -{SNARC}-. Заслужни за подухват су студенти Принстона, Марвин Мински и Д. Едмонс, [[1951]]. године. Негде из исте епохе су и први програми за [[шах]], чији су аутори Шенон и Тјуринг.

Иако се ова истраживања сматрају зачетком вештачке интелигенције, постоје многа друга који су битно утицала на развој ове области. Нека потичу из области као што су [[филозофија]] (први покушаји формализације резоновања су [[силогизам|силогизми]] грчког филозофа [[Аристотел]]а), [[математика]] (теорија одлучивања и [[теорија пробабилитета]] се примењују у многим данашњим системима), или [[психологија]] (која је заједно са вештачком интелигенцијом формирала област [[когнитивна наука|когнитивне науке]]).

У годинама које следе скуп у Дартмуду постижу се значајни напреци. Конструишу се програми који решавају различите проблеме. На пример, студенти Марвина Минског су крајем шездесетих година имплементирати програм -{Analogy}-, који је оспособљен за решавање геометријских проблема, сличним онима који се јављају у [[тест интелигенције|тестовима интелигенције]], и програм Студент, који решава [[алгебра|алгебарске]] проблеме написане на [[енглески језик|енглеском језику]]. Невил и Сајмон ће развити ''-{General Problem Solver}- (-{ГПС}-)'', који покушава да имитира људско резоновање. Семјуел је написао програме за игру сличну дами, који су били оспособљени за учење те игре. Макарти, који је у међувремену отишао на МИТ, имплементира програмски језик [[Lisp (programski jezik)|Лисп]], [[1958]]. године. Исте године је написао чланак, ''-{Programs With Common Sense}-'', где описује један хипотетички програм који се сматра првим комплетним системом вештачке интелигенције.

Ова серија успеха се ломи средином шездесетих година и превише оптимистичка предвиђања из ранијих година се фрустрирају. До тада имплементирани системи су функционисали у ограниченим доменима, познатим као микросветови (-{microworlds}-). Трансформација која би омогућила њихову примену у стварним окружењима није била тако лако изводљива, упркос очекивањима многих истраживача. По Раселу и Норивигу, постоје три фундаментална фактора који су то онемогућили:
# Многи дизајнирани системи нису поседовали сазнање о окружењу примене, или је имплементирано сазнање било врло ниског нивоа и састојало се од неких једноставних синтактичких манипулација.
# Многи проблеми које су покушавали решити су били у суштини нерешиви, боље речено, док је количина сазнања била мала и ограничена решење је било могуће, али када би дошло до пораста обима сазнања, проблеми постају нерешиви.
# Неке од основних структура које су се користиле за стварање одређеног интелигентног понашања су биле веома ограничене.

До тог момента решавање проблема је било засновано на једном механизму опште претраге преко којег се покушавају повезати, корак по корак, елементарне основе размишљања да би се дошло до коначног решења. Наравно такав приступ подразумева и велике издатке, те да би се смањили, развијају се први алгоритми за потребе контролисања трошкова истраживања. На пример, [[Едсгер Дајкстра|Едсхер Дајкстра]] [[1959]]. године дизајнира један метод за стабилизацију издатака, Невил и Ернст, [[1965]]. године развијају концепт [[хеуристика|хеуристичке]] претраге и Харт, Нилсон и Рафаел, алгоритам А. У исто време, у вези програма за игре, дефинише се претрага алфа-бета. Творац идеје је иначе био Макарти, [[1956]]. године, а касније ју је користио Невил, [[1958]]. године.

Важност схватања сазнања у контексту домена и примене, као и грађе структуре, којој би било лако приступати, довела је до детаљнијих студија метода представљања сазнања. Између осталих, дефинисале су се семантичке мреже (дефинисане почетком шездесетих година, од стране Килијана) и окружења (које је дефинисао Мински [[1975]]. године). У истом периоду почињу да се користе одређене врсте логике за представљање сазнања.

Паралелно с тим, током истих година, настављају се истраживања за стварање система за игру чекерс, за који је заслужан Самуел, оријентисан на имплементацију неке врсте методе учења. Е. Б. Хунт, Ј. Мартин и П. Т. Стоне, [[1969]]. године конструишу хијерархијску структуру одлука (ради класификације), коју је већ идејно поставио Шенон, [[1949]]. године. Килијан, [[1979]], представља метод -{IDZ}- који треба да послужи као основа за конструкцију такве структуре. С друге стране, П. Винстон, 1979. године, развија властити програм за учење описа сложених објеката, и Т. Мичел, [[1977]], развија тзв. простор верзија. Касније, средином осамдесетих, поновна примена методе учења на неуралне мреже тзв., -{backpropagation}-, доводи до поновног оживљавања ове области. Конструкција апликација за стварна окружења, довела је до потребе разматрања аспеката као што су неизвесност, или непрецизност (који се такође јављају приликом решавања проблема у играма). За решавање ових проблема примењиване су пробабилистичке методе (теорија пробабилитета, или пробабилистичке мреже) и развијали други формализми као дифузни скупови (дефинисани од Л. Задеха [[1965]]. године), или [[Демпстер-Шаферова теорија]] (творац теорије је А. Демпстер, [[1968]], са значајним доприносом Г. Шафера [[1976]]. године). На основу ових истраживања, почев од осамдесетих година, конструишу се први комерцијални системи вештачке интелигенције, углавном тзв. експертски системи.

Савремени проблеми који се настоје решити у истраживањима вештачке интелигенције, везани су за настојања конструисања кооперативних система на бази [[агент (рачунарство)|агената]], укључујући системе за управљање подацима, утврђивање редоследа обраде података и покушаје имитације природног језика, између осталих.

=== Историја вештачке интелигенције ===
{{Main|Историја вештачке интелигенције}}

The study of mechanical or "formal" reasoning began with philosophers and mathematicians in antiquity. The study of logic led directly to [[Alan Turing]]'s [[theory of computation]], which suggested that a machine, by shuffling symbols as simple as "0" and "1", could simulate both mathematical deduction and formal reasoning, which is known as the [[Church–Turing thesis]].{{sfnp|Berlinski|2000}} This, along with concurrent discoveries in [[cybernetics]] and [[information theory]], led researchers to consider the possibility of building an "electronic brain".{{efn|"Electronic brain" was the term used by the press around this time.<ref>{{cite web|title = Google books ngram| url=https://books.google.com/ngrams/graph?content=electronic+brain&year_start=1930&year_end=2019&corpus=en-2019&smoothing=3}}</ref>}}<ref>
AI's immediate precursors:
* {{Harvtxt|McCorduck|2004|pp=51–107}}
* {{Harvtxt|Crevier|1993|pp=27–32}}
* {{Harvtxt|Russell|Norvig|2021|pp=8–17}}
* {{Harvtxt|Moravec|1988|p=3}}
</ref>

Alan Turing was thinking about machine intelligence at least as early as 1941, when he circulated a paper on machine intelligence which could be the earliest paper in the field of AI – though it is now lost.<ref name="turing">{{Cite book |title=The Essential Turing: the ideas that gave birth to the computer age |publisher=Clarendon Press |year=2004 |isbn=0-19-825079-7 |editor-last=Copeland |editor-first=J. |location=Oxford, England |language=en}}</ref> The first available paper generally recognized as "AI" was [[Warren McCullouch|McCullouch]] and [[Walter Pitts|Pitts]] design for [[Turing-complete]] "artificial neurons" in 1943 – the first mathematical model of a neural network.{{sfnp|Russell|Norvig|2021|p=17}} The paper was influenced by Turing's earlier paper '[[Turing's proof|On Computable Numbers]]' from 1936 using similar two-state boolean 'neurons', but was the first to apply it to neuronal function.<ref name="turing" />

The term 'machine intelligence' was used by Alan Turing during his life which was later often referred to as 'artificial intelligence' after his death in 1954. In 1950 Turing published the best known of his papers '[[Computing Machinery and Intelligence]]', the paper introduced his concept of what is now known as the [[Turing test]] to the general public. Then followed three radio broadcasts on AI by Turing, the lectures: 'Intelligent Machinery, A Heretical Theory', 'Can Digital Computers Think'? and the panel discussion 'Can Automatic Calculating Machines be Said to Think'. By 1956 computer intelligence had been actively pursued for more than a decade in Britain; the earliest AI programmes were written there in 1951–1952.<ref name="turing" />

<!-- 1951–1974 -->
In 1951, using a [[Ferranti Mark 1]] computer of the [[University of Manchester]], checkers and chess programs were written where you could play against the computer.<ref>See [http://www.alanturing.net/turing_archive/pages/Reference%20Articles/BriefHistofComp.html "A Brief History of Computing"] at AlanTuring.net.</ref> The field of American AI research was founded at [[Dartmouth workshop|a workshop]] at [[Dartmouth College]] in 1956.{{efn|
Daniel Crevier wrote, "the conference is generally recognized as the official birthdate of the new science."{{sfnp|Crevier|1993|pp=47–49}} [[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]] called the conference "the inception of artificial intelligence."{{sfnp|Russell|Norvig|2021|p=17}}}}<ref name="Dartmouth workshop">
[[Dartmouth workshop]]:
* {{Harvtxt|Russell|Norvig|2021|p=18}}
* {{Harvtxt|McCorduck|2004|pp=111–136}}
* {{Harvtxt|NRC|1999|pp=200–201}}
The proposal:
* {{Harvtxt|McCarthy|Minsky|Rochester|Shannon|1955}}
</ref> The attendees became the leaders of AI research in the 1960s.{{efn|
[[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]] wrote "for the next 20 years the field would be dominated by these people and their students."{{sfnp|Russell|Norvig|2003|p=17}}
}} They and their students produced programs that the press described as "astonishing":{{efn|
[[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]] wrote "it was astonishing whenever a computer did anything kind of smartish".{{sfnp|Russell|Norvig|2003|p=18}}
}} computers were learning [[draughts|checkers]] strategies, solving word problems in algebra, proving [[Theorem|logical theorems]] and speaking English.{{efn|
The programs described are [[Arthur Samuel (computer scientist)|Arthur Samuel]]'s checkers program for the [[IBM 701]], [[Daniel Bobrow]]'s [[STUDENT (computer program)|STUDENT]], [[Allen Newell|Newell]] and [[Herbert A. Simon|Simon]]'s [[Logic Theorist]] and [[Terry Winograd]]'s [[SHRDLU]].
}}<ref name="AI in the 60s">
Successful programs the 1960s:

* {{Harvtxt|McCorduck|2004|pp=243–252}}
* {{Harvtxt|Crevier|1993|pp=52–107}}
* {{Harvtxt|Moravec|1988|p=9}}
* {{Harvtxt|Russell|Norvig|2021|pp=19–21}}
</ref> Artificial Intelligence laboratories were set up at a number of British and US Universities in the latter 1950s and early 1960s.<ref name="turing" />

<!-- First AI "winter": 1974 -->
They had, however, underestimated the difficulty of the problem.{{efn|[[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]] write: "in almost all cases, these early systems failed on more difficult problems"{{sfnp|Russell|Norvig|2021|p=21}}}} Both the U.S. and British governments cut off exploratory research in response to the [[Lighthill report|criticism]] of [[Sir James Lighthill]]{{sfnp|Lighthill|1973}} and ongoing pressure from the U.S. Congress to [[Mansfield Amendment|fund more productive projects]]. [[Marvin Minsky|Minsky]]'s and [[Seymour Papert|Papert]]'s book ''[[Perceptron]]s'' was understood as proving that [[artificial neural networks]] would never be useful for solving real-world tasks, thus discrediting the approach altogether.{{sfnp|Russell|Norvig|2021|p=22}} The "[[AI winter]]", a period when obtaining funding for AI projects was difficult, followed.<ref name="First AI winter">
First [[AI Winter]], [[Lighthill report]], [[Mansfield Amendment]]
* {{Harvtxt|Crevier|1993|pp=115–117}}
* {{Harvtxt|Russell|Norvig|2021|pp=21–22}}
* {{Harvtxt|NRC|1999|pp=212–213}}
* {{Harvtxt|Howe|1994}}
* {{Harvtxt|Newquist|1994|pp=189–201}}
</ref>

<!-- 1980s -->
In the early 1980s, AI research was revived by the commercial success of [[expert system]]s,<ref>
[[Expert systems]]:
* {{Harvtxt|Russell|Norvig|2021|pp=23, 292}}
* {{Harvtxt|Luger|Stubblefield|2004|pp=227–331}}
* {{Harvtxt|Nilsson|1998|loc=chpt. 17.4}}
* {{Harvtxt|McCorduck|2004|pp=327–335, 434–435}}
* {{Harvtxt|Crevier|1993|pp=145–62, 197–203}}
* {{Harvtxt|Newquist|1994|pp=155–183}}
</ref> a form of AI program that simulated the knowledge and analytical skills of human experts. By 1985, the market for AI had reached over a billion dollars. At the same time, Japan's [[fifth generation computer]] project inspired the U.S. and British governments to restore funding for [[academic research]].<ref name="AI in the 80s">
Funding initiatives in the early 1980s: [[Fifth Generation Project]] (Japan), [[Alvey]] (UK), [[Microelectronics and Computer Technology Corporation]] (US), [[Strategic Computing Initiative]] (US):

* {{Harvtxt|McCorduck|2004|pp=426–441}}
* {{Harvtxt|Crevier|1993|pp=161–162, 197–203, 211, 240}}
* {{Harvtxt|Russell|Norvig|2021|p=23}}
* {{Harvtxt|NRC|1999|pp=210–211}}
* {{Harvtxt|Newquist|1994|pp=235–248}}
</ref> However, beginning with the collapse of the [[Lisp Machine]] market in 1987, AI once again fell into disrepute, and a second, longer-lasting winter began.<ref name="Second AI winter">
Second [[AI Winter]]:
* {{Harvtxt|Russell|Norvig|2021|p=24}}
* {{Harvtxt|McCorduck|2004|pp=430–435}}
* {{Harvtxt|Crevier|1993|pp=209–210}}
* {{Harvtxt|NRC|1999|pp=214–216}}
* {{Harvtxt|Newquist|1994|pp=301–318}}
</ref>

<!-- Embodied robotics and Uncertain reasoning in the 1980s -->
Many researchers began to doubt that the current practices would be able to imitate all the processes of human cognition, especially [[machine perception|perception]], robotics, [[machine learning|learning]] and [[pattern recognition]].{{sfnp|Russell|Norvig|2021|p=24}} A number of researchers began to look into "sub-symbolic" approaches.{{sfnp|Nilsson|1998|p=7}} [[Robotics]] researchers, such as [[Rodney Brooks]], rejected "representation" in general and focussed directly on engineering machines that move and survive.{{efn|
[[embodied mind|Embodied]] approaches to AI{{sfnp|McCorduck|2004|pp=454–462}} were championed by [[Hans Moravec]]{{sfnp|Moravec|1988}} and [[Rodney Brooks]]{{sfnp|Brooks|1990}} and went by many names: [[Nouvelle AI]].{{sfnp|Brooks|1990}} [[Developmental robotics]],<ref name = "Developmental robotics">
[[Developmental robotics]]:
* {{Harvtxt|Weng|McClelland|Pentland|Sporns|2001}}
* {{Harvtxt|Lungarella|Metta|Pfeifer|Sandini|2003}}
* {{Harvtxt|Asada|Hosoda|Kuniyoshi|Ishiguro|2009}}
* {{Harvtxt|Oudeyer|2010}}
</ref>
}} [[Judea Pearl]], [[Lofti Zadeh]] and others developed methods that handled incomplete and uncertain information by making reasonable guesses rather than precise logic.<ref name = "Uncertain reasoning"/>{{sfnp|Russell|Norvig|2021|p=25}} But the most important development was the revival of "[[connectionism]]", including neural network research, by [[Geoffrey Hinton]] and others.<ref>
* {{Harvtxt|Crevier|1993|pp=214–215}}
* {{Harvtxt|Russell|Norvig|2021|pp=24, 26}}
</ref> In 1990, [[Yann LeCun]] successfully showed that [[convolutional neural networks]] can recognize handwritten digits, the first of many successful applications of neural networks.{{sfnp|Russell|Norvig|2021|p=26}}

<!-- FORMAL METHODS RISING IN THE 1990s: "Statistical AI" -->
AI gradually restored its reputation in the late 1990s and early 21st century by exploiting formal mathematical methods and by finding specific solutions to specific problems. This "[[narrow AI|narrow]]" and "formal" focus allowed researchers to produce verifiable results and collaborate with other fields (such as [[statistics]], [[economics]] and [[mathematical optimization|mathematics]]).<ref name="AI 1990s">
[[#Neat vs. scruffy|Formal]] and [[#Narrow vs. general AI|narrow]] methods adopted in the 1990s:
* {{Harvtxt |Russell|Norvig|2021|pp=24–26}}
* {{Harvtxt|McCorduck|2004|pp=486–487}}
</ref>
By 2000, solutions developed by AI researchers were being widely used, although in the 1990s they were rarely described as "artificial intelligence".<ref name="AI widely used 1990s">
AI widely used in the late 1990s:
* {{Harvtxt|Kurzweil|2005|p=265}}
* {{Harvtxt|NRC|1999|pp=216–222}}
* {{Harvtxt|Newquist|1994|pp=189–201}}
</ref>

<!-- AGI, 2002-present -->
Several academic researchers became concerned that AI was no longer pursuing the original goal of creating versatile, fully intelligent machines. Beginning around 2002, they founded the subfield of [[artificial general intelligence]] (or "AGI"), which had several well-funded institutions by the 2010s.<ref name="AGI"/>

<!--DEEP LEARNING BOOM 2012–present-->
[[Deep learning]] began to dominate industry benchmarks in 2012 and was adopted throughout the field.<ref name="Deep learning revolution">
[[Deep learning]] revolution, [[AlexNet]]:
* {{Harvtxt|Goldman|2022}}
* {{Harvtxt|Russell|Norvig|2021|p=26}}
* {{harvtxt|McKinsey|2018}}
</ref>
For many specific tasks, other methods were abandoned.{{efn|Matteo Wong wrote in [[The Atlantic]]: "Whereas for decades, computer-science fields such as natural-language processing, computer vision, and robotics used extremely different methods, now they all use a programming method called "deep learning." As a result, their code and approaches have become more similar, and their models are easier to integrate into one another."{{sfnp|Wong|2023}}}}
Deep learning's success was based on both hardware improvements ([[Moore's law|faster computers]],<ref name="Moore's Law">
[[Moore's Law]] and AI:
* {{Harvtxt|Russell|Norvig|2021|pp=14, 27}}
</ref> [[graphics processing unit]]s, [[cloud computing]]{{sfnp|Clark|2015b}})
and access to [[big data|large amounts of data]]<ref name="Big data">
[[Big data]]:
* {{Harvtxt|Russell|Norvig|2021|p=26}}
</ref> (including curated datasets,{{sfnp|Clark|2015b}} such as [[ImageNet]]).

<!-- AI BOOM 2012–present. Four metrics: publications, patents, investment, graduates, jobs. That's enough I think, but more up-to-date numbers on these. -->
Deep learning's success led to an enormous increase in interest and funding in AI.{{efn|Jack Clark wrote in [[Bloomberg News|Bloomberg]]: "After a half-decade of quiet breakthroughs in artificial intelligence, 2015 has been a landmark year. Computers are smarter and learning faster than ever," and noted that the number of software projects that use machine learning at [[Google]] increased from a "sporadic usage" in 2012 to more than 2,700 projects in 2015.{{sfnp|Clark|2015b}}}}
The amount of machine learning research (measured by total publications) increased by 50% in the years 2015–2019,{{sfnp|UNESCO|2021}}
and [[WIPO]] reported that AI was the most prolific [[emerging technologies|emerging technology]] in terms of the number of [[patent]] applications and granted patents.<ref>{{Cite web |title=Intellectual Property and Frontier Technologies |url=https://www.wipo.int/about-ip/en/frontier_technologies/ |website=WIPO |access-date=30 March 2022 |archive-date=2 April 2022 |archive-url=https://web.archive.org/web/20220402064804/https://www.wipo.int/about-ip/en/frontier_technologies/ |url-status=live }}</ref>
According to 'AI Impacts', about $50 billion annually was invested in "AI" around 2022 in the US alone and about 20% of new US Computer Science PhD graduates have specialized in "AI";{{sfnp|DiFeliciantonio|2023}}
about 800,000 "AI"-related US job openings existed in 2022.{{sfnp|Goswami|2023}} The large majority of the advances have occurred within the [[United States]], with its companies, universities, and research labs leading artificial intelligence research.{{sfnp|Frank|2023}}

<!-- ALIGNMENT PROBLEM -->
In 2016, issues of fairness and the misuse of technology were catapulted into center stage at machine learning conferences, publications vastly increased, funding became available, and many researchers re-focussed their careers on these issues. The [[AI alignment|alignment problem]] became a serious field of academic study.{{sfnp|Christian|2020|pp=67, 73}}

== Филозофија ==
{{Main|Philosophy of artificial intelligence}}

=== Defining artificial intelligence ===
{{Main|Turing test|Intelligent agent|Dartmouth workshop|Synthetic intelligence}}
[[Alan Turing]] wrote in 1950 "I propose to consider the question 'can machines think'?"{{sfnp|Turing|1950|p=1}} He advised changing the question from whether a machine "thinks", to "whether or not it is possible for machinery to show intelligent behaviour".{{sfnp|Turing|1950|p=1}} He devised the Turing test, which measures the ability of a machine to simulate human conversation.<ref name="Turing test">
Turing's original publication of the [[Turing test]] in "[[Computing machinery and intelligence]]":
* {{Harvtxt|Turing|1950}}
Historical influence and philosophical implications:
* {{Harvtxt|Haugeland|1985|pp=6–9}}
* {{Harvtxt|Crevier|1993|p=24}}
* {{Harvtxt|McCorduck|2004|pp=70–71}}
* {{Harvtxt|Russell|Norvig|2021|pp=2 and 984}}
</ref> Since we can only observe the behavior of the machine, it does not matter if it is "actually" thinking or literally has a "mind". Turing notes that we can not determine these things about other people{{efn|See [[Problem of other minds]]}} but "it is usual to have a polite convention that everyone thinks"{{sfnp|Turing|1950|loc=Under "The Argument from Consciousness"}}

[[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]] agree with Turing that AI must be defined in terms of "acting" and not "thinking".{{sfnp|Russell|Norvig|2021|loc=chpt. 2}} However, they are critical that the test compares machines to ''people''. "[[Aeronautics|Aeronautical engineering]] texts," they wrote, "do not define the goal of their field as making 'machines that fly so exactly like [[pigeon]]s that they can fool other pigeons.{{' "}}{{sfnp|Russell|Norvig|2021|p=3}} AI founder [[John McCarthy (computer scientist)|John McCarthy]] agreed, writing that "Artificial intelligence is not, by definition, simulation of human intelligence".{{sfnp|Maker|2006}}

McCarthy defines intelligence as "the computational part of the ability to achieve goals in the world."{{sfnp|McCarthy|1999}} Another AI founder, [[Marvin Minsky]] similarly defines it as "the ability to solve hard problems".{{sfnp|Minsky|1986}} These definitions view intelligence in terms of well-defined problems with well-defined solutions, where both the difficulty of the problem and the performance of the program are direct measures of the "intelligence" of the machine—and no other philosophical discussion is required, or may not even be possible.

Another definition has been adopted by Google,<ref>{{Cite web |title=What Is Artificial Intelligence (AI)? |url=https://cloud.google.com/learn/what-is-artificial-intelligence |url-status=live |archive-url=https://web.archive.org/web/20230731114802/https://cloud.google.com/learn/what-is-artificial-intelligence |archive-date=31 July 2023 |access-date=16 October 2023 |website=[[Google Cloud Platform]]}}</ref> a major practitioner in the field of AI. This definition stipulates the ability of systems to synthesize information as the manifestation of intelligence, similar to the way it is defined in biological intelligence.

=== Evaluating approaches to AI ===

No established unifying theory or [[paradigm]] has guided AI research for most of its history.{{efn
|[[Nils Nilsson (researcher)|Nils Nilsson]] wrote in 1983: "Simply put, there is wide disagreement in the field about what AI is all about."{{sfnp|Nilsson|1983|p=10}}}} The unprecedented success of statistical machine learning in the 2010s eclipsed all other approaches (so much so that some sources, especially in the business world, use the term "artificial intelligence" to mean "machine learning with neural networks"). This approach is mostly [[sub-symbolic]], [[soft computing|soft]] and [[artificial general intelligence|narrow]] (see below). Critics argue that these questions may have to be revisited by future generations of AI researchers.

====Symbolic AI and its limits====
Symbolic AI (or "[[GOFAI]]"){{sfnp|Haugeland|1985|pp=112–117}} simulated the high-level conscious reasoning that people use when they solve puzzles, express legal reasoning and do mathematics. They were highly successful at "intelligent" tasks such as algebra or IQ tests. In the 1960s, Newell and Simon proposed the [[physical symbol systems hypothesis]]: "A physical symbol system has the necessary and sufficient means of general intelligent action."<ref name="Physical symbol system hypothesis">
Physical symbol system hypothesis:
* {{Harvtxt|Newell|Simon|1976|p=116}}
Historical significance:
* {{Harvtxt|McCorduck|2004|p=153}}
* {{Harvtxt|Russell|Norvig|2021|p=19}}
</ref>

However, the symbolic approach failed on many tasks that humans solve easily, such as learning, recognizing an object or commonsense reasoning. [[Moravec's paradox]] is the discovery that high-level "intelligent" tasks were easy for AI, but low level "instinctive" tasks were extremely difficult.<ref>
[[Moravec's paradox]]:
* {{Harvtxt|Moravec|1988|pp=15–16}}
* {{Harvtxt|Minsky|1986|p=29}}
* {{Harvtxt|Pinker|2007|pp=190–91}}
</ref> Philosopher [[Hubert Dreyfus]] had [[Dreyfus' critique of AI|argued]] since the 1960s that human expertise depends on unconscious instinct rather than conscious symbol manipulation, and on having a "feel" for the situation, rather than explicit symbolic knowledge.<ref name="Dreyfus' critique">
[[Dreyfus' critique of AI]]:
* {{Harvtxt|Dreyfus|1972}}
* {{Harvtxt |Dreyfus|Dreyfus|1986}}
Historical significance and philosophical implications:
* {{Harvtxt |Crevier|1993|pp=120–132}}
* {{Harvtxt |McCorduck|2004|pp=211–239}}
* {{Harvtxt |Russell|Norvig|2021|pp=981–982}}
* {{Harvtxt |Fearn|2007|loc=Chpt. 3}}
</ref> Although his arguments had been ridiculed and ignored when they were first presented, eventually, AI research came to agree with him.{{efn|
Daniel Crevier wrote that "time has proven the accuracy and perceptiveness of some of Dreyfus's comments. Had he formulated them less aggressively, constructive actions they suggested might have been taken much earlier."{{sfnp|Crevier|1993|p=125}}
}}<ref name="Psychological evidence of sub-symbolic reasoning"/>

The issue is not resolved: [[sub-symbolic]] reasoning can make many of the same inscrutable mistakes that human intuition does, such as [[algorithmic bias]]. Critics such as [[Noam Chomsky]] argue continuing research into symbolic AI will still be necessary to attain general intelligence,{{sfnp|Langley|2011}}{{sfnp|Katz|2012}} in part because sub-symbolic AI is a move away from [[explainable AI]]: it can be difficult or impossible to understand why a modern statistical AI program made a particular decision. The emerging field of [[Neuro-symbolic AI|neuro-symbolic artificial intelligence]] attempts to bridge the two approaches.

==== Neat vs. scruffy ====
{{Main|Neats and scruffies}}
"Neats" hope that intelligent behavior is described using simple, elegant principles (such as [[logic]], [[optimization (mathematics)|optimization]], or [[Artificial neural network|neural networks]]). "Scruffies" expect that it necessarily requires solving a large number of unrelated problems. Neats defend their programs with theoretical rigor, scruffies rely mainly on incremental testing to see if they work. This issue was actively discussed in the 1970s and 1980s,<ref name="Neats vs. scruffies">
[[Neats vs. scruffies]], the historic debate:
* {{Harvtxt|McCorduck|2004|pp=421–424, 486–489}}
* {{Harvtxt|Crevier|1993|p=168}}
* {{Harvtxt|Nilsson|1983|pp=10–11}}
* {{Harvtxt|Russell|Norvig|2021|p=24}}
A classic example of the "scruffy" approach to intelligence:
* {{Harvtxt|Minsky|1986}}
A modern example of neat AI and its aspirations in the 21st century:
* {{Harvtxt|Domingos|2015}}
</ref> but eventually was seen as irrelevant. Modern AI has elements of both.

==== Soft vs. hard computing ====
{{Main|Soft computing}}
Finding a provably correct or optimal solution is [[Intractability (complexity)|intractable]] for many important problems.<ref name="Intractability"/> Soft computing is a set of techniques, including [[genetic algorithms]], [[fuzzy logic]] and neural networks, that are tolerant of imprecision, uncertainty, partial truth and approximation. Soft computing was introduced in the late 1980s and most successful AI programs in the 21st century are examples of soft computing with neural networks.

==== Narrow vs. general AI ====
{{Main|Artificial general intelligence}}
AI researchers are divided as to whether to pursue the goals of artificial general intelligence and [[superintelligence]] directly or to solve as many specific problems as possible ([[Weak artificial intelligence|narrow AI]]) in hopes these solutions will lead indirectly to the field's long-term goals.{{sfnp|Pennachin|Goertzel|2007}}{{sfnp|Roberts|2016}} General intelligence is difficult to define and difficult to measure, and modern AI has had more verifiable successes by focusing on specific problems with specific solutions. The experimental sub-field of artificial general intelligence studies this area exclusively.

=== Machine consciousness, sentience and mind ===
{{Main|Philosophy of artificial intelligence|Artificial consciousness}}
The [[philosophy of mind]] does not know whether a machine can have a [[mind]], [[consciousness]] and [[philosophy of mind|mental states]], in the same sense that human beings do. This issue considers the internal experiences of the machine, rather than its external behavior. Mainstream AI research considers this issue irrelevant because it does not affect the goals of the field: to build machines that can solve problems using intelligence. [[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]] add that "[t]he additional project of making a machine conscious in exactly the way humans are is not one that we are equipped to take on."{{sfnp|Russell|Norvig|2021|p=986}} However, the question has become central to the philosophy of mind. It is also typically the central question at issue in [[artificial intelligence in fiction]].

==== Consciousness ====
{{Main|Hard problem of consciousness|Theory of mind}}
[[David Chalmers]] identified two problems in understanding the mind, which he named the "hard" and "easy" problems of consciousness.{{sfnp|Chalmers|1995}} The easy problem is understanding how the brain processes signals, makes plans and controls behavior. The hard problem is explaining how this ''feels'' or why it should feel like anything at all, assuming we are right in thinking that it truly does feel like something (Dennett's consciousness illusionism says this is an illusion). Human [[Information processing (psychology)|information processing]] is easy to explain, however, human [[subjective experience]] is difficult to explain. For example, it is easy to imagine a color-blind person who has learned to identify which objects in their field of view are red, but it is not clear what would be required for the person to ''know what red looks like''.{{sfnp|Dennett|1991}}

==== Computationalism and functionalism ====
{{Main|Computational theory of mind|Functionalism (philosophy of mind)|Chinese room}}
Computationalism is the position in the [[philosophy of mind]] that the human mind is an information processing system and that thinking is a form of computing. Computationalism argues that the relationship between mind and body is similar or identical to the relationship between software and hardware and thus may be a solution to the [[mind–body problem]]. This philosophical position was inspired by the work of AI researchers and cognitive scientists in the 1960s and was originally proposed by philosophers [[Jerry Fodor]] and [[Hilary Putnam]].{{sfnp|Horst|2005}}

Philosopher [[John Searle]] characterized this position as "[[Strong AI hypothesis|strong AI]]": "The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds."{{efn|name="Searle's strong AI"|
Searle presented this definition of "Strong AI" in 1999.{{sfnp|Searle|1999}} Searle's original formulation was "The appropriately programmed computer really is a mind, in the sense that computers given the right programs can be literally said to understand and have other cognitive states."{{sfnp|Searle|1980|p=1}} Strong AI is defined similarly by [[Stuart J. Russell|Russell]] and [[Peter Norvig|Norvig]]: "Stong AI – the assertion that machines that do so are ''actually'' thinking (as opposed to ''simulating'' thinking)."{{sfnp|Russell|Norvig|2021|p=9817}}
}} Searle counters this assertion with his Chinese room argument, which attempts to show that, even if a machine perfectly simulates human behavior, there is still no reason to suppose it also has a mind.<ref name="Chinese room">
Searle's [[Chinese room]] argument:
* {{Harvtxt|Searle|1980}}. Searle's original presentation of the thought experiment.
* {{Harvtxt|Searle|1999}}.
Discussion:
* {{Harvtxt|Russell|Norvig|2021|pp=985}}
* {{Harvtxt|McCorduck|2004|pp=443–445}}
* {{Harvtxt|Crevier|1993|pp=269–271}}
</ref>

==== AI welfare and rights ====
It is difficult or impossible to reliably evaluate whether an advanced AI is [[Sentience|sentient]] (has the ability to feel), and if so, to what degree.<ref>{{Cite web |last=Leith |first=Sam |date=2022-07-07 |title=Nick Bostrom: How can we be certain a machine isn’t conscious? |url=https://www.spectator.co.uk/article/nick-bostrom-how-can-we-be-certain-a-machine-isnt-conscious/ |access-date=2024-02-23 |website=The Spectator |language=en-US}}</ref> But if there is a significant chance that a given machine can feel and suffer, then it may be entitled to certain rights or welfare protection measures, similarly to animals.<ref name=":02">{{Cite web |last=Thomson |first=Jonny |date=2022-10-31 |title=Why don't robots have rights? |url=https://bigthink.com/thinking/why-dont-robots-have-rights/ |access-date=2024-02-23 |website=Big Think |language=en-US}}</ref><ref name=":12">{{Cite web |last=Kateman |first=Brian |date=2023-07-24 |title=AI Should Be Terrified of Humans |url=https://time.com/6296234/ai-should-be-terrified-of-humans/ |access-date=2024-02-23 |website=TIME |language=en}}</ref> [[Sapience]] (a set of capacities related to high intelligence, such as discernment or [[self-awareness]]) may provide another moral basis for AI rights.<ref name=":02" /> [[Robot rights]] are also sometimes proposed as a practical way to integrate autonomous agents into society.<ref>{{Cite news |last=Wong |first=Jeff |date=July 10, 2023 |title=What leaders need to know about robot rights |url=https://www.fastcompany.com/90920769/what-leaders-need-to-know-about-robot-rights |work=Fast Company |ref=none}}</ref>

In 2017, the European Union considered granting "electronic personhood" to some of the most capable AI systems. Similarly to the legal status of companies, it would have conferred rights but also responsibilities.<ref>{{Cite news |last=Hern |first=Alex |date=2017-01-12 |title=Give robots 'personhood' status, EU committee argues |url=https://www.theguardian.com/technology/2017/jan/12/give-robots-personhood-status-eu-committee-argues |access-date=2024-02-23 |work=The Guardian |language=en-GB |issn=0261-3077}}</ref> Critics argued in 2018 that granting rights to AI systems would downplay the importance of [[human rights]], and that legislation should focus on user needs rather than speculative futuristic scenarios. They also noted that robots lacked the autonomy to take part to society on their own.<ref>{{Cite web |last=Dovey |first=Dana |date=2018-04-14 |title=Experts Don't Think Robots Should Have Rights |url=https://www.newsweek.com/robots-human-rights-electronic-persons-humans-versus-machines-886075 |access-date=2024-02-23 |website=Newsweek |language=en}}</ref><ref>{{Cite web |last=Cuddy |first=Alice |date=2018-04-13 |title=Robot rights violate human rights, experts warn EU |url=https://www.euronews.com/2018/04/13/robot-rights-violate-human-rights-experts-warn-eu |access-date=2024-02-23 |website=euronews |language=en}}</ref>

Progress in AI increased interest in the topic. Proponents of AI welfare and rights often argue that AI sentience, if it emerges, would be particularly easy to deny. They warn that this may be a [[Moral blindness|moral blind spot]] analogous to [[slavery]] or [[factory farming]], which could lead to [[Suffering risks|large-scale suffering]] if sentient AI is created and carelessly exploited.<ref name=":12" /><ref name=":02" />

== Будућност ==
=== Superintelligence and the singularity ===

<!-- SUPERINTELLIGENCE -->
A [[superintelligence]] is a hypothetical agent that would possess intelligence far surpassing that of the brightest and most gifted human mind.{{sfnp|Roberts|2016}}

<!-- SINGULARITY -->
If research into [[artificial general intelligence]] produced sufficiently intelligent software, it might be able to reprogram and improve itself. The improved software would be even better at improving itself, leading to what [[I. J. Good]] called an "[[intelligence explosion]]" and [[Vernor Vinge]] called a "[[Technological singularity|singularity]]".<ref name = "Singularity">
The [[Intelligence explosion]] and [[technological singularity]]:
* {{Harvtxt|Russell|Norvig|2021|pp=1004–1005}}
* {{Harvtxt|Omohundro|2008}}
* {{Harvtxt|Kurzweil|2005}}
[[I. J. Good]]'s "intelligence explosion"
* {{Harvtxt|Good|1965}}
[[Vernor Vinge]]'s "singularity"
* {{Harvtxt|Vinge|1993}}
</ref>

<!-- ANTI-SINGULARITIANISM -->
However, technologies cannot improve exponentially indefinitely, and typically follow an [[S-shaped curve]], slowing when they reach the physical limits of what the technology can do.{{sfnp|Russell|Norvig|2021|p=1005}}

=== Transhumanism ===
<!-- TRANSHUMANISM -->
Robot designer [[Hans Moravec]], cyberneticist [[Kevin Warwick]], and inventor [[Ray Kurzweil]] have predicted that humans and machines will merge in the future into [[cyborg]]s that are more capable and powerful than either. This idea, called transhumanism, has roots in [[Aldous Huxley]] and [[Robert Ettinger]].<ref>
[[Transhumanism]]:
* {{Harvtxt|Moravec|1988}}
* {{Harvtxt|Kurzweil|2005}}
* {{Harvtxt|Russell|Norvig|2021|p=1005}}
</ref>

<!-- EVOLUTION / HUMAN REPLACEMENT -->
[[Edward Fredkin]] argues that "artificial intelligence is the next stage in evolution", an idea first proposed by [[Samuel Butler (novelist)|Samuel Butler]]'s "[[Darwin among the Machines]]" as far back as 1863, and expanded upon by [[George Dyson (science historian)|George Dyson]] in his book of the same name in 1998.<ref>
AI as evolution:
* [[Edward Fredkin]] is quoted in {{Harvtxt|McCorduck|2004|p=401}}
* {{Harvtxt|Butler|1863}}
* {{Harvtxt|Dyson|1998}}
</ref>

== У фикцији ==
{{Main|Artificial intelligence in fiction}}
[[File:Capek play.jpg|thumb|upright=1.2|The word "robot" itself was coined by [[Karel Čapek]] in his 1921 play ''[[R.U.R.]]'', the title standing for "Rossum's Universal Robots".]]

Thought-capable artificial beings have appeared as storytelling devices since antiquity,<ref name="AI in myth">
AI in myth:
* {{Harvtxt|McCorduck|2004|pp=4–5}}
</ref> and have been a persistent theme in [[science fiction]].{{sfnp|McCorduck|2004|pp=340–400}}

A common [[Trope (literature)|trope]] in these works began with [[Mary Shelley]]'s ''[[Frankenstein]]'', where a human creation becomes a threat to its masters. This includes such works as [[2001: A Space Odyssey (novel)|Arthur C. Clarke's]] and [[2001: A Space Odyssey (film)|Stanley Kubrick's]] ''2001: A Space Odyssey'' (both 1968), with [[HAL 9000]], the murderous computer in charge of the ''[[Discovery One]]'' spaceship, as well as ''[[The Terminator]]'' (1984) and ''[[The Matrix]]'' (1999). In contrast, the rare loyal robots such as Gort from ''[[The Day the Earth Stood Still]]'' (1951) and Bishop from ''[[Aliens (film)|Aliens]]'' (1986) are less prominent in popular culture.{{sfnp|Buttazzo|2001}}

[[Isaac Asimov]] introduced the [[Three Laws of Robotics]] in many books and stories, most notably the "Multivac" series about a super-intelligent computer of the same name. Asimov's laws are often brought up during lay discussions of machine ethics;{{sfnp|Anderson|2008}} while almost all artificial intelligence researchers are familiar with Asimov's laws through popular culture, they generally consider the laws useless for many reasons, one of which is their ambiguity.{{sfnp|McCauley|2007}}

Several works use AI to force us to confront the fundamental question of what makes us human, showing us artificial beings that have [[sentience|the ability to feel]], and thus to suffer. This appears in [[Karel Čapek]]'s ''[[R.U.R.]]'', the films ''[[A.I. Artificial Intelligence]]'' and ''[[Ex Machina (film)|Ex Machina]]'', as well as the novel ''[[Do Androids Dream of Electric Sheep?]]'', by [[Philip K. Dick]]. Dick considers the idea that our understanding of human subjectivity is altered by technology created with artificial intelligence.{{sfnp|Galvan|1997}}

== Напомене ==
{{Notelist}}


== Референце ==
== Референце ==
{{reflist}}
{{reflist|}}


== Литература ==
== Литература ==
{{refbegin|2}}
{{refbegin|30em}}
* {{cite book|last1=Luger|first1=George|author-link=George Luger|last2=Stubblefield|first2=William|author2-link=William Stubblefield|year=2004|title=Artificial Intelligence: Structures and Strategies for Complex Problem Solving|publisher=Benjamin/Cummings|edition=5th|isbn=978-0-8053-4780-7|url=https://archive.org/details/artificialintell0000luge|url-access=registration|access-date=17 December 2019|archive-date=26 July 2020|archive-url=https://web.archive.org/web/20200726220613/https://archive.org/details/artificialintell0000luge|url-status=live}}
* ''-{The MIT Encyclopedia of the Cognitive Sciences'', Edited by Robert A. Wilson and Frank C. Keil}- - одредница ''-{AI and Education}-''
* {{cite book|last=Nilsson|first=Nils|author-link=Nils Nilsson (researcher)|year=1998|title=Artificial Intelligence: A New Synthesis|url=https://archive.org/details/artificialintell0000nils|url-access=registration|publisher=Morgan Kaufmann|isbn=978-1-55860-467-4|access-date=18 November 2019|archive-date=26 July 2020|archive-url=https://web.archive.org/web/20200726131654/https://archive.org/details/artificialintell0000nils|url-status=live}}
* {{Cite book| ref=harv|last=Hutter|first=Marcus |author-link=Marcus Hutter |year=2005
* {{Russell Norvig 2003}}.
| title=[[AIXI|Universal Artificial Intelligence]]|isbn=978-3-540-22139-5|publisher=Springer
* {{cite book|first1=David|last1=Poole|author-link=David Poole (researcher)|first2=Alan|last2=Mackworth|author2-link=Alan Mackworth|first3=Randy|last3=Goebel|author3-link=Randy Goebel|year=1998|title=Computational Intelligence: A Logical Approach|publisher=Oxford University Press|location=New York|isbn=978-0-19-510270-3|url=https://archive.org/details/computationalint00pool|access-date=22 August 2020|archive-date=26 July 2020|archive-url=https://web.archive.org/web/20200726131436/https://archive.org/details/computationalint00pool|url-status=live}}
| location=Berlin
* {{cite book|last1=Poole|first1=David|url=http://artint.info/index.html|title=Artificial Intelligence: Foundations of Computational Agents|last2=Mackworth|first2=Alan|publisher=Cambridge University Press|year=2017|isbn=978-1-107-19539-4|edition=2nd|author2-link=Alan Mackworth|access-date=6 December 2017|archive-date=7 December 2017|archive-url=https://web.archive.org/web/20171207013855/http://artint.info/index.html|url-status=live}}
* {{cite book |last=Newquist |first=H. P. |author-link=HP Newquist |year=1994 |title=The Brain Makers: Genius, Ego, And Greed In The Quest For Machines That Think |publisher=Macmillan/SAMS |location=New York |isbn=978-0-672-30412-5}}
* [https://suli.pppl.gov/2023/course/Rea-PPPL-SULI2023.pdf AI & ML in Fusion]
* [https://drive.google.com/file/d/1npCTrJ8XJn20ZGDA_DfMpANuQZFMzKPh/view?usp=drive_link AI & ML in Fusion, video lecture] {{Webarchive|url=https://web.archive.org/web/20230702164332/https://drive.google.com/file/d/1npCTrJ8XJn20ZGDA_DfMpANuQZFMzKPh/view?usp=drive_link |date=2 July 2023 }}
* {{cite web
| ref = {{Harvid|Google|2016}}
| title = AlphaGo – Google DeepMind
| url = https://wildoftech.com/alphago-google-deepmind
| url-status = live
| archive-url = https://web.archive.org/web/20160310191926/https://wildoftech.com/alphago-google-deepmind/
| archive-date = 10 March 2016
}}
}}
* {{citation
* {{Cite book| ref=harv|last=Luger|first=George |author-link=George Luger|last2=Stubblefield|first2=William |author2-link=William Stubblefield|year=2004
| last1 = Alter | first1 = Alexandra
| title=Artificial Intelligence: Structures and Strategies for Complex Problem Solving|publisher=Benjamin/Cummings |edition=5th|isbn=978-0-8053-4780-7| url=http://www.cs.unm.edu/~luger/ai-final/tocfull.html
| last2 = Harris | first2 = Elizabeth A.
| title = Franzen, Grisham and Other Prominent Authors Sue OpenAI
| date = September 20, 2023
| newspaper = The New York Times
| url = https://www.nytimes.com/2023/09/20/books/authors-openai-lawsuit-chatgpt-copyright.html?campaign_id=2&emc=edit_th_20230921&instance_id=103259&nl=todaysheadlines&regi_id=62816440&segment_id=145288&user_id=ad24f3545dae0ec44284a38bb4a88f1d
}}
}}
* {{Cite web
* {{Cite book|ref=harv|last=Neapolitan|first=Richard|last2=Jiang|first2=Xia|year=2012|title=Contemporary Artificial Intelligence|publisher=Chapman & Hall/CRC|isbn=978-1-4398-4469-4|url=http://www.crcpress.com/product/isbn/9781439844694|access-date=03. 03. 2017|archive-date=08. 01. 2015|archive-url=https://web.archive.org/web/20150108205412/http://www.crcpress.com/product/isbn/9781439844694|url-status=dead}}
|title=Governance of Superintelligence
* {{Cite book| ref=harv|last=Nilsson|first=Nils |author-link=Nils Nilsson (researcher) |year=1998
| last1 = Altman | first1 = Sam | author1-link = Sam Altman
| title=Artificial Intelligence: A New Synthesis|publisher=Morgan Kaufmann|isbn=978-1-55860-467-4
| last2 = Brockman | first2 = Greg | author2-link = Greg Brockman
| last3 = Sutskever | first3 = Ilya | author3-link = Ilya Sutskever
|date=22 May 2023
|url=https://openai.com/blog/governance-of-superintelligence
|access-date=27 May 2023
|website=openai.com
|language=en-US
|archive-date=27 May 2023
|archive-url=https://web.archive.org/web/20230527061619/https://openai.com/blog/governance-of-superintelligence
|url-status=live
}}
}}
* {{cite journal
* {{Russell Norvig 2003}}.
* {{Cite book| ref=harv| first = Stuart J.| last=Russell
| last = Anderson | first = Susan Leigh
| title = Asimov's "three laws of robotics" and machine metaethics.
| first2 = Peter|last2=Norvig
| year = 2008
| title = [[Artificial Intelligence: A Modern Approach]] <!-- | url = http://aima.cs.berkeley.edu/ -->|year=2009
| journal = AI & Society | volume = 22 | issue = 4 | pages = 477–493| doi = 10.1007/s00146-007-0094-5
| edition = 3rd| publisher = Prentice Hall
| s2cid = 1809459
| publication-place = Upper Saddle River, New Jersey|isbn=978-0-13-604259-4|author-link=Stuart J. Russell|author2-link=Peter Norvig
|pages=
}}
}}
* {{Cite book| ref=harv
* {{cite book
| first1 = Michael | last1 = Anderson
| first=David |last=Poole|author-link=David Poole (researcher)
| first2=Alan |last2=Mackworth|author2-link=Alan Mackworth
| first2 = Susan Leigh | last2 = Anderson
| year = 2011
| first3=Randy |last3=Goebel|author3-link=Randy Goebel|year=1998
| title = Machine Ethics
| title=Computational Intelligence: A Logical Approach|publisher=Oxford University Press |location = New York|isbn=978-0-19-510270-3| url=http://www.cs.ubc.ca/spider/poole/ci.html
| publisher = Cambridge University Press.
}}
}}
* {{citation
* {{Cite book| ref=harv|last=Winston|first=Patrick Henry |author-link=Patrick Winston |year=1984
| last1 = Arntz | first1 = Melanie
| title=Artificial Intelligence| url=https://archive.org/details/artificialintell0000wins_t2g6|publisher=Addison-Wesley |location=Reading, MA|isbn=978-0-201-08259-3|pages=}}
| last2 = Gregory | first2 = Terry
* {{Cite book| ref=harv|last=Rich|first=Elaine |author-link=Elaine Rich |year=1983
| last3 = Zierahn | first3 = Ulrich
| title=Artificial Intelligence| url=https://archive.org/details/ine0000unse|publisher = McGraw-Hill|isbn=978-0-07-052261-9|pages=}}
| title = The risk of automation for jobs in OECD countries: A comparative analysis
* {{Cite book| ref=harv|last=Bundy|first=Alan |author-link=Alan Bundy |year=1980
| year = 2016
| title=Artificial Intelligence: An Introductory Course|publisher = Edinburgh University Press|edition=2nd|isbn=978-0-85224-410-4|pages=}}
| work = OECD Social, Employment, and Migration Working Papers 189
* {{Crevier 1993}}.
* {{McCorduck 2004}}.
* {{Cite book| ref=harv|last=Newquist|first=HP |author-link=HP Newquist |year=1994
| title=The Brain Makers: Genius, Ego, And Greed In The Quest For Machines That Think| url=https://archive.org/details/brainmakers0000newq|publisher=Macmillan/SAMS |location=New York|isbn=978-0-672-30412-5|pages=}}
* {{Cite book| ref=harv|last=Nilsson|first=Nils |author-link=Nils Nilsson (researcher) |year=2009
| title=The Quest for Artificial Intelligence: A History of Ideas and Achievements|publisher=Cambridge University Press |location=New York|isbn=978-0-521-12293-1
}}
}}
* {{cite journal
* {{cite journal|ref=harv |last=Asada|first=M. |last2=Hosoda|first2=K. |last3=Kuniyoshi|first3=Y. |last4=Ishiguro|first4=H. |last5=Inui|first5=T. |last6=Yoshikawa|first6=Y. |last7=Ogino|first7=M. |last8=Yoshida|first8=C. |year=2009|title=Cognitive developmental robotics: a survey |journal=IEEE Transactions on Autonomous Mental Development |volume=1 |issue=1 |url=http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4895715&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4563672%2F5038478%2F04895715.pdf%3Farnumber%3D4895715 |doi=10.1109/tamd.2009.2021702 |url-status=dead |archiveurl=https://web.archive.org/web/20131004222242/http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4895715&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4563672%2F5038478%2F04895715.pdf%3Farnumber%3D4895715 |archivedate=4. 10. 2013 |pages=12-34}}
|last1=Asada |first1=M. |last2=Hosoda |first2=K. |last3=Kuniyoshi |first3=Y. |last4=Ishiguro |first4=H. |last5=Inui |first5=T. |last6=Yoshikawa |first6=Y. |last7=Ogino |first7=M. |last8=Yoshida |first8=C. |year=2009 |title=Cognitive developmental robotics: a survey |journal=IEEE Transactions on Autonomous Mental Development |volume=1 |issue=1 |pages=12–34 |doi=10.1109/tamd.2009.2021702 |s2cid=10168773 }}
* {{cite web|ref = {{harvid|ACM|1998}}|publisher = [[Udruženje za računarske mašine|ACM]]|year = 1998|title = ACM Computing Classification System: Artificial intelligence|url = http://www.acm.org/class/1998/I.2.html|accessdate=30. 8. 2007
* {{cite web|ref={{harvid|McKinsey|2018}}|title=Ask the AI experts: What's driving today's progress in AI?|url=https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/ask-the-ai-experts-whats-driving-todays-progress-in-ai|website=McKinsey & Company|access-date=13 April 2018|archive-date=13 April 2018|archive-url=https://web.archive.org/web/20180413190018/https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/ask-the-ai-experts-whats-driving-todays-progress-in-ai|url-status=live}}
|archive-url = https://web.archive.org/web/20071012025921/http://www.acm.org/class/1998/I.2.html
* {{Cite book|title=Research handbook on the law of artificial intelligence|last1=Barfield |first1=Woodrow |last2=Pagallo |first2=Ugo|year = 2018|isbn=978-1-78643-904-8 |location=Cheltenham, UK |publisher=Edward Elgar Publishing|oclc=1039480085}}
|archive-date=12. 10. 2007
* {{citation
|url-status=dead
|df =
| last1 = Beal | first1 = J.
| last2 = Winston | first2 = Patrick | author-link2 = Patrick Winston
| title = The New Frontier of Human-Level Artificial Intelligence
| journal = IEEE Intelligent Systems
| year = 2009
| volume = 24
| pages = 21–24
| doi = 10.1109/MIS.2009.75
| hdl = 1721.1/52357
| s2cid = 32437713
| hdl-access = free
}}
}}
* {{Cite book|ref=harv|last=Goodman|first=Joanna|author-link=Joanna Goodman|year=2016|title=Robots in Law: How Artificial Intelligence is Transforming Legal Services|publisher=Ark Group|edition=1st|isbn=978-1-78358-264-8|url=https://www.ark-group.com/product/robots-law-how-artificial-intelligence-transforming-legal-services#.WCChnforLDc|access-date=03. 03. 2017|archive-date=08. 11. 2016|archive-url=https://web.archive.org/web/20161108052144/https://www.ark-group.com/product/robots-law-how-artificial-intelligence-transforming-legal-services#.WCChnforLDc|url-status=dead}}
* {{Cite journal |last1=Berdahl |first1=Carl Thomas |last2=Baker |first2=Lawrence |last3=Mann |first3=Sean |last4=Osoba |first4=Osonde |last5=Girosi |first5=Federico |date=7 February 2023 |title=Strategies to Improve the Impact of Artificial Intelligence on Health Equity: Scoping Review |url=https://ai.jmir.org/2023/1/e42936 |journal=JMIR AI |language=en |volume=2 |pages=e42936 |doi=10.2196/42936 |s2cid=256681439 |issn=2817-1705 |access-date=21 February 2023 |archive-date=21 February 2023 |archive-url=https://web.archive.org/web/20230221145255/https://ai.jmir.org/2023/1/e42936/ |url-status=live |doi-access=free }}
* {{cite book | first = David | last = Berlinski | year = 2000 | title = The Advent of the Algorithm | publisher = Harcourt Books | author-link = David Berlinski | isbn = 978-0-15-601391-8 | oclc = 46890682 | url = https://archive.org/details/adventofalgorith0000berl | access-date = 22 August 2020 | archive-date = 26 July 2020 | archive-url = https://web.archive.org/web/20200726215744/https://archive.org/details/adventofalgorith0000berl | url-status = live }}
* {{cite encyclopedia|ref=harv|last=Albus|first=J. S. |year=2002|pages=11-20| title=4-D/RCS: A Reference Model Architecture for Intelligent Unmanned Ground Vehicles
* {{Cite book|last1=Berryhill|first1=Jamie|url=https://oecd-opsi.org/wp-content/uploads/2019/11/AI-Report-Online.pdf|title=Hello, World: Artificial Intelligence and its Use in the Public Sector|last2=Heang|first2=Kévin Kok|last3=Clogher|first3=Rob|last4=McBride|first4=Keegan|publisher=OECD Observatory of Public Sector Innovation|year=2019|location=Paris|access-date=9 August 2020|archive-date=20 December 2019|archive-url=https://web.archive.org/web/20191220021331/https://oecd-opsi.org/wp-content/uploads/2019/11/AI-Report-Online.pdf|url-status=live}}
| editor1-last=Gerhart|editor-first=G. |editor2-last=Gunderson|editor2-first=R.
* {{cite conference |title=Automatic annotation and semantic retrieval of video sequences using multimedia ontologies |last1=Bertini |first1=M |last2=Del Bimbo |first2=A |last3=Torniai |first3=C |date=2006 |publisher=ACM |book-title=MM '06 Proceedings of the 14th ACM international conference on Multimedia |pages=679–682 |location=Santa Barbara |conference=14th ACM international conference on Multimedia}}
| editor3-last=Shoemaker|editor3-first=C.
* {{Cite book
| encyclopedia=Proceedings of the SPIE AeroSense Session on Unmanned Ground Vehicle Technology |volume=3693|url=
|last=Bostrom |first=Nick |author-link=Nick Bostrom
|date=2014
|title=Superintelligence: Paths, Dangers, Strategies |publisher=Oxford University Press |title-link=Superintelligence: Paths, Dangers, Strategies }}
* {{cite web|last=Bostrom|first=Nick|date=2015|title=What happens when our computers get smarter than we are?|url=https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are/transcript|publisher=[[TED (conference)]]|access-date=30 January 2020|archive-date=25 July 2020|archive-url=https://web.archive.org/web/20200725005719/https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are/transcript|url-status=live}}
* {{cite web|last=Brooks|first=Rodney|title=artificial intelligence is a tool, not a threat|date=10 November 2014|url=http://www.rethinkrobotics.com/artificial-intelligence-tool-threat/|url-status=dead|archive-url=https://web.archive.org/web/20141112130954/http://www.rethinkrobotics.com/artificial-intelligence-tool-threat/|archive-date=12 November 2014}}
* {{cite journal | last=Brooks | first=Rodney | author-link=Rodney Brooks | year=1990 | title=Elephants Don't Play Chess | journal=Robotics and Autonomous Systems | volume=6 | issue=1–2 | pages=3–15 | doi=10.1016/S0921-8890(05)80025-9 | url=http://people.csail.mit.edu/brooks/papers/elephants.pdf | archive-url=https://web.archive.org/web/20070809020912/http://people.csail.mit.edu/brooks/papers/elephants.pdf | archive-date=9 August 2007 | url-status=live | citeseerx=10.1.1.588.7539 }}
* {{Cite journal |last=Buiten |first=Miriam C|date=2019|title=Towards Intelligent Regulation of Artificial Intelligence|journal=European Journal of Risk Regulation|volume=10|issue=1|pages=41–59 |doi=10.1017/err.2019.8|issn=1867-299X |doi-access=free}}
* {{citation
| last1 = Bushwick
| first1 = Sophie
| title = What the New GPT-4 AI Can Do
| magazine = Scientific American
| date = 16 March 2023
| url = https://www.scientificamerican.com/article/what-the-new-gpt-4-ai-can-do/
}}
}}
* {{cite news
* {{cite encyclopedia|ref=harv|last=Bach|first=Joscha |year=2008|pages=63-74| title=Seven Principles of Synthetic Intelligence
|last=Butler
| editor1-last=Wang|editor1-first=Pei |editor2-last=Goertzel|editor2-first=Ben |editor3-last=Franklin|editor3-first=Stan
|first=Samuel
| work=Artificial General Intelligence, 2008: Proceedings of the First AGI Conference|publisher=IOS Press |isbn=978-1-58603-833-5|url=https://books.google.com/books?id=a_ZR81Z25z0C&pg=PA63
|author-link=Samuel Butler (novelist)
|date=13 June 1863
|title=Darwin among the Machines
|work=[[The Press]]
|location=Christchurch, New Zealand
|department=Letters to the Editor
|url=https://nzetc.victoria.ac.nz/tm/scholarly/tei-ButFir-t1-g1-t1-g1-t4-body.html
|access-date=16 October 2014
|via=Victoria University of Wellington
|archive-date=19 September 2008
|archive-url=https://web.archive.org/web/20080919172551/http://www.nzetc.org/tm/scholarly/tei-ButFir-t1-g1-t1-g1-t4-body.html
|url-status=live
}}
}}
* {{cite journal|last1=Buttazzo|first1=G.|title=Artificial consciousness: Utopia or real possibility?|journal=[[Computer (magazine)|Computer]]|date=July 2001|volume=34|issue=7|pages=24–30|doi=10.1109/2.933500}}
* {{cite news|ref={{harvid|''BBC News''|2006}}
* {{cite journal|last1=Cambria|first1=Erik|last2=White|first2=Bebo|title=Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article]|journal=IEEE Computational Intelligence Magazine|date=May 2014|volume=9|issue=2|pages=48–57|doi=10.1109/MCI.2014.2307227|s2cid=206451986}}
|date=21. 12. 2006
* {{Cite news|last1 = Cellan-Jones|first1 = Rory|title = Stephen Hawking warns artificial intelligence could end mankind|date = 2 December 2014|url = https://www.bbc.com/news/technology-30290540|access-date = 30 October 2015|url-status = live|archive-url = https://web.archive.org/web/20151030054329/http://www.bbc.com/news/technology-30290540|archive-date = 30 October 2015|work = [[BBC News]]}}
| title=Robots could demand legal rights |work=BBC News|url=http://news.bbc.co.uk/2/hi/technology/6200005.stm |accessdate=3. 2. 2011
* {{cite journal |last=Chalmers |first=David |author-link=David Chalmers |title=Facing up to the problem of consciousness |year=1995 |journal=[[Journal of Consciousness Studies]] |volume=2 |issue=3 |pages=200–219 |url=http://www.imprint.co.uk/chalmers.html |access-date=11 October 2018 |archive-date=8 March 2005 |archive-url=https://web.archive.org/web/20050308163649/http://www.imprint.co.uk/chalmers.html |url-status=live }}
* {{Cite book
|last=Christian |first=Brian | author-link = Brian Christian
|title=[[The Alignment Problem]]: Machine learning and human values
|publisher=W. W. Norton & Company
|year=2020
|isbn=978-0-393-86833-3 |oclc=1233266753
}}
}}
* {{Cite book |doi=10.1109/cvpr.2012.6248110 |isbn=978-1-4673-1228-8|arxiv=1202.2745|chapter=Multi-column deep neural networks for image classification|title=2012 IEEE Conference on Computer Vision and Pattern Recognition|pages=3642–3649|year=2012|last1=Ciresan|first1=D.|last2=Meier|first2=U.|last3=Schmidhuber|first3=J.|s2cid=2161592}}
* {{cite journal|ref=harv|last=Brooks|first=Rodney |authorlink=Rodney Brooks |year=1990
* {{cite news
| title=Elephants Don't Play Chess
|url = https://www.bloomberg.com/news/articles/2015-12-08/why-2015-was-a-breakthrough-year-in-artificial-intelligence
| journal=Robotics and Autonomous Systems |volume=6 |pages=3-15| doi=10.1016/S0921-8890(05)80025-9|url=http://people.csail.mit.edu/brooks/papers/elephants.pdf |format=PDF
|title = Why 2015 Was a Breakthrough Year in Artificial Intelligence
| archiveurl= https://web.archive.org/web/20070809020912/http://people.csail.mit.edu/brooks/papers/elephants.pdf|archivedate=9. 8. 2007 |url-status=live
|last = Clark
|first = Jack
|website = Bloomberg.com
|year = 2015b
|url-access = subscription
|access-date = 23 November 2016
|url-status = live
|archive-url = https://web.archive.org/web/20161123053855/https://www.bloomberg.com/news/articles/2015-12-08/why-2015-was-a-breakthrough-year-in-artificial-intelligence
|archive-date = 23 November 2016
}}
* {{Cite web|author=CNA|title=Commentary: Bad news. Artificial intelligence is biased|date=12 January 2019|url=https://www.channelnewsasia.com/news/commentary/artificial-intelligence-big-data-bias-hiring-loans-key-challenge-11097374|access-date=19 June 2020|website=CNA|language=en|archive-date=12 January 2019|archive-url=https://web.archive.org/web/20190112104421/https://www.channelnewsasia.com/news/commentary/artificial-intelligence-big-data-bias-hiring-loans-key-challenge-11097374|url-status=live}}
* {{Cite report
| last1 = Cybenko|first1=G.|author-link = George Cybenko
| year = 1988|title=Continuous valued neural networks with two hidden layers are sufficient
| publisher = Department of Computer Science, Tufts University
}}
}}
* {{cite journal
* {{cite encyclopedia|ref=harv|last=Brooks|first=R. A. |year=1991|pages=225-239| title=How to build complete creatures rather than isolated cognitive simulators
|last1 = Deng
| editor-last=VanLehn|editor-first=K.
|first1 = L.
| encyclopedia=Architectures for Intelligence |location=Hillsdale, NJ |publisher=Lawrence Erlbaum Associates
|last2 = Yu
|first2 = D.
|year = 2014
|title = Deep Learning: Methods and Applications
|journal = Foundations and Trends in Signal Processing
|volume = 7
|issue = 3–4
|pages = 1–199
|doi = 10.1561/2000000039
|url = http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
|access-date = 18 October 2014
|archive-date = 14 March 2016
|archive-url = https://web.archive.org/web/20160314152112/http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
|url-status = live
}}
}}
* {{cite journal|ref=harv |last=Buchanan
* {{cite book
| last=Dennett | first=Daniel | author-link=Daniel Dennett
| first=Bruce G. |year=2005
| year=1991
|pages=53-60| title=A (Very) Brief History of Artificial Intelligence
| title=Consciousness Explained
| journal=AI Magazine |url=http://www.aaai.org/AITopics/assets/PDF/AIMag26-04-016.pdf
| publisher=The Penguin Press
| format=PDF
| isbn= 978-0-7139-9037-9
| archiveurl=https://web.archive.org/web/20070926023314/http://www.aaai.org/AITopics/assets/PDF/AIMag26-04-016.pdf |archivedate=26. 9. 2007
| title-link=Consciousness Explained }}
|url-status=dead
* {{cite news |last1=DiFeliciantonio |first1=Chase |title=AI has already changed the world. This report shows how |work=San Francisco Chronicle |date=3 April 2023 |access-date=19 June 2023 |url=https://www.sfchronicle.com/tech/article/ai-artificial-intelligence-report-stanford-17869558.php |archive-date=19 June 2023 |archive-url=https://web.archive.org/web/20230619015309/https://www.sfchronicle.com/tech/article/ai-artificial-intelligence-report-stanford-17869558.php |url-status=live }}
| df=dmy
* {{cite news|last=Dickson|first=Ben|date=2 May 2022|title=Machine learning: What is the transformer architecture?|work=TechTalks|url=https://bdtechtalks.com/2022/05/02/what-is-the-transformer/|access-date=22 November 2023}}
* {{citation
| last = Dockrill | first = Peter
| title = Robots With Flawed AI Make Sexist And Racist Decisions, Experiment Shows | website = Science Alert
| date = 27 June 2022
| url = https://www.sciencealert.com/robots-with-flawed-ai-make-sexist-racist-and-toxic-decisions-experiment-shows
| archive-url = https://web.archive.org/web/20220627225827/https://www.sciencealert.com/robots-with-flawed-ai-make-sexist-racist-and-toxic-decisions-experiment-shows
| archive-date=27 June 2022
}}
}}
* {{cite book
* {{cite news|ref=harv|last=Butler|first=Samuel |authorlink=Samuel Butler (novelist) |date=13. 6. 1863
| last = Domingos | first = Pedro | author-link = Pedro Domingos
| title=Darwin among the Machines
| title = The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
| newspaper=The Press |location=Christchurch, New Zealand |department=Letters to the Editor|url=http://www.nzetc.org/tm/scholarly/tei-ButFir-t1-g1-t1-g1-t4-body.html |accessdate=16. 10. 2014
| date =2015
| via=Victoria University of Wellington
| publisher = [[Basic Books]]
| isbn = 978-0465065707
}}
}}
* {{cite news|ref={{harvid|''CNN''|2006}}
* {{cite book
| last=Dreyfus | first=Hubert | author-link = Hubert Dreyfus
| title=AI set to exceed human brain power
| year = 1972
| work=CNN |date=26. 7. 2006|url=http://www.cnn.com/2006/TECH/science/07/24/ai.bostrom/
| title = What Computers Can't Do
| archiveurl= https://web.archive.org/web/20080219001624/http://www.cnn.com/2006/TECH/science/07/24/ai.bostrom/|archivedate=19. 2. 2008 |url-status=live
| publisher = MIT Press | location = New York
| isbn = 978-0-06-011082-6
| title-link=What Computers Can't Do }}
* {{cite book
|last1 = Dreyfus
|first1 = Hubert
|author-link = Hubert Dreyfus
|last2 = Dreyfus
|first2 = Stuart
|year = 1986
|title = Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer
|publisher = Blackwell
|location = Oxford
|isbn = 978-0-02-908060-3
|url = https://archive.org/details/mindovermachinep00drey
|access-date = 22 August 2020
|archive-date = 26 July 2020
|archive-url = https://web.archive.org/web/20200726131414/https://archive.org/details/mindovermachinep00drey
|url-status = live
}}
* {{cite book
|last=Dyson
|first=George
|author-link=George Dyson (science historian)
|year=1998
|title=Darwin among the Machines
|publisher=Allan Lane Science
|isbn=978-0-7382-0030-9
|url=https://archive.org/details/darwinamongmachi00dyso
|access-date=22 August 2020
|archive-date=26 July 2020
|archive-url=https://web.archive.org/web/20200726131443/https://archive.org/details/darwinamongmachi00dyso
|url-status=live
}}
}}
* {{cite book
* {{Cite book| ref=harv|last=Dennett| first=Daniel |author-link=Daniel Dennett|year=1991
|last=Edelson
| title=[[Consciousness Explained]]|publisher=The Penguin Press|isbn=978-0-7139-9037-9|pages=}}
|first=Edward
* {{cite magazine|ref=harv|last=Diamond|first=David |date=2003
|year=1991
| title=The Love Machine; Building computers that care
|title=The Nervous System
| magazine=Wired|url=http://www.wired.com/wired/archive/11.12/love.html
|url=https://archive.org/details/nervoussystem0000edel
| archiveurl= https://web.archive.org/web/20080518185630/http://www.wired.com/wired/archive/11.12/love.html|archivedate=18. 5. 2008 |url-status=live
|url-access=registration
|publisher=Chelsea House
|location=New York
|isbn=978-0-7910-0464-7
|access-date=18 November 2019
|archive-date=26 July 2020
|archive-url=https://web.archive.org/web/20200726131758/https://archive.org/details/nervoussystem0000edel
|url-status=live
}}
}}
* {{cite news
* {{cite journal|ref = harv|last = Dowe|first = D. L.|last2 = Hajek|first2 = A. R.|year = 1997|title = A computational extension to the Turing Test
|last1=Edwards |first1=Benj
|journal = Proceedings of the 4th Conference of the Australasian Cognitive Science Society|url = http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html|accessdate=3. 3. 2017
|title=Poll: AI poses risk to humanity, according to majority of Americans |url=https://arstechnica.com/information-technology/2023/05/poll-61-of-americans-say-ai-threatens-humanitys-future/
|archive-url = https://web.archive.org/web/20110628194905/http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html
|archive-date=28. 6. 2011
|access-date=19 June 2023
|work=Ars Technica |date=17 May 2023
|url-status=dead
|language=en-us
|df =
|archive-date=19 June 2023 |archive-url=https://web.archive.org/web/20230619013608/https://arstechnica.com/information-technology/2023/05/poll-61-of-americans-say-ai-threatens-humanitys-future/ |url-status=live
}}
}}
* {{cite journal |last=Evans |first=Woody |author-link=Woody Evans |title=Posthuman Rights: Dimensions of Transhuman Worlds |journal=Teknokultura |volume=12 |issue=2 |date=2015 |doi=10.5209/rev_TK.2015.v12.n2.49072 |doi-access=free}}
* {{Cite book| ref=harv|last=Dreyfus| first=Hubert |authorlink= Hubert Dreyfus|year=1972
* {{cite book
| title = [[What Computers Can't Do]]|publisher = MIT Press | location = New York|isbn=978-0-06-011082-6|pages=}}
| last=Fearn
* {{Cite book| ref=harv|last=Dreyfus| first=Hubert |authorlink= Hubert Dreyfus|last2=Dreyfus| first2 = Stuart|year=1986
| first = Nicholas
| title = Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer| url=https://archive.org/details/mindovermachinep00drey|publisher = Blackwell | location = Oxford, UK|isbn=978-0-02-908060-3|pages=}}
| year =2007
* {{Cite book| ref=harv|last=Dreyfus| first=Hubert |authorlink= Hubert Dreyfus|year=1992
| title= The Latest Answers to the Oldest Questions: A Philosophical Adventure with the World's Greatest Thinkers
| title = What Computers ''Still'' Can't Do| url=https://archive.org/details/whatcomputerssti0000drey|publisher = MIT Press | location = New York|isbn=978-0-262-54067-4|pages=}}
| publisher = Grove Press
* {{Cite book| ref=harv|last=Dyson|first=George |authorlink=George Dyson (science historian) |year=1998
| location=New York |isbn=978-0-8021-1839-4
| title=Darwin among the Machines| url=https://archive.org/details/darwinamongmachi00dyso|publisher=Allan Lane Science |isbn=978-0-7382-0030-9|pages=}}
* {{cite web|ref=harv |last=Edelman|first=Gerald |authorlink=Gerald Edelman |date=23. 11. 2007 |title=Gerald Edelman – Neural Darwinism and Brain-based Devices |url=http://lis.epfl.ch/resources/podcast/2007/11/gerald-edelman-neural-darwinism-and.html |publisher=Talking Robots |url-status=dead |archiveurl=https://web.archive.org/web/20091008184132/http://lis.epfl.ch/resources/podcast/2007/11/gerald-edelman-neural-darwinism-and.html |archivedate=8. 10. 2009 }}
* {{Cite book| ref=harv|last=Edelson|first=Edward |year=1991
| title=The Nervous System| url=https://archive.org/details/nervoussystem0000edel|publisher=Chelsea House<!--so Worldcat, originally here Remmel Nunn--> |location=New York |isbn=978-0-7910-0464-7
}}
}}
* {{cite news
* {{Cite book| ref=harv|last=Fearn
| last1=Ford
| first = Nicholas|year=2007
| first1=Martin
| title= The Latest Answers to the Oldest Questions: A Philosophical Adventure with the World's Greatest Thinkers| publisher = Grove Press
| last2=Colvin
| location=New York |isbn=978-0-8021-1839-4|pages=}}
| first2=Geoff
* {{Cite book| ref=harv|last=Gladwell| first = Malcolm |authorlink= Malcolm Gladwell|year=2005
| date=6 September 2015
| title = [[Blink (book)|Blink]]
| title=Will robots create more jobs than they destroy?
| id=0-316-17232-4| publisher = Little, Brown and Co. | location = New York
| work=The Guardian
| url=https://www.theguardian.com/technology/2015/sep/06/will-robots-create-destroy-jobs
| access-date=13 January 2018
| archive-date=16 June 2018
| archive-url=https://web.archive.org/web/20180616204119/https://www.theguardian.com/technology/2015/sep/06/will-robots-create-destroy-jobs
| url-status=live
}}
}}
* {{cite web
* {{cite conference|ref=harv|last=Gödel|first=Kurt |authorlink=Kurt Gödel |year=1951
|title=Fox News Poll
| title=Some basic theorems on the foundations of mathematics and their implications
|author=Fox News
| conference=Gibbs Lecture
|date=2023
}} In<br /> {{cite book
|url=https://static.foxnews.com/foxnews.com/content/uploads/2023/05/Fox_April-21-24-2023_Complete_National_Topline_May-1-Release.pdf
| editor-last=Feferman|editor-first=Solomon |editorlink=Solomon Feferman |year=1995|pages=304-23| title=Kurt Gödel: Collected Works, Vol. III: Unpublished Essays and Lectures|publisher=Oxford University Press |isbn=978-0-19-514722-3
|publisher=Fox News |access-date=19 June 2023
|archive-date=12 May 2023 |archive-url=https://web.archive.org/web/20230512082712/https://static.foxnews.com/foxnews.com/content/uploads/2023/05/Fox_April-21-24-2023_Complete_National_Topline_May-1-Release.pdf |url-status=live }}
* {{Cite web |last=Frank |first=Michael |date=September 22, 2023 |title=US Leadership in Artificial Intelligence Can Shape the 21st Century Global Order |url=https://thediplomat.com/2023/09/us-leadership-in-artificial-intelligence-can-shape-the-21st-century-global-order/ |access-date=2023-12-08 |website=[[The Diplomat]] |language=en-US |quote=Instead, the United States has developed a new area of dominance that the rest of the world views with a mixture of awe, envy, and resentment: artificial intelligence... From AI models and research to cloud computing and venture capital, U.S. companies, universities, and research labs – and their affiliates in allied countries – appear to have an enormous lead in both developing cutting-edge AI and commercializing it. The value of U.S. venture capital investments in AI start-ups exceeds that of the rest of the world combined.}}
* {{Cite journal|last1=Frey|first1=Carl Benedikt|last2=Osborne|first2=Michael A|date=1 January 2017|title=The future of employment: How susceptible are jobs to computerisation?|journal=Technological Forecasting and Social Change|volume=114|pages=254–280|citeseerx=10.1.1.395.416|doi=10.1016/j.techfore.2016.08.019|issn=0040-1625}}
* {{cite news|ref={{harvid|The Economist|2016}}|title=From not working to neural networking|newspaper=The Economist|date=2016|url=https://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not|access-date=26 April 2018|url-status=live|archive-date=31 December 2016|archive-url=https://web.archive.org/web/20161231203934/https://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not}}
* {{Cite journal|last=Galvan|first=Jill|date=1 January 1997|title=Entering the Posthuman Collective in Philip K. Dick's "Do Androids Dream of Electric Sheep?"|journal=Science Fiction Studies|volume=24|issue=3|pages=413–429|jstor=4240644}}
* {{cite web|first=Edward Moore|last=Geist|title=Is artificial intelligence really an existential threat to humanity?|date=9 August 2015|url=http://thebulletin.org/artificial-intelligence-really-existential-threat-humanity8577|url-status=live|archive-url=https://web.archive.org/web/20151030054330/http://thebulletin.org/artificial-intelligence-really-existential-threat-humanity8577|archive-date=30 October 2015|access-date=30 October 2015|website=Bulletin of the Atomic Scientists}}
* {{cite news |last=Gertner |first=Jon |author-link=Jon Gartner |title=Wikipedia's Moment of Truth – Can the online encyclopedia help teach A.I. chatbots to get their facts right — without destroying itself in the process? + comment
|url=https://www.nytimes.com/2023/07/18/magazine/wikipedia-ai-chatgpt.html |date=18 July 2023 |work=[[The New York Times]] |url-status=live |archiveurl=https://web.archive.org/web/20230718233916/https://www.nytimes.com/2023/07/18/magazine/wikipedia-ai-chatgpt.html#permid=126389255 |archivedate=18 July 2023 |accessdate=19 July 2023 }}
* {{Cite news|last=Gibbs|first=Samuel|date=27 October 2014|title=Elon Musk: artificial intelligence is our biggest existential threat|work=The Guardian|url=https://www.theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat|url-status=live|access-date=30 October 2015|archive-url=https://web.archive.org/web/20151030054330/http://www.theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat|archive-date=30 October 2015}}
* {{cite book|last1=Goffrey|first1=Andrew|editor1-last=Fuller|editor1-first=Matthew|title=Software studies: a lexicon|url=https://archive.org/details/softwarestudiesl00full_007|url-access=limited|date=2008|publisher=MIT Press|location=Cambridge, Mass.|isbn=978-1-4356-4787-9|pages=[https://archive.org/details/softwarestudiesl00full_007/page/n29 15]–20|chapter=Algorithm}}
* {{cite news
|last=Goldman
|first=Sharon
|title=10 years later, deep learning 'revolution' rages on, say AI pioneers Hinton, LeCun and Li
|url=https://venturebeat.com/ai/10-years-on-ai-pioneers-hinton-lecun-li-say-deep-learning-revolution-will-continue/
|access-date=8 December 2023
|work=VentureBeat
|date=14 September 2022
}}
}}
* {{citation
* {{Cite book| ref=harv|last=Haugeland| first=John |author-link = John Haugeland|year=1985
| first = I. J.
| title = Artificial Intelligence: The Very Idea| url=https://archive.org/details/artificialintell0000haug|publisher=MIT Press| location= Cambridge, Mass.|isbn=978-0-262-08153-5|pages=}}
| last = Good
* {{Cite book| ref=harv|last=Hawkins| first=Jeff |author-link=Jeff Hawkins|last2=Blakeslee| first2=Sandra|year=2005
| author-link = I. J. Good
| title=[[On Intelligence]]|publisher=Owl Books | location=New York, NY|isbn=978-0-8050-7853-4|pages=}}
| title = Speculations Concerning the First Ultraintelligent Machine
* {{cite news|ref=harv|last=Henderson|first=Mark |date=24. 4. 2007
| year = 1965
| title=Human rights for robots? We're getting carried away|url=http://www.thetimes.co.uk/tto/technology/article1966391.ece
| url = https://exhibits.stanford.edu/feigenbaum/catalog/gz727rg3869
| work=The Times Online | location=London
}}
}}
* {{citation
* {{cite journal|ref=harv|last=Hernandez-Orallo |first=Jose |year=2000
| first1 = Ian
| title=Beyond the Turing Test
| last1 = Goodfellow
| journal=Journal of Logic, Language and Information |volume=9 |issue=4 |pages=447-466| doi=10.1023/A:1008367325700
| first2 = Yoshua
| last2 = Bengio
| first3 = Aaron
| last3 = Courville
| year = 2016
| title = Deep Learning
| publisher = MIT Press.
| url = http://www.deeplearningbook.org/
| access-date = 12 November 2017
| archive-date = 16 April 2016
| archive-url = https://web.archive.org/web/20160416111010/http://www.deeplearningbook.org/
| url-status = dead
}}
}}
* {{Cite journal|last1=Goodman|first1=Bryce|last2=Flaxman|first2=Seth|title=EU regulations on algorithmic decision-making and a 'right to explanation'|journal=AI Magazine|volume=38|issue=3|pages=50|arxiv=1606.08813|doi=10.1609/aimag.v38i3.2741|year=2017|s2cid=7373959}}
* {{cite journal|ref=harv|last=Hernandez-Orallo |first=J. |last2=Dowe|first2=D. L. |year=2010
* {{cite report
| title=Measuring Universal Intelligence: Towards an Anytime Intelligence Test
| author = [[Government Accountability Office]]
| journal=Artificial Intelligence Journal |volume=174 |issue=18 |pages=1508-1539| doi=10.1016/j.artint.2010.09.006
| title = Consumer Data: Increasing Use Poses Risks to Privacy
| date = September 13, 2022
| url = https://www.gao.gov/products/gao-22-106096
| website = gao.gov
| ref = {{harvid|GAO|2022}}
}}
}}
* {{cite news
* {{cite journal|ref=harv|last=Hinton|first=G. E. |year=2007
| title = Google's Photo App Still Can't Find Gorillas. And Neither Can Apple's.
| title=Learning multiple layers of representation
| last1 = Grant | first1 = Nico
| journal=Trends in Cognitive Sciences |volume=11 |pages=428-434| doi=10.1016/j.tics.2007.09.004
| last2 = Hill | first2 = Kashmir
| date = May 22, 2023
| newspaper = The New York Times
| url = https://www.nytimes.com/2023/05/22/technology/ai-photo-labels-google-apple.html
}}
}}
* {{cite news |last1=Goswami |first1=Rohan |title=Here's where the A.I. jobs are |work=CNBC |date=5 April 2023 |language=en |url=https://www.cnbc.com/2023/04/05/ai-jobs-see-the-state-by-state-data-from-a-stanford-study.html |access-date=19 June 2023 |archive-date=19 June 2023 |archive-url=https://web.archive.org/web/20230619015309/https://www.cnbc.com/2023/04/05/ai-jobs-see-the-state-by-state-data-from-a-stanford-study.html |url-status=live }}
* {{Cite book| ref=harv|last=Hofstadter| first = Douglas |author-link = Douglas Hofstadter|year=1979
* {{cite magazine
| title = [[Gödel, Escher, Bach|Gödel, Escher, Bach: an Eternal Golden Braid]]|isbn=978-0-394-74502-2| publisher=Vintage Books
| last = Harari
| location=New York, NY
| first = Yuval Noah
| author-link = Yuval Noah Harari
| title = Why Technology Favors Tyranny
| date = October 2018
| magazine = [[The Atlantic]]
| url = https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330
| access-date = 23 September 2021
| archive-date = 25 September 2021
| archive-url = https://web.archive.org/web/20210925221449/https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/
| url-status = live
}}
}}
* {{cite web
* {{Cite book| ref=harv|last=Holland|first=John H. |year=1975
| last1 = Harari | first1 = Yuval Noah
| title=Adaptation in Natural and Artificial Systems| url=https://archive.org/details/adaptationinnatu0000holl|publisher=University of Michigan Press |isbn=978-0-262-58111-0|pages=}}
| title = AI and the future of humanity
* {{cite web|ref=harv
| website = [[YouTube]]
| first = J. | last=Howe|year=1994| title = Artificial Intelligence at Edinburgh University: a Perspective|url=http://www.inf.ed.ac.uk/about/AIhistory.html | accessdate=30. 8. 2007
| year = 2023
| url = https://www.youtube.com/watch?v=LWiM-LuRe6w
}}
}}
* {{cite book
* {{Cite book| ref=harv|last=Hutter|first=M. |year=2012
| last=Haugeland | first=John | author-link = John Haugeland
| title=Theoretical Foundations of Artificial General Intelligence
| year = 1985
| chapter=One Decade of Universal Artificial Intelligence
| title = Artificial Intelligence: The Very Idea
| volume=4 |series=Atlantis Thinking Machines
| publisher=MIT Press| location= Cambridge, Mass.
| doi=10.2991/978-94-91216-62-6_5 |isbn=978-94-91216-61-9
| isbn=978-0-262-08153-5
}}
}}
* {{cite news
* {{cite journal|ref=harv|last=James|first=William |year=1884
| last=Henderson
| title=What is Emotion
| first=Mark
|url=https://archive.org/details/sim_mind_1884-04_9_34/page/188| journal=Mind |volume=9 |pages=188-205|doi=10.1093/mind/os-IX.34.188
| date=24 April 2007
}} Cited by {{harvnb|Tao|Tan|2005}}.
| title=Human rights for robots? We're getting carried away
* {{Cite book| ref=harv|last=Kahneman| first=Daniel |author-link=Daniel Kahneman|last2=Slovic| first2= D.|last3=Tversky| first3=Amos |author3-link=Amos Tversky|year=1982
| url=http://www.thetimes.co.uk/tto/technology/article1966391.ece
| title=Judgment under uncertainty: Heuristics and biases|publisher=Cambridge University Press | location=New York|isbn=978-0-521-28414-1|pages=}}
| work=The Times Online
* {{cite journal|ref=harv|last=Katz|first=Yarden |date=1. 11. 2012
| location=London
| title=Noam Chomsky on Where Artificial Intelligence Went Wrong
| access-date=31 May 2014
| work=The Atlantic|url=http://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true |accessdate=26. 10. 2014
| archive-date=31 May 2014
| archive-url=https://web.archive.org/web/20140531104850/http://www.thetimes.co.uk/tto/technology/article1966391.ece
| url-status=live
}}
}}
* {{cite web|ref={{harvid|''Kismet''}}
* {{cite journal | ref = {{Harvid|Hinton ''et al.''|2016}}
|last1=Hinton|first1=G.
| title=Kismet|publisher=MIT Artificial Intelligence Laboratory, Humanoid Robotics Group|url=http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html |accessdate=25. 10. 2014
|last2=Deng|first2=L.|last3=Yu|first3=D.
|last4=Dahl|first4=G.|last5=Mohamed|first5=A.
|last6=Jaitly|first6=N.|last7=Senior|first7=A.
|last8=Vanhoucke|first8=V.|last9=Nguyen|first9=P.
|last10=Sainath|first10=T.|author10-link= Tara Sainath |last11=Kingsbury|first11=B.
|year=2012
|title=Deep Neural Networks for Acoustic Modeling in Speech Recognition – The shared views of four research groups
|journal=IEEE Signal Processing Magazine|volume=29|issue=6|pages=82–97
|bibcode=2012ISPM...29...82H|doi=10.1109/msp.2012.2205597|s2cid=206485943}}
* {{Cite news|last=Holley|first=Peter|date=28 January 2015|title=Bill Gates on dangers of artificial intelligence: 'I don't understand why some people are not concerned'|newspaper=The Washington Post|url=https://www.washingtonpost.com/news/the-switch/wp/2015/01/28/bill-gates-on-dangers-of-artificial-intelligence-dont-understand-why-some-people-are-not-concerned/|url-status=live|access-date=30 October 2015|archive-url=https://web.archive.org/web/20151030054330/https://www.washingtonpost.com/news/the-switch/wp/2015/01/28/bill-gates-on-dangers-of-artificial-intelligence-dont-understand-why-some-people-are-not-concerned/|archive-date=30 October 2015|issn=0190-8286}}
* {{Cite conference
|last1=Hornik|first1=Kurt|last2=Stinchcombe|first2=Maxwell|last3=White|first3=Halbert|date=1989|title=Multilayer Feedforward Networks are Universal Approximators|url=http://cognitivemedium.com/magic_paper/assets/Hornik.pdf|publisher=Pergamon Press|journal=Neural Networks |volume=2 |pages=359–366}}
* {{cite web
| last=Horst
| first=Steven
| title=The Computational Theory of Mind
| website=The Stanford Encyclopedia of Philosophy
| year=2005
| url=http://plato.stanford.edu/entries/computational-mind
| access-date=7 March 2016
| archive-date=6 March 2016
| archive-url=https://web.archive.org/web/20160306083748/http://plato.stanford.edu/entries/computational-mind/
| url-status=live
}}
}}
* {{cite web
* {{Cite book| ref=harv|last=Koza|first=John R. |year=1992
|first = J.
| title=Genetic Programming (On the Programming of Computers by Means of Natural Selection)| url=https://archive.org/details/geneticprogrammi0000koza|publisher=MIT Press |isbn=978-0-262-11170-6|pages=}}
|last = Howe
* {{cite web|ref=harv|last=Kleine-Cosack |first=Christian |year=2006|format=PDF
|date = November 1994
| title= Recognition and Simulation of Emotions|url= http://ls12-www.cs.tu-dortmund.de//~fink/lectures/SS06/human-robot-interaction/Emotion-RecognitionAndSimulation.pdf
|title = Artificial Intelligence at Edinburgh University: a Perspective
| archiveurl=https://web.archive.org/web/20080528135730/http://ls12-www.cs.tu-dortmund.de/~fink/lectures/SS06/human-robot-interaction/Emotion-RecognitionAndSimulation.pdf |archivedate=28. 5. 2008
|url = http://www.inf.ed.ac.uk/about/AIhistory.html
|access-date = 30 August 2007
|archive-date = 15 May 2007
|archive-url = https://web.archive.org/web/20070515072641/http://www.inf.ed.ac.uk/about/AIhistory.html
|url-status = live
}}
* {{Cite web|author=IGM Chicago|title=Robots and Artificial Intelligence|date=30 June 2017|url=http://www.igmchicago.org/surveys/robots-and-artificial-intelligence|website=www.igmchicago.org|access-date=3 July 2019|archive-date=1 May 2019|archive-url=https://web.archive.org/web/20190501114826/http://www.igmchicago.org/surveys/robots-and-artificial-intelligence|url-status=live}}
* {{Cite journal|last1=Iphofen|first1=Ron|last2=Kritikos|first2=Mihalis|date=3 January 2019|title=Regulating artificial intelligence and robotics: ethics by design in a digital society|journal=Contemporary Social Science|volume=16|issue=2|pages=170–184|doi=10.1080/21582041.2018.1563803|s2cid=59298502|issn=2158-2041}}
* {{cite journal|last1=Jordan|first1=M. I.|last2=Mitchell|first2=T. M. |title=Machine learning: Trends, perspectives, and prospects |journal=Science |date=16 July 2015 |volume=349 |issue=6245 |pages=255–260 |doi=10.1126/science.aaa8415 |pmid=26185243 |bibcode=2015Sci...349..255J |s2cid=677218}}
* {{cite book
| last = Kahneman
| first = Daniel
| author-link = Daniel Kahneman
| title = Thinking, Fast and Slow
| date = 2011
| publisher = Macmillan
| isbn = 978-1-4299-6935-2
| url = https://books.google.com/books?id=ZuKTvERuPG8C
| access-date = 8 April 2012
| archive-date = 15 March 2023
| archive-url = https://web.archive.org/web/20230315191803/https://books.google.com/books?id=ZuKTvERuPG8C
| url-status = live
}}
}}
* {{Cite journal|ref=harv
* {{cite journal
| last1=Kahneman | first1=Daniel | author-link=Daniel Kahneman
| first = G. | last=Kolata|year=1982
| last2=Slovic | first2= D.
| title=How can computers get common sense?
| last3=Tversky | first3=Amos | author3-link=Amos Tversky
| journal=Science | issue= 4566|pages=1237-1238| doi = 10.1126/science.217.4566.1237
| year=1982
| volume = 217 |pmid=17837639
| title=Judgment under uncertainty: Heuristics and biases
| journal=Science | volume=185 | issue=4157 | pages=1124–1131 | publisher=Cambridge University Press | location=New York
| isbn=978-0-521-28414-1
| pmid=17835457 | doi=10.1126/science.185.4157.1124 | bibcode=1974Sci...185.1124T | s2cid=143452957 }}
* {{cite news
|last1=Kasperowicz |first1=Peter
|title=Regulate AI? GOP much more skeptical than Dems that government can do it right: poll
|url=https://www.foxnews.com/politics/regulate-ai-gop-much-more-skeptical-than-dems-that-the-government-can-do-it-right-poll |access-date=19 June 2023 |work=Fox News
|date=1 May 2023
|archive-date=19 June 2023
|archive-url=https://web.archive.org/web/20230619013616/https://www.foxnews.com/politics/regulate-ai-gop-much-more-skeptical-than-dems-that-the-government-can-do-it-right-poll
|url-status=live
}}
}}
* {{cite magazine
* {{cite journal|ref=harv|last=Kumar| first=Gulshan|last2=Kumar| first2=Krishan
|last=Katz
| title=The Use of Artificial-Intelligence-Based Ensembles for Intrusion Detection: A Review
|first=Yarden
| journal=Applied Computational Intelligence and Soft Computing|year=2012
| volume=2012
|date=1 November 2012
|title=Noam Chomsky on Where Artificial Intelligence Went Wrong
|pages=1-20| doi=10.1155/2012/850160|url=http://www.hindawi.com/journals/acisc/2012/850160/
|magazine=The Atlantic
|url=https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true
|access-date=26 October 2014
|archive-date=28 February 2019
|archive-url=https://web.archive.org/web/20190228154403/https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true
|url-status=live
}}
}}
* {{cite web|ref={{harvid|MIT AIL|2014}}|title=Kismet|publisher=MIT Artificial Intelligence Laboratory, Humanoid Robotics Group|url=http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html|access-date=25 October 2014|archive-url=https://web.archive.org/web/20141017040432/http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html|archive-date=17 October 2014|url-status=live}}
* {{Cite book| ref=harv|last=Kurzweil| first=Ray |author-link=Ray Kurzweil|year=1999
* {{Cite news|last=Kissinger|first=Henry|author-link=Henry Kissinger|date=1 November 2021|title=The Challenge of Being Human in the Age of AI|work=[[The Wall Street Journal]]|url=https://www.wsj.com/articles/being-human-artifical-intelligence-ai-chess-antibiotic-philosophy-ethics-bill-of-rights-11635795271|access-date=4 November 2021|archive-date=4 November 2021|archive-url=https://web.archive.org/web/20211104012825/https://www.wsj.com/articles/being-human-artifical-intelligence-ai-chess-antibiotic-philosophy-ethics-bill-of-rights-11635795271|url-status=live}}
| title=[[The Age of Spiritual Machines]]|publisher=Penguin Books|isbn=978-0-670-88217-5|pages=}}
* {{cite news |last=Kobielus |first=James |date=27 November 2019 |title=GPUs Continue to Dominate the AI Accelerator Market for Now |work=InformationWeek |language=en |url=https://www.informationweek.com/ai-or-machine-learning/gpus-continue-to-dominate-the-ai-accelerator-market-for-now |access-date=11 June 2020 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019031104/https://www.informationweek.com/ai-or-machine-learning/gpus-continue-to-dominate-the-ai-accelerator-market-for-now |url-status=live }}
* {{Cite book| ref=harv|last=Kurzweil| first=Ray |author-link=Ray Kurzweil|year=2005
* {{cite journal |last1=Kuperman |first1=G. J.|last2=Reichley|first2=R. M.|last3=Bailey|first3=T. C.|title=Using Commercial Knowledge Bases for Clinical Decision Support: Opportunities, Hurdles, and Recommendations |journal=Journal of the American Medical Informatics Association|date=1 July 2006|volume=13|issue=4|pages=369–371 |doi=10.1197/jamia.M2055 |pmid=16622160|pmc=1513681}}
| title=[[The Singularity is Near]]|publisher=Penguin Books|isbn=978-0-670-03384-3|pages=}}
* {{cite book
* {{Cite book| ref=harv|last=Lakoff| first=George |author-link=George Lakoff|last2=Núñez| first2=Rafael E. |author2-link=Rafael E. Núñez|year=2000
| last=Kurzweil | first=Ray | author-link=Ray Kurzweil
| title=[[Where Mathematics Comes From|Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being]]|publisher=Basic Books|isbn=978-0-465-03771-1|pages=}}
| year=2005
* {{Cite journal|ref=harv|last=Langley|first=Pat |year=2011
| title=The Singularity is Near
| publisher=Penguin Books
| isbn=978-0-670-03384-3
| title-link=The Singularity is Near }}
* {{Cite journal
| last1=Langley |first1=Pat |year=2011
| title=The changing science of machine learning
| title=The changing science of machine learning
| journal=[[Machine Learning (journal)|Machine Learning]]
| journal=[[Machine Learning (journal)|Machine Learning]]
| volume=82 |issue=3 |pages=275-279| doi=10.1007/s10994-011-5242-y
| volume=82 |issue=3 |pages=275–279
| doi=10.1007/s10994-011-5242-y
|doi-access=free
}}
}}
* {{Cite web|last1=Larson|first1=Jeff|last2=Angwin|first2=Julia|author2-link=Julia Angwin|date=23 May 2016|title=How We Analyzed the COMPAS Recidivism Algorithm|url=https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm|access-date=19 June 2020|website=ProPublica|language=en|archive-date=29 April 2019|archive-url=https://web.archive.org/web/20190429190950/https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm|url-status=live}}
* {{cite techreport|ref=harv|last=Law|first=Diane |date=1994
* {{Cite web
| title=Searle, Subsymbolic Functionalism and Synthetic Intelligence
| last = Laskowski | first = Nicole
| institution=University of Texas at Austin |pages=AI94-222
| date = November 2023
| citeseerx=10.1.1.38.8384
| title = What is Artificial Intelligence and How Does AI Work? TechTarget
| url = https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence
| access-date=2023-10-30 |website=Enterprise AI |language=en
}}
}}
* {{Cite book | ref={{harvid|Law Library of Congress (U.S.). Global Legal Research Directorate|2019}}
* {{cite techreport|ref=harv|last=Legg|first=Shane |last2=Hutter|first2=Marcus |date=15. 6. 2007
|author=Law Library of Congress (U.S.). Global Legal Research Directorate, issuing body.
| title=A Collection of Definitions of Intelligence
|title=Regulation of artificial intelligence in selected jurisdictions
| institution=[[IDSIA]] |number=07-07 |arxiv=0706.3639
|year=2019
|lccn=2019668143 |oclc=1110727808}}
* {{cite web|last=Lee|first=Timothy B.|title=Will artificial intelligence destroy humanity? Here are 5 reasons not to worry.|date=22 August 2014|url=https://www.vox.com/2014/8/22/6043635/5-reasons-we-shouldnt-worry-about-super-intelligent-computers-taking|url-status=live|archive-url=https://web.archive.org/web/20151030092203/http://www.vox.com/2014/8/22/6043635/5-reasons-we-shouldnt-worry-about-super-intelligent-computers-taking|archive-date=30 October 2015|access-date=30 October 2015|website=Vox}}
* {{cite book
| last1=Lenat | first1=Douglas | author-link=Douglas Lenat
| last2=Guha | first2=R. V.
| year = 1989
| title = Building Large Knowledge-Based Systems
| publisher = Addison-Wesley
| isbn=978-0-201-51752-1
}}
}}
* {{Cite book
* {{Cite book| ref=harv|last=Lenat| first=Douglas |author-link=Douglas Lenat|last2=Guha| first2=R. V.|year=1989
| last=Lighthill |first=James |author-link=James Lighthill
| title = Building Large Knowledge-Based Systems| url=https://archive.org/details/buildinglargekno0000lena|publisher = Addison-Wesley|isbn=978-0-201-51752-1|pages=}}
| year=1973
* {{Cite book| ref=harv|last=Lighthill|first=James |author-link=James Lighthill |year=1973
| contribution= Artificial Intelligence: A General Survey
| contribution= Artificial Intelligence: A General Survey
| title=Artificial Intelligence: a paper symposium|publisher=Science Research Council
| title=Artificial Intelligence: a paper symposium
| publisher=Science Research Council
}}
}}
* {{citation|last1=Lipartito|first1=Kenneth|title=The Narrative and the Algorithm: Genres of Credit Reporting from the Nineteenth Century to Today|date=6 January 2011|doi=10.2139/ssrn.1736283|s2cid=166742927|url=https://mpra.ub.uni-muenchen.de/28142/1/MPRA_paper_28142.pdf|archive-url=https://ghostarchive.org/archive/20221009/https://mpra.ub.uni-muenchen.de/28142/1/MPRA_paper_28142.pdf|archive-date=9 October 2022|url-status=live|type=Unpublished manuscript}}
* {{Cite book| ref=harv|last=Lucas| first= John |author-link = John Lucas (philosopher)|year=1961
* {{cite news|last1=Lohr|first1=Steve|date=2017|title=Robots Will Take Jobs, but Not as Fast as Some Fear, New Report Says|work=The New York Times|url=https://www.nytimes.com/2017/01/12/technology/robots-will-take-jobs-but-not-as-fast-as-some-fear-new-report-says.html|access-date=13 January 2018|archive-date=14 January 2018|archive-url=https://web.archive.org/web/20180114073704/https://www.nytimes.com/2017/01/12/technology/robots-will-take-jobs-but-not-as-fast-as-some-fear-new-report-says.html|url-status=live}}
| contribution=Minds, Machines and Gödel
* {{cite journal
| editor-last=Anderson| editor-first =A.R.
| last1=Lungarella |first1=M. |last2=Metta |first2=G. |last3=Pfeifer |first3=R. |last4=Sandini |first4=G. |year=2003
| title=Minds and Machines| url = http://users.ox.ac.uk/~jrlucas/Godel/mmg.html | accessdate=30. 8. 2007
| archiveurl= https://web.archive.org/web/20070819165214/http://users.ox.ac.uk/~jrlucas/Godel/mmg.html| archivedate=19. 8. 2007 |url-status=live
}}
* {{cite journal|ref=harv|last=Lungarella|first=M. |last2=Metta|first2=G. |last3=Pfeifer|first3=R. |last4=Sandini|first4=G. |year=2003
| title=Developmental robotics: a survey
| title=Developmental robotics: a survey
| journal=Connection Science |volume=15 |pages=151-190|citeseerx=10.1.1.83.7615| doi=10.1080/09540090310001655110
| journal=Connection Science |volume=15 | issue=4 |pages=151–190 |citeseerx=10.1.1.83.7615 | doi=10.1080/09540090310001655110
| s2cid=1452734 }}
* {{cite web |ref={{harvid|AAAI|2014}} |title=Machine Ethics |url=http://www.aaai.org/Library/Symposia/Fall/fs05-06 |work=aaai.org |url-status=dead |archive-url=https://web.archive.org/web/20141129044821/http://www.aaai.org/Library/Symposia/Fall/fs05-06 |archive-date=29 November 2014 }}
* {{cite journal|last=Madrigal|first=Alexis C.|title=The case against killer robots, from a guy actually working on artificial intelligence|date=27 February 2015|url=https://www.hrw.org/report/2012/11/19/losing-humanity/case-against-killer-robots|url-status=live|archive-url=https://web.archive.org/web/20160204175716/http://fusion.net/story/54583/the-case-against-killer-robots-from-a-guy-actually-building-ai/|archive-date=4 February 2016|access-date=31 January 2016|website=Fusion.net}}
* {{cite news
| last = Mahdawi
| first = Arwa
| date = 26 June 2017
| title = What jobs will still be around in 20 years? Read this to prepare your future
| work = The Guardian
| url = https://www.theguardian.com/us-news/2017/jun/26/jobs-future-automation-robots-skills-creative-health
| access-date = 13 January 2018
| archive-date = 14 January 2018
| archive-url = https://web.archive.org/web/20180114021804/https://www.theguardian.com/us-news/2017/jun/26/jobs-future-automation-robots-skills-creative-health
| url-status = live
}}
}}
* {{cite web
* {{cite news|ref=harv|last=Markoff|first=John |date=16. 2. 2011<!-- corrected 24 February 2011-->
|last=Maker
| title=Computer Wins on 'Jeopardy!': Trivial, It's Not |work=The New York Times|url=https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html |accessdate=25. 10. 2014
|first=Meg Houston
|year=2006
|title=AI@50: AI Past, Present, Future
|location=Dartmouth College
|url=http://www.engagingexperience.com/2006/07/ai50_ai_past_pr.html
|archive-url=https://web.archive.org/web/20070103222615/http://www.engagingexperience.com/2006/07/ai50_ai_past_pr.html
|url-status=dead
|archive-date=3 January 2007
|access-date=16 October 2008
}}
* {{Cite web |last=Marmouyet |first=Françoise |date=2023-12-15 |title=Google's Gemini: is the new AI model really better than ChatGPT? |url=http://theconversation.com/googles-gemini-is-the-new-ai-model-really-better-than-chatgpt-219526 |access-date=2023-12-25 |website=The Conversation |language=en-US}}
* {{Citation | first = Marvin | last = Minsky | title = The Society of Mind | publisher = Simon and Schuster | year = 1986 | author-link=Marvin Minsky | title-link = The Society of Mind }}
* {{cite web
|title=Content: Plug & Pray Film – Artificial Intelligence – Robots
|author=Maschafilm
|year=2010
|work=plugandpray-film.de
|url-status=live
|url=http://www.plugandpray-film.de/en/content.html
|archive-url=https://web.archive.org/web/20160212040134/http://www.plugandpray-film.de/en/content.html
|archive-date=12 February 2016
}}
}}
* {{cite web|ref=harv | last=McCarthy | first = John |authorlink= John McCarthy (computer scientist) | last2=Minsky | first2 = Marvin |authorlink2 = Marvin Minsky | last3=Rochester | first3 = Nathan |authorlink3 = Nathan Rochester | last4=Shannon | first4 = Claude |authorlink4 = Claude Shannon |year=1955 | title = A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence | url = http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html | accessdate=30. 8. 2007 | archiveurl = https://web.archive.org/web/20070826230310/http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html | archivedate=26. 8. 2007 |url-status=dead | df = }}.
* {{cite web | last1 = McCarthy | first1 = John | author-link1 = John McCarthy (computer scientist) | last2 = Minsky | first2 = Marvin | author-link2 = Marvin Minsky | last3 = Rochester | first3 = Nathan | author-link3 = Nathan Rochester | last4 = Shannon | first4 = Claude | author-link4 = Claude Shannon | year = 1955 | title = A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence | url = http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html | access-date = 30 August 2007 | archive-url = https://web.archive.org/web/20070826230310/http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html | archive-date = 26 August 2007 | url-status = dead }}
* {{citation
* {{cite journal|ref=harv|last=McCarthy| first = John |author-link = John McCarthy (computer scientist)|last2=Hayes| first2=P. J.|year=1969
| last1 = McCarthy | first1 = John | author-link1 = John McCarthy (computer scientist)
| title= Some philosophical problems from the standpoint of artificial intelligence
| title = From Here to Human-Level AI
| journal =Machine Intelligence | volume= 4 |pages=463-502| url=http://www-formal.stanford.edu/jmc/mcchay69.html | accessdate=30. 8. 2007
| year = 2007
| archiveurl= https://web.archive.org/web/20070810233856/http://www-formal.stanford.edu/jmc/mcchay69.html| archivedate=10. 8. 2007 |url-status=live}}
| journal = Artificial Intelligence
* {{cite web|ref = harv|last = McCarthy|first = John|authorlink=John McCarthy (computer scientist)|title = What Is Artificial Intelligence?
| pages = 171
|date=12. 11. 2007|url = http://www-formal.stanford.edu/jmc/whatisai/whatisai.html|accessdate=3. 3. 2017
|archive-url = https://web.archive.org/web/20151118212402/http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
|archive-date=18. 11. 2015
|url-status=dead
|df =
}}
}}
* {{citation
* {{Cite book| ref=harv|last=Minsky| first=Marvin |author-link=Marvin Minsky|year=1967
| last = McCarthy
| title = Computation: Finite and Infinite Machines| url=https://archive.org/details/computationfinit0000mins|publisher = Prentice-Hall | location=Englewood Cliffs, N.J.|isbn=978-0-13-165449-5|pages=}}
| first = John
* {{Cite book| ref=harv|last=Minsky| first=Marvin |author-link=Marvin Minsky|year=2006
| author-link = John McCarthy (computer scientist)
| title = [[The Emotion Machine]]|publisher = Simon & Schusterl | publication-place=New York, NY|isbn=978-0-7432-7663-4|pages=}}
| year = 1999
* {{Cite book| ref=harv|last=Moravec| first=Hans |author-link=Hans Moravec|year=1988
| title = What is AI?
| title = Mind Children| url=https://archive.org/details/mindchildren00hans|publisher = Harvard University Press|isbn=978-0-674-57616-2|pages=}}
| url = http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html
* {{cite web|ref=harv|last=Norvig|first=Peter |authorlink=Peter Norvig |date=25. 6. 2012
| access-date = 4 December 2022
| title=On Chomsky and the Two Cultures of Statistical Learning|publisher=Peter Norvig|url=http://norvig.com/chomsky.html
| archive-date = 4 December 2022
| archiveurl=https://web.archive.org/web/20141019223259/http://norvig.com/chomsky.html|archivedate=19. 10. 2014 |url-status=live
| archive-url = https://web.archive.org/web/20221204051737/http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html
| url-status = live
}}
}}
* {{cite journal | last1 = McCauley | first1 = Lee | year = 2007 | title = AI armageddon and the three laws of robotics | journal = Ethics and Information Technology | volume = 9 | issue = 2| pages = 153–164 | doi=10.1007/s10676-007-9138-2| citeseerx = 10.1.1.85.8904| s2cid = 37272949 }}
* {{Cite book| ref={{harvid|NRC|1999}}|author=NRC (United States National Research Council) |authorlink=United States National Research Council|year=1999
* {{cite journal|last1=McGarry|first1=Ken|s2cid=14987656|title=A survey of interestingness measures for knowledge discovery|journal=The Knowledge Engineering Review|date=1 December 2005 |volume=20|issue=1|pages=39–61|doi=10.1017/S0269888905000408}}
| chapter=Developments in Artificial Intelligence
* {{citation
| title=Funding a Revolution: Government Support for Computing Research|publisher=National Academy Press
| last = McGaughey
| first = E
| title = Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy
| year = 2022
| page = 51(3) Industrial Law Journal 511–559
| doi = 10.2139/ssrn.3044448
| ssrn = 3044448
| s2cid = 219336439
| url = https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3044448
| access-date = 27 May 2023
| archive-date = 31 January 2021
| archive-url = https://web.archive.org/web/20210131074722/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3044448
| url-status = live
}}
}}
* {{cite book
* {{Cite book| ref=harv|last=Needham| first=Joseph |authorlink= Joseph Needham|year=1986
| last1 = Merkle | first1 = Daniel
| title=[[Science and Civilization in China]]: Volume 2|publisher=Caves Books Ltd.
| last2 = Middendorf | first2 = Martin
| date = 2013
| title = Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques
| publisher=Springer Science & Business Media
| isbn=978-1-4614-6940-7
| editor1-last=Burke |editor1-first=Edmund K.
| language=en
| chapter=Swarm Intelligence|editor2-last=Kendall|editor2-first=Graham}}
* {{cite book
|last=Moravec
|first=Hans
|author-link=Hans Moravec
|year=1988
|title=Mind Children
|url=https://archive.org/details/mindchildrenfutu00mora
|url-access=registration
|publisher=Harvard University Press
|isbn=978-0-674-57616-2
|access-date=18 November 2019
|archive-date=26 July 2020
|archive-url=https://web.archive.org/web/20200726131644/https://archive.org/details/mindchildrenfutu00mora
|url-status=live
}}
}}
* {{cite news
* {{cite journal|ref=harv |last=Newell|first=Allen |author-link=Allen Newell |last2=Simon|first2=H. A. |authorlink2=Herbert A. Simon |year=1976|title=Computer Science as Empirical Inquiry: Symbols and Search |journal=Communications of the ACM |volume=19 |issue=3 |doi=10.1145/360018.360022 |url=http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/PSS/PSSH4.html |url-status=dead |archiveurl=https://web.archive.org/web/20081007162810/http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/PSS/PSSH4.html |archivedate=7. 10. 2008 |pages=113-126}}.
| last = Morgenstern
* {{Cite journal|ref=harv|last=Nilsson|first=Nils |author-link = Nils Nilsson (researcher) |year=1983
| first = Michael
| title=Artificial Intelligence Prepares for 2001
| date = 9 May 2015
| journal=AI Magazine |volume=1 |number=1|url=http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/General%20Essays/AIMag04-04-002.pdf
| title = Automation and anxiety
}} Presidential Address to the [[Association for the Advancement of Artificial Intelligence]].
| newspaper = The Economist
* {{Cite book| ref=harv|last=O'Brien |first=James |last2=Marakas|first2=George |year=2011
| url = https://www.economist.com/news/special-report/21700758-will-smarter-machines-cause-mass-unemployment-automation-and-anxiety
| title=Management Information Systems |publisher=McGraw-Hill/Irwin |edition=10th|isbn=978-0-07-337681-3
| access-date = 13 January 2018
| archive-date = 12 January 2018
| archive-url = https://web.archive.org/web/20180112214621/https://www.economist.com/news/special-report/21700758-will-smarter-machines-cause-mass-unemployment-automation-and-anxiety
| url-status = live
}}
}}
* {{cite journal|last1=Müller|first1=Vincent C.|last2=Bostrom|first2=Nick|year=2014|title=Future Progress in Artificial Intelligence: A Poll Among Experts|url=http://www.sophia.de/pdf/2014_PT-AI_polls.pdf|url-status=live|journal=AI Matters|volume=1|issue=1|pages=9–11|doi=10.1145/2639475.2639478|s2cid=8510016|archive-url=https://web.archive.org/web/20160115114604/http://www.sophia.de/pdf/2014_PT-AI_polls.pdf|archive-date=15 January 2016}}
* {{cite journal|ref=harv|last=O'Connor |first=Kathleen Malone |year=1994
* {{cite journal |last1=Neumann |first1=Bernd |last2=Möller |first2=Ralf |title=On scene interpretation with description logics |journal=Image and Vision Computing |date=January 2008 |volume=26 |issue=1 |pages=82–101 |doi=10.1016/j.imavis.2007.08.013|s2cid=10767011 }}
| title=The alchemical creation of life (takwin) and other concepts of Genesis in medieval Islam|publisher=University of Pennsylvania|url=http://repository.upenn.edu/dissertations/AAI9503804
* {{citation
| last1 = Nilsson | first1 = Nils | author-link1 = Nils John Nilsson
| title = Eyes on the Prize
| year = 1995
| magazine = AI Magazine
| volume = 16
| pages = 9–17
}}
}}
* {{cite journal |last1=Newell |first1=Allen |author-link=Allen Newell |last2=Simon |first2=H. A. |author-link2=Herbert A. Simon |year=1976 |title=Computer Science as Empirical Inquiry: Symbols and Search |journal=Communications of the ACM |volume=19 |issue=3 |doi=10.1145/360018.360022 |pages=113–126 |doi-access=free }}
* {{cite journal|ref=harv|last=Oudeyer|first=P-Y. |year=2010
* {{cite news
| title=On the impact of robotics in behavioral and cognitive sciences: from insect navigation to human cognitive development
| last = Nicas | first = Jack
| journal=IEEE Transactions on Autonomous Mental Development |volume=2 |issue=1 |pages=2-16| url=http://www.pyoudeyer.com/IEEETAMDOudeyer10.pdf | doi=10.1109/tamd.2009.2039057
| date = February 7, 2018
| title= How YouTube Drives People to the Internet's Darkest Corners
| language = en-US
| work = [[The Wall Street Journal]]
| url = https://www.wsj.com/articles/how-youtube-drives-viewers-to-the-internets-darkest-corners-1518020478 |access-date=June 16, 2018 |issn=0099-9660
}}
}}
* {{Cite journal
* {{Cite book| ref=harv|last=Penrose|first=Roger |author-link=Roger Penrose |year=1989
|last = Nilsson
| title=The Emperor's New Mind: Concerning Computer, Minds and The Laws of Physics| url=https://archive.org/details/emperorsnewmind00penr|publisher=[[Oxford University Press]]|isbn=978-0-19-851973-7|pages=}}
|first = Nils
* {{cite techreport|ref=harv|last=Picard|first=Rosalind |authorlink=Rosalind Picard |year=1995
|author-link = Nils Nilsson (researcher)
| title=Affective Computing |institution=MIT |number=321|url=http://affect.media.mit.edu/pdfs/95.picard.pdf
|year = 1983
| laysource=Abstract |layurl=http://vismod.media.mit.edu/pub/tech-reports/TR-321-ABSTRACT.html
|title = Artificial Intelligence Prepares for 2001
|journal = AI Magazine
|volume = 1
|number = 1
|url = https://ai.stanford.edu/~nilsson/OnlinePubs-Nils/General%20Essays/AIMag04-04-002.pdf
|access-date = 22 August 2020
|archive-date = 17 August 2020
|archive-url = https://web.archive.org/web/20200817194457/http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/General%20Essays/AIMag04-04-002.pdf
|url-status = live
}} Presidential Address to the [[Association for the Advancement of Artificial Intelligence]].
* {{cite book |ref={{harvid|NRC|1999}}
| author=NRC (United States National Research Council) | author-link=United States National Research Council
| year=1999
| chapter=Developments in Artificial Intelligence
| title=Funding a Revolution: Government Support for Computing Research
| publisher=National Academy Press
}}
}}
* {{Cite conference | last = Omohundro|first= Steve| author-link= Steve Omohundro | year = 2008| title= The Nature of Self-Improving Artificial Intelligence| publisher=presented and distributed at the 2007 Singularity Summit, San Francisco, CA.}}
* {{Cite book| ref=harv|last=Poli|first=R. |last2=Langdon|first2=W. B. |last3=McPhee|first3=N. F. |year=2008
* {{cite journal | last=Oudeyer | first=P-Y. | year=2010 | title=On the impact of robotics in behavioral and cognitive sciences: from insect navigation to human cognitive development | journal=IEEE Transactions on Autonomous Mental Development | volume=2 | issue=1 | pages=2–16 | url=http://www.pyoudeyer.com/IEEETAMDOudeyer10.pdf | doi=10.1109/tamd.2009.2039057 | s2cid=6362217 | access-date=4 June 2013 | archive-date=3 October 2018 | archive-url=https://web.archive.org/web/20181003202543/http://www.pyoudeyer.com/IEEETAMDOudeyer10.pdf | url-status=live }}
| title=A Field Guide to Genetic Programming |publisher=Lulu.com |isbn=978-1-4092-0073-4|url=http://www.gp-field-guide.org.uk/ |via=gp-field-guide.org.uk
* {{cite book
| last1=Pennachin|first1=C. |last2=Goertzel|first2=B.
| chapter=Contemporary Approaches to Artificial General Intelligence
| title=Artificial General Intelligence
| date=2007 |doi=10.1007/978-3-540-68677-4_1 |publisher=Springer|location=Berlin, Heidelberg |series=Cognitive Technologies |pages=1–30 |isbn=978-3-540-23733-4}}
* {{Citation | last=Pinker | first=Steven | author-link=Steven Pinker | title=The Language Instinct | date=2007 | orig-year=1994 | publisher=Harper | series = Perennial Modern Classics | isbn=978-0-06-133646-1| title-link=The Language Instinct }}
* {{cite journal|last1=Poria|first1=Soujanya|last2=Cambria|first2=Erik|last3=Bajpai|first3=Rajiv|last4=Hussain|first4=Amir|title=A review of affective computing: From unimodal analysis to multimodal fusion|journal=Information Fusion|date=September 2017|volume=37|pages=98–125|doi=10.1016/j.inffus.2017.02.003|hdl=1893/25490|s2cid=205433041|url=http://researchrepository.napier.ac.uk/Output/1792429|hdl-access=free|access-date=27 April 2021|archive-date=23 March 2023|archive-url=https://web.archive.org/web/20230323165407/https://www.napier.ac.uk/research-and-innovation/research-search/outputs/a-review-of-affective-computing-from-unimodal-analysis-to-multimodal-fusion|url-status=live}}
* {{cite news|last1=Rawlinson|first1=Kevin|date=29 January 2015|title=Microsoft's Bill Gates insists AI is a threat|work=BBC News|url=https://www.bbc.co.uk/news/31047780|url-status=live|access-date=30 January 2015|archive-url=https://web.archive.org/web/20150129183607/http://www.bbc.co.uk/news/31047780|archive-date=29 January 2015}}
* {{citation
| last = Reisner | first = Alex
| title = Revealed: The Authors Whose Pirated Books are Powering Generative AI
| date = August 19, 2023
| magazine = The Atlantic
| url = https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/
}}
}}
* {{cite journal|ref=harv|last=Rajani|first=Sandeep|year=2011|title=Artificial Intelligence Man or Machine|journal=International Journal of Information Technology and Knowledge Management|volume=4|issue=1|pages=173-176|url=http://www.csjournals.com/IJITKM/PDF%204-1/35.Sandeep%20Rajani.pdf|access-date=03. 03. 2017|archive-url=https://web.archive.org/web/20130118095844/http://www.csjournals.com/IJITKM/PDF%204-1/35.Sandeep%20Rajani.pdf|archive-date=18. 01. 2013|url-status=dead}}
* {{cite magazine|last1=Roberts|first1=Jacob|title=Thinking Machines: The Search for Artificial Intelligence|magazine=Distillations|volume=2|issue=2|pages=14–23|date=2016|url=https://www.sciencehistory.org/distillations/magazine/thinking-machines-the-search-for-artificial-intelligence|access-date=20 March 2018|archive-url=https://web.archive.org/web/20180819152455/https://www.sciencehistory.org/distillations/magazine/thinking-machines-the-search-for-artificial-intelligence|archive-date=19 August 2018|url-status=dead}}
* {{cite web|last=Robitzski|first=Dan|title=Five experts share what scares them the most about AI|date=5 September 2018|url=https://futurism.com/artificial-intelligence-experts-fear/amp|access-date=8 December 2019|archive-date=8 December 2019|archive-url=https://web.archive.org/web/20191208094101/https://futurism.com/artificial-intelligence-experts-fear/amp|url-status=live}}
* {{Cite journal|ref=harv | last=Searle | first = John |author-link = John Searle |year=1980 | title = Minds, Brains and Programs | journal = Behavioral and Brain Sciences | volume = 3 | issue = 3 | url = http://www.bbsonline.org/documents/a/00/00/04/84/bbs00000484-00/bbs.searle2.html | doi = 10.1017/S0140525X00005756 | accessdate=3. 3. 2017 | archive-url = https://web.archive.org/web/20100118120034/http://www.bbsonline.org/documents/a/00/00/04/84/bbs00000484-00/bbs.searle2.html | archive-date=18. 1. 2010 |url-status=dead | df = |pages=417-457}}
* {{cite news|ref={{harvid|BBC|2006}}|date=21 December 2006|title=Robots could demand legal rights|work=BBC News|url=http://news.bbc.co.uk/2/hi/technology/6200005.stm|access-date=3 February 2011|archive-url=https://web.archive.org/web/20191015042628/http://news.bbc.co.uk/2/hi/technology/6200005.stm|archive-date=15 October 2019|url-status=live}}
* {{Cite book| ref=harv|last=Searle| first=John |author-link=John Searle|year=1999
* {{Cite news |last=Rose |first=Steve |date=11 July 2023 |title=AI Utopia or dystopia? |pages=42–43 |work=[[The Guardian Weekly]]}}
| title = Mind, language and society|publisher = Basic Books | location = New York, NY|isbn=978-0-465-04521-1| oclc = 231867665
* {{cite book|last=Russell|first=Stuart|title=Human Compatible: Artificial Intelligence and the Problem of Control|title-link=Human Compatible|date=2019|publisher=Viking|isbn=978-0-525-55861-3|location=United States|oclc=1083694322|author-link=Stuart J. Russell}}
* {{cite web|last=Sainato|first=Michael|title=Stephen Hawking, Elon Musk, and Bill Gates Warn About Artificial Intelligence|date=19 August 2015|url=http://observer.com/2015/08/stephen-hawking-elon-musk-and-bill-gates-warn-about-artificial-intelligence/|url-status=live|archive-url=https://web.archive.org/web/20151030053323/http://observer.com/2015/08/stephen-hawking-elon-musk-and-bill-gates-warn-about-artificial-intelligence/|archive-date=30 October 2015|access-date=30 October 2015|website=Observer}}
* {{cite news|last1=Sample|first1=Ian|title=Computer says no: why making AIs fair, accountable and transparent is crucial|url=https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial|access-date=30 January 2018|work=The Guardian |date=5 November 2017|language=en}}
* {{cite news|last=Rothman|first=Denis|title=Exploring LIME Explanations and the Mathematics Behind It|url=https://www.codemotion.com/magazine/ai-ml/lime-explainable-ai/|access-date=25 November 2023|work=Codemotion |date=7 October 2020}}
* {{cite journal|last1=Scassellati|first1=Brian|title=Theory of mind for a humanoid robot|journal=Autonomous Robots|volume=12|issue=1|year=2002|pages=13–24 |doi=10.1023/A:1013298507114|s2cid=1979315}}
* {{cite journal|last=Schmidhuber|first=J.|author-link=Jürgen Schmidhuber
|year=2015|title=Deep Learning in Neural Networks: An Overview|journal=Neural Networks|volume=61|pages=85–117|arxiv=1404.7828|doi=10.1016/j.neunet.2014.09.003|pmid=25462637|s2cid=11715509}}
* {{cite web
| title = Annotated History of Modern AI and Deep Learning
| last = Schmidhuber
| first = Jürgen
| author-link = Jürgen Schmidhuber
| year = 2022
| url = https://people.idsia.ch/~juergen/
}}
}}
* {{Cite journal|last1=Schulz|first1=Hannes|last2=Behnke|first2=Sven|date=1 November 2012|title=Deep Learning|journal=KI – Künstliche Intelligenz|language=en|volume=26|issue=4|pages=357–363|doi=10.1007/s13218-012-0198-z|s2cid=220523562|issn=1610-1987|url=https://www.researchgate.net/publication/230690795}}
* {{Cite book| ref=harv|last=Shapiro| first= Stuart C. | editor-first=Stuart C. | editor-last=Shapiro|year=1992
* {{Cite journal
| contribution=Artificial Intelligence
|last=Searle
| title=Encyclopedia of Artificial Intelligence | edition=2nd | url=http://www.cse.buffalo.edu/~shapiro/Papers/ai.pdf|publisher= John Wiley | location=New York|isbn=978-0-471-50306-4|pages=54-57}}
|first=John
* {{Cite book| ref=harv|last=Simon| first = H. A. |author-link=Herbert A. Simon|year=1965
|author-link=John Searle
| title=The Shape of Automation for Men and Management| url=https://archive.org/details/shapeofautomatio00simo|publisher = Harper & Row | publication-place = New York
|year=1980
|title=Minds, Brains and Programs
|journal=Behavioral and Brain Sciences
|volume=3
|issue=3
|pages=417–457
|doi=10.1017/S0140525X00005756
|s2cid=55303721
|url=http://cogprints.org/7150/1/10.1.1.83.5248.pdf
|access-date=22 August 2020
|archive-date=17 March 2019
|archive-url=https://web.archive.org/web/20190317230215/http://cogprints.org/7150/1/10.1.1.83.5248.pdf
|url-status=live
}}
* {{cite book
|last = Searle
|first = John
|author-link = John Searle
|year = 1999
|title = Mind, language and society
|publisher = Basic Books
|location = New York
|isbn = 978-0-465-04521-1
|oclc = 231867665
|url = https://archive.org/details/mindlanguagesoci00sear
|access-date = 22 August 2020
|archive-date = 26 July 2020
|archive-url = https://web.archive.org/web/20200726220615/https://archive.org/details/mindlanguagesoci00sear
|url-status = live
}}
* {{cite web
| last = Simonite | first = Tom
| title = How Google Plans to Solve Artificial Intelligence
| date = March 31, 2016
| website = MIT Technology Review
| url = https://www.technologyreview.com/2016/03/31/161234/how-google-plans-to-solve-artificial-intelligence/
}}
}}
* {{Cite web |last=Smith |first=Craig S. |date=March 15, 2023 |title=ChatGPT-4 Creator Ilya Sutskever on AI Hallucinations and AI Democracy |url=https://www.forbes.com/sites/craigsmith/2023/03/15/gpt-4-creator-ilya-sutskever-on-ai-hallucinations-and-ai-democracy/ |access-date=2023-12-25 |website=Forbes |language=en}}
* {{cite web|ref=harv|last=Skillings| first=Jonathan|url=http://news.cnet.com/Getting-machines-to-think-like-us/2008-11394_3-6090207.html
* {{cite journal|last1=Smoliar|first1=Stephen W. |last2=Zhang |first2=HongJiang |title=Content based video indexing and retrieval |journal=IEEE MultiMedia |date=1994 |volume=1 |issue=2 |pages=62–72 |doi=10.1109/93.311653 |s2cid=32710913}}
| title=Getting Machines to Think Like Us
* {{cite conference
| work=cnet
| last=Solomonoff
|date=3. 7. 2006|accessdate=3. 2. 2011
| first=Ray
}}
| author-link=Ray Solomonoff
* {{cite conference|ref=harv|last=Solomonoff|first=Ray |authorlink=Ray Solomonoff |year=1956
| year=1956
| title=An Inductive Inference Machine
| title=An Inductive Inference Machine
| conference=Dartmouth Summer Research Conference on Artificial Intelligence|url=http://world.std.com/~rjs/indinf56.pdf |via=std.com, pdf scanned copy of the original
| conference=Dartmouth Summer Research Conference on Artificial Intelligence
| url=http://world.std.com/~rjs/indinf56.pdf
| via=std.com, pdf scanned copy of the original
| access-date=22 March 2011
}} Later published as<br />{{cite book|last=Solomonoff|first=Ray |year=1957|pages=56-62| chapter=An Inductive Inference Machine
| archive-date=26 April 2011
| archive-url=https://web.archive.org/web/20110426161749/http://world.std.com/~rjs/indinf56.pdf
| url-status=live
}} Later published as<br />{{cite book | ref = none
| last=Solomonoff |first=Ray |year=1957 |pages=56–62
| chapter=An Inductive Inference Machine
| title=IRE Convention Record |volume=Section on Information Theory, part 2
| title=IRE Convention Record |volume=Section on Information Theory, part 2
}}
}}
* {{cite web
* {{cite conference|ref=harv|last=Tao|first=Jianhua |first2=Tieniu |last2=Tan|year=2005
|author=Stanford University
|title=Artificial Intelligence Index Report 2023/Chapter 6: Policy and Governance
|url=https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report-2023_CHAPTER_6-1.pdf |publisher=AI Index|access-date=19 June 2023 |date=2023
|archive-date=19 June 2023 |archive-url=https://web.archive.org/web/20230619013609/https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report-2023_CHAPTER_6-1.pdf |url-status=live }}
* {{cite conference
| last1=Tao |first1=Jianhua |first2=Tieniu |last2=Tan |series=Lecture Notes in Computer Science |year=2005
| conference=Affective Computing: A Review
| conference=Affective Computing: A Review
| booktitle=Affective Computing and Intelligent Interaction |volume=[[LNCS]] 3784 |pages=981-995| publisher=Springer |doi=10.1007/11573548
| book-title=Affective Computing and Intelligent Interaction |volume=3784 |pages=981–995
|publisher=Springer |doi=10.1007/11573548
|isbn=978-3-540-29621-8 }}
* {{cite news
| last1 = Taylor | first1 = Josh
| last2 = Hern | first2 = Alex
| title = 'Godfather of AI' Geoffrey Hinton quits Google and warns over dangers of misinformation
| url = https://www.theguardian.com/technology/2023/may/02/geoffrey-hinton-godfather-of-ai-quits-google-warns-dangers-of-machine-learning
| date = May 2, 2023
| newspaper = [[The Guardian]]
}}
}}
* {{cite magazine
* {{cite journal|ref=harv|last=Tecuci|first=Gheorghe |date=2012
|last1 = Thompson
| title=Artificial Intelligence
|first1 = Derek
| journal=Wiley Interdisciplinary Reviews: Computational Statistics
|title = What Jobs Will the Robots Take?
| volume=4 |issue=2 |pages=168-180|publisher=Wiley|doi=10.1002/wics.200
|date = 23 January 2014
|magazine = The Atlantic
|url = https://www.theatlantic.com/business/archive/2014/01/what-jobs-will-the-robots-take/283239/
|access-date = 24 April 2018
|archive-date = 24 April 2018
|archive-url = https://web.archive.org/web/20180424202435/https://www.theatlantic.com/business/archive/2014/01/what-jobs-will-the-robots-take/283239/
|url-status = live
}}
}}
* {{Cite book| ref=harv|last=Thro|first=Ellen |year=1993
* {{cite book
|last=Thro
|first=Ellen
|year=1993
| title=Robotics: The Marriage of Computers and Machines
|title=Robotics: The Marriage of Computers and Machines
|location=New York
| url=https://archive.org/details/isbn_9780816026289| location=New York |publisher=Facts on File |isbn=978-0-8160-2628-9
|publisher=Facts on File
|isbn=978-0-8160-2628-9
|url=https://archive.org/details/isbn_9780816026289
|access-date=22 August 2020
|archive-date=26 July 2020
|archive-url=https://web.archive.org/web/20200726131505/https://archive.org/details/isbn_9780816026289
|url-status=live
}}
}}
* {{Turing 1950}}.
* {{cite news
|last=Toews
* {{cite web|ref = harv|last = van der Walt|first = Christiaan|last2 = Bernard|first2 = Etienne|year = 2006<!--year is presumed based on acknowledgements at the end of the article-->|title = Data characteristics that determine classifier performance|url = http://www.patternrecognition.co.za/publications/cvdwalt_data_characteristics_classifiers.pdf
|first=Rob
|format = PDF|accessdate=5. 8. 2009
|title=Transformers Revolutionized AI. What Will Replace Them?
|archive-url = https://web.archive.org/web/20090325194051/http://www.patternrecognition.co.za/publications/cvdwalt_data_characteristics_classifiers.pdf
|url=https://www.forbes.com/sites/robtoews/2023/09/03/transformers-revolutionized-ai-what-will-replace-them/
|archive-date=25. 3. 2009
|access-date=8 December 2023
|url-status=dead
|work=Forbes
|df =
|date=3 September 2023
}}
}}
* {{Turing 1950}}
* {{cite web|ref=harv|last=Vinge| first=Vernor |authorlink=Vernor Vinge|year=1993
* {{cite book
| title=The Coming Technological Singularity: How to Survive in the Post-Human Era|url=http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html
|ref={{harvid|UNESCO|2021}}
|title=UNESCO Science Report: the Race Against Time for Smarter Development.
|date=2021
|publisher=UNESCO
|location=Paris
|isbn=978-92-3-100450-6
|url=https://unesdoc.unesco.org/ark:/48223/pf0000377433/PDF/377433eng.pdf.multi
|access-date=18 September 2021
|archive-date=18 June 2022
|archive-url=https://web.archive.org/web/20220618233752/https://unesdoc.unesco.org/ark:/48223/pf0000377433/PDF/377433eng.pdf.multi
|url-status=live
}}
}}
* {{Cite journal |last1=Urbina |first1=Fabio |last2=Lentzos |first2=Filippa |last3=Invernizzi |first3=Cédric |last4=Ekins |first4=Sean |title=Dual use of artificial-intelligence-powered drug discovery |journal=Nature Machine Intelligence |date=7 March 2022 |volume=4 |issue=3 |pages=189–191 |doi=10.1038/s42256-022-00465-9 |pmid=36211133 |pmc=9544280 |s2cid=247302391 }}
* {{Cite book| ref=harv|last=Wason| first=P. C. |author-link=Peter Cathcart Wason|last2=Shapiro| first2=D.
* {{cite news
| editor=Foss, B. M.|year=1966
| last1 = Valance | first1 = Christ
|title=Artificial intelligence could lead to extinction, experts warn |url=https://www.bbc.com/news/uk-65746524
|access-date=18 June 2023
|work=BBC News
|date=30 May 2023 |archive-date=17 June 2023
|archive-url=https://web.archive.org/web/20230617200355/https://www.bbc.com/news/uk-65746524 |url-status=live
}}
* {{citation
| last = Valinsky | first = Jordan
| title = Amazon reportedly employs thousands of people to listen to your Alexa conversations
| date = April 11, 2019
| website = CNN.com
| url = https://www.cnn.com/2019/04/11/tech/amazon-alexa-listening/index.html
}}
* {{cite news|last1=Verma|first1=Yugesh|title=A Complete Guide to SHAP – SHAPley Additive exPlanations for Practitioners|url=https://analyticsindiamag.com/a-complete-guide-to-shap-shapley-additive-explanations-for-practitioners/|access-date=25 November 2023|work=Analytics India Magazine |date=25 December 2021|language=en}}
* {{cite news |last1=Vincent |first1=James |title=OpenAI has published the text-generating AI it said was too dangerous to share |url=https://www.theverge.com/2019/11/7/20953040/openai-text-generation-ai-gpt-2-full-model-release-1-5b-parameters |access-date=11 June 2020 |work=The Verge |date=7 November 2019 |language=en |archive-date=11 June 2020 |archive-url=https://web.archive.org/web/20200611054114/https://www.theverge.com/2019/11/7/20953040/openai-text-generation-ai-gpt-2-full-model-release-1-5b-parameters |url-status=live }}
* {{cite news
| last1 = Vincent | first1 = James
| title = The scary truth about AI copyright is nobody knows what will happen next
| date = 15 November 2022
| work = The Verge
| url = https://www.theverge.com/23444685/generative-ai-copyright-infringement-legal-fair-use-training-data
| access-date = 19 June 2023
| archive-date = 19 June 2023
| archive-url = https://web.archive.org/web/20230619055201/https://www.theverge.com/23444685/generative-ai-copyright-infringement-legal-fair-use-training-data |url-status=live
}}
* {{cite news
|last1=Vincent |first1=James
|title=AI is entering an era of corporate control
|date=3 April 2023
|url=https://www.theverge.com/23667752/ai-progress-2023-report-stanford-corporate-control
|access-date=19 June 2023 |work=The Verge |archive-date=19 June 2023 |archive-url=https://web.archive.org/web/20230619005803/https://www.theverge.com/23667752/ai-progress-2023-report-stanford-corporate-control |url-status=live
}}
* {{cite journal
| last=Vinge
| first=Vernor
| author-link=Vernor Vinge
| year=1993
| title=The Coming Technological Singularity: How to Survive in the Post-Human Era
| journal=Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace
| pages=11
| url=http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html
| bibcode=1993vise.nasa...11V
| access-date=14 November 2011
| archive-date=1 January 2007
| archive-url=https://web.archive.org/web/20070101133646/http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html
| url-status=dead
}}
* {{cite magazine|last1=Waddell|first1=Kaveh|title=Chatbots Have Entered the Uncanny Valley|url=https://www.theatlantic.com/technology/archive/2017/04/uncanny-valley-digital-assistants/523806/|access-date=24 April 2018|magazine=The Atlantic|date=2018|archive-date=24 April 2018|archive-url=https://web.archive.org/web/20180424202350/https://www.theatlantic.com/technology/archive/2017/04/uncanny-valley-digital-assistants/523806/|url-status=live}}
* {{cite book |first=Wendell |last=Wallach |year=2010 |title=Moral Machines |publisher=Oxford University Press}}
* {{cite book
| last1=Wason
| first1=P. C.
| author-link=Peter Cathcart Wason
| last2=Shapiro
| first2=D.
| editor=Foss, B. M.
| year=1966
| title=New horizons in psychology
| title=New horizons in psychology
| url=https://archive.org/details/newhorizonsinpsy0000foss_f7d6| location=Harmondsworth | publisher=Penguin
| chapter-url=https://archive.org/details/newhorizonsinpsy0000foss
| location=Harmondsworth
| publisher=Penguin
| chapter=Reasoning
| chapter=Reasoning
| access-date=18 November 2019
| archive-date=26 July 2020
| archive-url=https://web.archive.org/web/20200726131518/https://archive.org/details/newhorizonsinpsy0000foss
| url-status=live
}}
* {{cite journal |last1=Weng |first1=J. |last2=McClelland |last3=Pentland |first3=A. |last4=Sporns |first4=O. |last5=Stockman |first5=I. |last6=Sur |first6=M. |last7=Thelen |first7=E. |year=2001 |url=http://www.cse.msu.edu/dl/SciencePaper.pdf |via=msu.edu |doi=10.1126/science.291.5504.599 |pmid=11229402 |title=Autonomous mental development by robots and animals |journal=Science |volume=291 |issue=5504 |pages=599–600 |s2cid=54131797 |access-date=4 June 2013 |archive-date=4 September 2013 |archive-url=https://web.archive.org/web/20130904235242/http://www.cse.msu.edu/dl/SciencePaper.pdf |url-status=live }}
* {{cite news
| ref = {{harvid|Scientific American|1999}}
| title = What is 'fuzzy logic'? Are there computers that are inherently fuzzy and do not apply the usual binary logic?
| date = 21 October 1999
| language = en
| work = Scientific American
| url = https://www.scientificamerican.com/article/what-is-fuzzy-logic-are-t/
| access-date = 5 May 2018
| archive-date = 6 May 2018
| archive-url = https://web.archive.org/web/20180506035133/https://www.scientificamerican.com/article/what-is-fuzzy-logic-are-t/
| url-status = live
}}
* {{citation
| last = Williams | first = Rhiannon
| title = Humans may be more likely to believe disinformation generated by AI
| date = June 28, 2023
| magazine = [[MIT Technology Review]]
| url = https://www.technologyreview.com/2023/06/28/1075683/humans-may-be-more-likely-to-believe-disinformation-generated-by-ai/
}}
* {{Cite journal|last1=Wirtz|first1=Bernd W.|last2=Weyerer|first2=Jan C.|last3=Geyer|first3=Carolin|date=24 July 2018|title=Artificial Intelligence and the Public Sector – Applications and Challenges|journal=International Journal of Public Administration|volume=42|issue=7|pages=596–615|doi=10.1080/01900692.2018.1498103|s2cid=158829602|issn=0190-0692|url=https://zenodo.org/record/3569435|access-date=22 August 2020|archive-date=18 August 2020|archive-url=https://web.archive.org/web/20200818131415/https://zenodo.org/record/3569435|url-status=live}}
* {{citation
| first = Matteo
| last = Wong
| title = ChatGPT Is Already Obsolete
| date = 19 May 2023
| magazine = The Atlantic
| url = https://www.theatlantic.com/technology/archive/2023/05/ai-advancements-multimodal-models/674113/
}}
* {{citation
| last = Yudkowsky
| first = E
| title = Artificial Intelligence as a Positive and Negative Factor in Global Risk
| year = 2008
| url = http://intelligence.org/files/AIPosNegFactor.pdf
| work = Global Catastrophic Risks
| publisher = Oxford University Press, 2008
| bibcode = 2008gcr..book..303Y
| access-date = 24 September 2021
| archive-date = 19 October 2013
| archive-url = https://web.archive.org/web/20131019182403/http://intelligence.org/files/AIPosNegFactor.pdf
| url-status = live
}}
}}
* Ashish Vaswani, Noam Shazeer, Niki Parmar et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). Seminal paper on [[transformer (machine learning model)|transformer]]s.
* {{Cite book| ref=harv|last=Weizenbaum| first = Joseph |authorlink=Joseph Weizenbaum|year=1976
* [[David Autor|Autor, David H.]], "Why Are There Still So Many Jobs? The History and Future of Workplace Automation" (2015) 29(3) ''Journal of Economic Perspectives'' 3.
| title = [[Computer Power and Human Reason]]|publisher = W.H. Freeman & Company | location = San Francisco|isbn=978-0-7167-0464-5|pages=}}
* [[Margaret Boden|Boden, Margaret]], ''Mind As Machine'', [[Oxford University Press]], 2006.
* {{cite journal|ref=harv|last=Weng|first=J. |last2=McClelland |last3=Pentland|first3=A. |last4=Sporns|first4=O.|last5=Stockman|first5=I. |last6=Sur|first6=M. |last7=Thelen|first7=E. |year=2001|url=http://www.cse.msu.edu/dl/SciencePaper.pdf |via=msu.edu | doi= 10.1126/science.291.5504.599
* [[Kenneth Cukier|Cukier, Kenneth]], "Ready for Robots? How to Think about the Future of AI", ''[[Foreign Affairs]]'', vol. 98, no. 4 (July/August 2019), pp.&nbsp;192–98. [[George Dyson (science historian)|George Dyson]], historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple enough to be understandable will not be complicated enough to behave intelligently, while any system complicated enough to behave intelligently will be too complicated to understand." (p.&nbsp;197.) Computer scientist [[Alex Pentland]] writes: "Current [[machine learning|AI machine-learning]] [[algorithm]]s are, at their core, dead simple stupid. They work, but they work by brute force." (p.&nbsp;198.)
| title=Autonomous mental development by robots and animals |work=Science |volume=291 |pages=599-600
* [[Pedro Domingos|Domingos, Pedro]], "Our Digital Doubles: AI will serve our species, not control it", ''[[Scientific American]]'', vol. 319, no. 3 (September 2018), pp.&nbsp;88–93. "AIs are like [[autistic savant]]s and will remain so for the foreseeable future.... AIs lack [[common sense]] and can easily make errors that a human never would... They are also liable to take our instructions too literally, giving us precisely what we asked for instead of what we actually wanted." (p.&nbsp;93.)
* Gertner, Jon. (2023) "Wikipedia's Moment of Truth: Can the online encyclopedia help teach A.I. chatbots to get their facts right — without destroying itself in the process?" ''New York Times Magazine'' (July 18, 2023) [https://www.nytimes.com/2023/07/18/magazine/wikipedia-ai-chatgpt.html online]
* [[James Gleick|Gleick, James]], "The Fate of Free Will" (review of [[Kevin J. Mitchell]], ''Free Agents: How Evolution Gave Us Free Will'', Princeton University Press, 2023, 333 pp.), ''[[The New York Review of Books]]'', vol. LXXI, no. 1 (18 January 2024), pp. 27–28, 30. "[[Agency (philosophy)|Agency]] is what distinguishes us from machines. For biological creatures, [[reason]] and [[motivation|purpose]] come from acting in the world and experiencing the consequences. Artificial intelligences – disembodied, strangers to blood, sweat, and tears – have no occasion for that." (p. 30.)
* Hanna, Alex, and [[Emily M. Bender]], "Theoretical AI Harms Are a Distraction: Fearmongering about artificial intelligence's potential to end humanity shrouds the real harm it already causes", ''[[Scientific American]]'', vol 330, no. 2 (February 2024), pp. 69–70. "[H]ype [about "[[existential risks]]"] surrounds many AI firms, but their technology already enables myriad harms, including... [[discrimination]] in housing, criminal justice, and health care, as well as the spread of [[hate speech]] and [[misinformation]]... [[Large language models]] extrude... fluent... coherent-seeming text but have no [[understanding]] of what the text means, let alone the ability to [[reason]].... (p. 69.) [T]hat output... becomes a noxious... insidious pollutant of our [[information ecosystem]].... [T]oo many... publications [about] AI come from corporate labs or... academic groups that receive... industry funding. Many of these publications are based on [[junk science]] [that] is nonreproducible... is full of [[Promotion (marketing)|hype]], and uses evaluation methods that do not measure what they purport to... Meanwhile 'AI doomers' cite this junk science... to [misdirect] attention [to] the fantasy of all-powerful machines possibly going rogue and destroying humanity." (p. 70.)
* [[Kenna Hughes-Castleberry|Hughes-Castleberry, Kenna]], "A Murder Mystery Puzzle: The literary puzzle ''[[Cain's Jawbone]]'', which has stumped humans for decades, reveals the limitations of natural-language-processing algorithms", ''[[Scientific American]]'', vol. 329, no. 4 (November 2023), pp.&nbsp;81–82. "This murder mystery competition has revealed that although NLP ([[natural-language processing]]) models are capable of incredible feats, their abilities are very much limited by the amount of [[context (linguistics)|context]] they receive. This [...] could cause [difficulties] for researchers who hope to use them to do things such as analyze [[ancient language]]s. In some cases, there are few historical records on long-gone [[civilization]]s to serve as [[training data]] for such a purpose." (p.&nbsp;82.)
* [[Daniel Immerwahr|Immerwahr, Daniel]], "Your Lying Eyes: People now use A.I. to generate fake videos indistinguishable from real ones. How much does it matter?", ''[[The New Yorker]]'', 20 November 2023, pp.&nbsp;54–59. "If by '[[deepfakes]]' we mean realistic videos produced using artificial intelligence that actually deceive people, then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their role better resembles that of [[cartoon]]s, especially smutty ones." (p.&nbsp;59.)
* Johnston, John (2008) ''The Allure of Machinic Life: Cybernetics, Artificial Life, and the New AI'', MIT Press.
* {{cite journal |last1=Jumper |first1=John |last2=Evans |first2=Richard |last3=Pritzel |first3=Alexander |last4=Green |first4=Tim |last5=Figurnov |first5=Michael |last6=Ronneberger |first6=Olaf |last7=Tunyasuvunakool |first7=Kathryn |last8=Bates |first8=Russ |last9=Žídek |first9=Augustin |last10=Potapenko |first10=Anna |last11=Bridgland |first11=Alex |last12=Meyer |first12=Clemens |last13=Kohl |first13=Simon A. A. |last14=Ballard |first14=Andrew J. |last15=Cowie |first15=Andrew |last16=Romera-Paredes |first16=Bernardino |last17=Nikolov |first17=Stanislav |last18=Jain |first18=Rishub |last19=Adler |first19=Jonas |last20=Back |first20=Trevor |last21=Petersen |first21=Stig |last22=Reiman |first22=David |last23=Clancy |first23=Ellen |last24=Zielinski |first24=Michal |last25=Steinegger |first25=Martin |last26=Pacholska |first26=Michalina |last27=Berghammer |first27=Tamas |last28=Bodenstein |first28=Sebastian |last29=Silver |first29=David |last30=Vinyals |first30=Oriol |last31=Senior |first31=Andrew W. |last32=Kavukcuoglu |first32=Koray |last33=Kohli |first33=Pushmeet |last34=Hassabis |first34=Demis |display-authors=3 |title=Highly accurate protein structure prediction with AlphaFold |journal=Nature |date=26 August 2021 |volume=596 |issue=7873 |pages=583–589 |doi=10.1038/s41586-021-03819-2 |pmid=34265844 |pmc=8371605 |bibcode=2021Natur.596..583J |s2cid=235959867 }}
* {{cite journal |last1=LeCun |first1=Yann |last2=Bengio |first2=Yoshua |last3=Hinton |first3=Geoffrey |title=Deep learning |journal=Nature |date=28 May 2015 |volume=521 |issue=7553 |pages=436–444 |doi=10.1038/nature14539 |pmid=26017442 |bibcode=2015Natur.521..436L |s2cid=3074096 |url=https://www.nature.com/articles/nature14539 |access-date=19 June 2023 |archive-date=5 June 2023 |archive-url=https://web.archive.org/web/20230605235832/https://www.nature.com/articles/nature14539 |url-status=live }}
* [[Gary Marcus|Marcus, Gary]], "Am I Human?: Researchers need new ways to distinguish artificial intelligence from the natural kind", ''[[Scientific American]]'', vol. 316, no. 3 (March 2017), pp.&nbsp;61–63. Marcus points out a so far insuperable stumbling block to artificial intelligence: an incapacity for reliable [[disambiguation]]. "[V]irtually every sentence [that people generate] is [[ambiguity|ambiguous]], often in multiple ways. Our brain is so good at comprehending [[language]] that we do not usually notice." A prominent example is the "pronoun disambiguation problem" ("PDP"): a machine has no way of determining to whom or what a [[pronoun]] in a sentence—such as "he", "she" or "it"—refers.
* [[Gary Marcus|Marcus, Gary]], "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the same old problems", ''[[Scientific American]]'', vol. 327, no. 4 (October 2022), pp.&nbsp;42–45.
* {{cite book |last1=Mitchell |first1=Melanie |title=Artificial intelligence: a guide for thinking humans |date=2019 |publisher=Farrar, Straus and Giroux |location=New York |isbn=9780374257835}}
* {{cite journal |last1=Mnih |first1=Volodymyr |last2=Kavukcuoglu |first2=Koray |last3=Silver |first3=David |last4=Rusu |first4=Andrei A. |last5=Veness |first5=Joel |last6=Bellemare |first6=Marc G. |last7=Graves |first7=Alex |last8=Riedmiller |first8=Martin |last9=Fidjeland |first9=Andreas K. |last10=Ostrovski |first10=Georg |last11=Petersen |first11=Stig |last12=Beattie |first12=Charles |last13=Sadik |first13=Amir |last14=Antonoglou |first14=Ioannis |last15=King |first15=Helen |last16=Kumaran |first16=Dharshan |last17=Wierstra |first17=Daan |last18=Legg |first18=Shane |last19=Hassabis |first19=Demis |display-authors=3 |title=Human-level control through deep reinforcement learning |journal=Nature |date=26 February 2015 |volume=518 |issue=7540 |pages=529–533 |doi=10.1038/nature14236 |pmid=25719670 |bibcode=2015Natur.518..529M |s2cid=205242740 |url=https://www.nature.com/articles/nature14236/ |access-date=19 June 2023 |archive-date=19 June 2023 |archive-url=https://web.archive.org/web/20230619055525/https://www.nature.com/articles/nature14236/ |url-status=live }} Introduced [[Deep Q-learning|DQN]], which produced human-level performance on some Atari games.
* [[Eyal Press|Press, Eyal]], "In Front of Their Faces: Does facial-recognition technology lead police to ignore contradictory evidence?", ''[[The New Yorker]]'', 20 November 2023, pp.&nbsp;20–26.
* [[Eka Roivainen|Roivainen, Eka]], "AI's IQ: [[ChatGPT]] aced a [standard intelligence] test but showed that [[intelligence]] cannot be measured by [[IQ]] alone", ''[[Scientific American]]'', vol. 329, no. 1 (July/August 2023), p.&nbsp;7. "Despite its high IQ, [[ChatGPT]] fails at tasks that require real humanlike reasoning or an understanding of the physical and social world.... ChatGPT seemed unable to reason logically and tried to rely on its vast database of... facts derived from online texts."
* {{cite journal | last1 = Serenko | first1 = Alexander | author2 = Michael Dohan | year = 2011 | title = Comparing the expert survey and citation impact journal ranking methods: Example from the field of Artificial Intelligence | url = http://www.aserenko.com/papers/JOI_AI_Journal_Ranking_Serenko.pdf | journal = Journal of Informetrics | volume = 5 | issue = 4 | pages = 629–49 | doi = 10.1016/j.joi.2011.06.002 | access-date = 12 September 2013 | archive-date = 4 October 2013 | archive-url = https://web.archive.org/web/20131004212839/http://www.aserenko.com/papers/JOI_AI_Journal_Ranking_Serenko.pdf | url-status = live }}
* {{cite journal |last1=Silver |first1=David |last2=Huang |first2=Aja |last3=Maddison |first3=Chris J. |last4=Guez |first4=Arthur |last5=Sifre |first5=Laurent |last6=van den Driessche |first6=George |last7=Schrittwieser |first7=Julian |last8=Antonoglou |first8=Ioannis |last9=Panneershelvam |first9=Veda |last10=Lanctot |first10=Marc |last11=Dieleman |first11=Sander |last12=Grewe |first12=Dominik |last13=Nham |first13=John |last14=Kalchbrenner |first14=Nal |last15=Sutskever |first15=Ilya |last16=Lillicrap |first16=Timothy |last17=Leach |first17=Madeleine |last18=Kavukcuoglu |first18=Koray |last19=Graepel |first19=Thore |last20=Hassabis |first20=Demis |display-authors=3 |title=Mastering the game of Go with deep neural networks and tree search |journal=Nature |date=28 January 2016 |volume=529 |issue=7587 |pages=484–489 |doi=10.1038/nature16961 |pmid=26819042 |bibcode=2016Natur.529..484S |s2cid=515925 |url=https://www.nature.com/articles/nature16961 |access-date=19 June 2023 |archive-date=18 June 2023 |archive-url=https://web.archive.org/web/20230618213059/https://www.nature.com/articles/nature16961 |url-status=live }}
* {{Cite book
| ref={{harvid|European Commission|2020}}
| url=https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
| title=White Paper: On Artificial Intelligence – A European approach to excellence and trust
| publisher=European Commission
| year=2020
| location=Brussels
| access-date=20 February 2020
| archive-date=20 February 2020
| archive-url=https://web.archive.org/web/20200220173419/https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
| url-status=live
}}
}}
* {{Cite web|ref=harv|url=http://www-formal.stanford.edu/jmc/whatisai/node3.html
|title=Applications of AI
|website=www-formal.stanford.edu|accessdate=25. 9. 2016}}
{{refend}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Artificial intelligence}}
{{Commonscat|Artificial intelligence}}
* {{sr}} ''[http://www.matf.bg.ac.rs/~janicic/courses/vi.pdf Предраг Јаничић, Младен Николић, Вештачка интелигенција]{{Мртва веза}}''
* {{sr}} ''[http://solair.eunet.rs/~ilicv/AI_index.htm Велибор Илић, Вештачка интелигенција]''
* {{sr}} ''[http://solair.eunet.rs/~ilicv/AI_index.htm Велибор Илић, Вештачка интелигенција]''
* {{en}} ''[http://aied.inf.ed.ac.uk/ International Journal of Artificial Intelligence in Education (IJAIED)] {{Wayback|url=http://aied.inf.ed.ac.uk/ |date=20081226065711 }}'' - слободан приступ чланцима до броја 16. (2006)
* {{en}} ''[http://aied.inf.ed.ac.uk/ International Journal of Artificial Intelligence in Education (IJAIED)] {{Wayback|url=http://aied.inf.ed.ac.uk/ |date=20081226065711 }}'' - слободан приступ чланцима до броја 16. (2006)
* {{IEP|art-inte|Artificial Intelligence}}
* {{cite SEP |url-id=logic-ai |title=Logic and Artificial Intelligence |last=Thomason |first=Richmond}}
* [https://www.bbc.co.uk/programmes/p003k9fc Artificial Intelligence]. BBC Radio 4 discussion with John Agar, Alison Adam & Igor Aleksander (''In Our Time'', 8 December 2005).
* [https://datascience.cancer.gov/news-events/blog/theranostics-and-ai-next-advance-cancer-precision-medicine Theranostics and AI—The Next Advance in Cancer Precision Medicine].


{{нормативна контрола}}
{{нормативна контрола}}

Верзија на датум 10. март 2024. у 21:55

Хондин интелигентни хуманоидни робот ASIMO

Вештачка интелигенција (такође VI) је подобласт рачунарства која развија и проучава интелигентне машине.[1][2] Вештачка интелигенција је интелигенција машина или софтвера, за разлику од интелигенције живих бића, првенствено људи. Циљ истраживања вештачке интелигенције је развијање програма (софтвера), који ће рачунарима омогућити да се понашају на начин који би се могао окарактерисати интелигентним. Прва истраживања се вежу за саме корене рачунарства. Идеја о стварању машина које ће бити способне да обављају различите задатке интелигентно, била је централна преокупација научника рачунарства који су се определили за истраживање вештачке интелигенције, током целе друге половине 20. века. Савремена истраживања у вештачкој интелигенцији су оријентисана на експертске и преводилачке системе у ограниченим доменима, препознавање природног говора и писаног текста, аутоматске доказиваче теорема, као и константно интересовање за стварање генерално интелигентних аутономних агената. Вештачка интелигенција као појам у ширем смислу, означава капацитет једне вештачке творевине за реализовање функција које су карактеристика људског размишљања. Могућност развоја сличне творевине је будила интересовање људи још од античког доба; ипак, тек у другој половини XX века таква могућност је добила прва оруђа (рачунаре), чиме се отворио пут за тај подухват.[3] Потпомогнута напретком модерне науке, истраживања на пољу вештачке интелигенције се развијају у два основна смера: психолошка и физиолошка истраживања природе људског ума, и технолошки развој све сложенијих рачунарских система. У том смислу, појам вештачке интелигенције се првобитно приписао системима и рачунарским програмима са способностима реализовања сложених задатака, односно симулацијама функционисања људског размишљања, иако и дан данас, прилично далеко од циља. У тој сфери, најважније области истраживања су обрада података, препознавање модела различитих области знања, игре и примијењене области, као на пример медицина. AI технологија се широко користи у индустрији, влади и науци. Неке апликације високог профила су: напредни веб претраживачи (нпр. Гоогле претрага), системи препорука (које користе YouTube, Амазон и Нетфликс), интеракција путем људског говора (нпр. Гугл асистант, Сири и Алекса), самостална вожња аутомобиле (нпр. Вејмо), генеративни и креативни алати (нпр. ChatGPT и AI уметност), и надљудска игру и анализа у стратешким играма (нпр. шах и го).[4]

Неке области данашњих истраживања обрађивања података се концентришу на програме који настоје оспособити рачунар за разумевање писане и вербалне информације, стварање резимеа, давање одговара на одређена питања или редистрибуцију података корисницима заинтересованим за одређене делове тих информација. У тим програмима је од суштинског значаја капацитет система за конструисање граматички коректних реченица и успостављање везе између речи и идеја, односно идентификовање значења. Истраживања су показала да, док је проблеме структурне логике језика, односно његове синтаксе, могуће решити програмирањем одговарајућих алгоритама, проблем значења, или семантика, је много дубљи и иде у правцу аутентичне вештачке интелигенције. Основне тенденције данас, за развој система VI представљају: развој експертских система и развој неуронских мрежа. Експертски системи покушавају репродуковати људско размишљање преко симбола. Неуронске мреже то раде више из биолошке перспективе (рекреирају структуру људског мозга уз помоћ генетских алгоритама). Упркос сложености оба система, резултати су веома далеко од стварног интелигентног размишљања. Многи научници су скептици према могућности развијања истинске VI. Функционисање људског размишљања, још увек није дубље познато, из ког разлога ће информатички дизајн интелигентних система, још дужи временски период бити у суштини онеспособљен за представљање тих непознатих и сложених процеса. Истраживања у VI су фокусирана на следеће компоненте интелигенције: учење, размишљање, решавање проблема, перцепција и разумијевање природног језика.

Алан Тјуринг је био прва особа која је спровела значајна истраживања у области коју је назвао машинска интелигенција.[5] Вештачка интелигенција је основана као академска дисциплина 1956. године.[6] Поље је прошло кроз више циклуса оптимизма,[7][8] праћених периодима разочарења и губитка финансирања, познатим као AI зима.[9][10] Финансирање и интересовање су се знатно повећали након 2012. када је дубоко учење надмашило све претходне технике вештачке интелигенције,[11] и после 2017. са архитектуром трансформатора.[12] Ово је довело до AI пролећа почетком 2020-их, при чему су компаније, универзитети и лабораторије које су претежно са седиштем у Сједињеним Државама, остварили значајне пионирске напретке у вештачкој интелигенцији.[13] Све већа употреба вештачке интелигенције у 21. веку утиче на друштвени и економски помак ка повећању аутоматизације, доношења одлука заснованих на подацима и интеграцији AI система у различите економске секторе и области живота, утичући на тржишта рада, здравство, владу , индустрија и образовање. Ово поставља питања о етичким импликацијама и ризицима од AI, што подстиче дискусије о регулаторним политикама како би се осигурала безбедност и предности технологије. Различите подобласти AI истраживања су усредсређене на одређене циљеве и употребу специфичних алата. Традиционални циљеви истраживања вештачке интелигенције обухватају расуђивање, представљање знања, планирање, учење, обрада природног језика, перцепција и подршка роботици.[а] Општа интелигенција (способност да се обави било који задатак који човек може да изврши) спада у дугорочне цињеве у овој области.[14] Да би решили ове проблеме, истраживачи вештачке интелигенције су прилагодили и интегрисали широк спектар техника решавања проблема, укључујући претрагу и математичку оптимизацију, формалну логику, вештачке неуронске мреже и методе засноване на статистици, операционом истраживању и економији.[б] AI се такође ослања на психологију, лингвистику, филозофију, неуронауку и друге области.[15]

Циљеви

Општи проблем симулације (или стварања) интелигенције подељен је на подпроблеме. Они се састоје од одређених особина или способности које истраживачи очекују да интелигентни систем покаже. Испод описане особине су задобиле највише пажње и покривају обим истраживања вештачке интелигенције.[а]

Основни циљеви истраживања на пољу вештачке интелигенције

Тренутно, када су у питању истраживања на пољу вештачке интелигенције, могуће је постићи два комплементарна циља, који респективно наглашавају два аспекта вештачке интелигенције, а то су теоријски и технолошки аспект.

Први циљ је студија људских когнитивних процеса уопште, што потврђује дефиницију Патрика Ј. Хејеса - „студија интелигенције као компутације“, чиме се вештачка интелигенција усмерава ка једној својеврсној студији интелигентног понашања код људи.

Вештачка интелигенција, као област информатике, бави се пројектовањем програмских решења за проблеме које настоји решити.

Размишљање и решавање проблема

Размишљање је процес извлачења закључака који одговарају датој ситуацији. Закључци се класификују као дедуктивни и индуктивни. Пример дедуктивног начина закључивања би могао бити, „Саво је или у музеју, или у кафићу. Није у кафићу; онда је сигурно у музеју“; и индуктивног, „Претходне несреће ове врсте су биле последица грешке у систему; стога је и ова несрећа узрокована грешком у систему“. Најзначајнија разлика између ова два начина закључивања је да, у случају дедуктивног размишљања, истинитост премисе гарантује истинитост закључка, док у случају индуктивног размишљања истинитост премисе даје подршку закључку без давања апсолутне сигурности његовој истинитости. Индуктивно закључивање је уобичајено у наукама у којима се сакупљају подаци и развијају провизиони модели за опис и предвиђање будућег понашања, све док се не појаве аномалије у моделу, који се тада реконструише. Дедуктивно размишљање је уобичајено у математици и логици, где детаљно обрађене структуре непобитних теорема настају од мањих скупова основних аксиома и правила. Постоје значајни успеси у програмирању рачунара за извлачење закључака, нарочито дедуктивне природе. Ипак, истинско размишљање се састоји од сложенијих аспеката; укључује закључивање на начин којим ће се решити одређени задатак, или ситуација. Ту се налази један од највећих проблема с којим се сусреће VI.

Решавање проблема, нарочито у вештачкој интелигенцији, карактерише систематска претрага у рангу могућих акција с циљем изналажења неког раније дефинисаног решења. Методе решавања проблема се деле на оне посебне и оне опште намене. Метода посебне намене је тражење адаптираног решења за одређени проблем и садржи врло специфичне особине ситуација од којих се проблем састоји. Супротно томе, метод опште намене се може применити на шири спектар проблема. Техника опште намене која се користи у VI је метод крајње анализе, део по део, или постепено додавање, односно редуковање различитости између тренутног стања и крајњег циља. Програм бира акције из листе метода - у случају једноставног робота кораци су следећи: PICKUP, PUTDOWN, MOVEFROWARD, MOVEBACK, MOVELEFT и MOVERIGHT, све док се циљ не постигне. Већи број различитих проблема су решени преко програма вештачке интелигенције. Неки од примера су тражење победничког потеза, или секвенце потеза у играма, сложени математички докази и манипулација виртуелних објеката у вештачким, односно синтетичким рачунарским световима.

Early researchers developed algorithms that imitated step-by-step reasoning that humans use when they solve puzzles or make logical deductions.[16] By the late 1980s and 1990s, methods were developed for dealing with uncertain or incomplete information, employing concepts from probability and economics.[17]

Many of these algorithms are insufficient for solving large reasoning problems because they experience a "combinatorial explosion": they became exponentially slower as the problems grew larger.[18] Even humans rarely use the step-by-step deduction that early AI research could model. They solve most of their problems using fast, intuitive judgments.[19] Accurate and efficient reasoning is an unsolved problem.

Knowledge representation

An ontology represents knowledge as a set of concepts within a domain and the relationships between those concepts.

Knowledge representation and knowledge engineering[20] allow AI programs to answer questions intelligently and make deductions about real-world facts. Formal knowledge representations are used in content-based indexing and retrieval,[21] scene interpretation,[22] clinical decision support,[23] knowledge discovery (mining "interesting" and actionable inferences from large databases),[24] and other areas.[25]

A knowledge base is a body of knowledge represented in a form that can be used by a program. An ontology is the set of objects, relations, concepts, and properties used by a particular domain of knowledge.[26] Knowledge bases need to represent things such as: objects, properties, categories and relations between objects;[27] situations, events, states and time;[28] causes and effects;[29] knowledge about knowledge (what we know about what other people know);[30] default reasoning (things that humans assume are true until they are told differently and will remain true even when other facts are changing);[31] and many other aspects and domains of knowledge.

Among the most difficult problems in knowledge representation are: the breadth of commonsense knowledge (the set of atomic facts that the average person knows is enormous);[32] and the sub-symbolic form of most commonsense knowledge (much of what people know is not represented as "facts" or "statements" that they could express verbally).[19] There is also the difficulty of knowledge acquisition, the problem of obtaining knowledge for AI applications.[в]

Planning and decision making

An "agent" is anything that perceives and takes actions in the world. A rational agent has goals or preferences and takes actions to make them happen.[г][35] In automated planning, the agent has a specific goal.[36] In automated decision making, the agent has preferences – there are some situations it would prefer to be in, and some situations it is trying to avoid. The decision making agent assigns a number to each situation (called the "utility") that measures how much the agent prefers it. For each possible action, it can calculate the "expected utility": the utility of all possible outcomes of the action, weighted by the probability that the outcome will occur. It can then choose the action with the maximum expected utility.[37]

In classical planning, the agent knows exactly what the effect of any action will be.[38] In most real-world problems, however, the agent may not be certain about the situation they are in (it is "unknown" or "unobservable") and it may not know for certain what will happen after each possible action (it is not "deterministic"). It must choose an action by making a probabilistic guess and then reassess the situation to see if the action worked.[39]

In some problems, the agent's preferences may be uncertain, especially if there are other agents or humans involved. These can be learned (e.g., with inverse reinforcement learning) or the agent can seek information to improve its preferences.[40] Information value theory can be used to weigh the value of exploratory or experimental actions.[41] The space of possible future actions and situations is typically intractably large, so the agents must take actions and evaluate situations while being uncertain what the outcome will be.

A Markov decision process has a transition model that describes the probability that a particular action will change the state in a particular way, and a reward function that supplies the utility of each state and the cost of each action. A policy associates a decision with each possible state. The policy could be calculated (e.g., by iteration), be heuristic, or it can be learned.[42]

Game theory describes rational behavior of multiple interacting agents, and is used in AI programs that make decisions that involve other agents.[43]

Учење

Постоји више различитих облика учења који су примењени на област вештачке интелигенције. Најједноставнији се односи на учење на грешкама преко покушаја. На пример, најједноставнији рачунарски програм за решавање проблема матирања у једном потезу у шаху, је истраживање мат позиције случајним потезима. Једном изнађено решење, програм може запамтити позицију и искористити је следећи пут када се нађе у идентичној ситуацији. Једноставно памћење индивидуалних потеза и процедура - познато као механичко учење - је врло лако имплементирати у рачунарски систем. Приликом покушаја имплементације тзв. уопштавања, јављају се већи проблеми и захтеви. Уопштавање се састоји од примене прошлих искустава на аналогне нове ситуације. На пример, програм који учи прошла времена глагола на српском језику механичким учењем, неће бити способан да изведе прошло време, рецимо глагола скочити, док се не нађе пред обликом глагола скочио, где ће програм који је способан за уопштавање научити „додај -о и уклони -ти“ правило, те тако формирати прошло време глагола скочити, заснивајући се на искуству са сличним глаголима.

Machine learning is the study of programs that can improve their performance on a given task automatically.[44] It has been a part of AI from the beginning.[д]

There are several kinds of machine learning. Unsupervised learning analyzes a stream of data and finds patterns and makes predictions without any other guidance.[47] Supervised learning requires a human to label the input data first, and comes in two main varieties: classification (where the program must learn to predict what category the input belongs in) and regression (where the program must deduce a numeric function based on numeric input).[48]

In reinforcement learning the agent is rewarded for good responses and punished for bad ones. The agent learns to choose responses that are classified as "good".[49] Transfer learning is when the knowledge gained from one problem is applied to a new problem.[50] Deep learning is a type of machine learning that runs inputs through biologically inspired artificial neural networks for all of these types of learning.[51]

Computational learning theory can assess learners by computational complexity, by sample complexity (how much data is required), or by other notions of optimization.[52]

Natural language processing

Natural language processing (NLP)[53] allows programs to read, write and communicate in human languages such as English. Specific problems include speech recognition, speech synthesis, machine translation, information extraction, information retrieval and question answering.[54]

Early work, based on Noam Chomsky's generative grammar and semantic networks, had difficulty with word-sense disambiguation[ђ] unless restricted to small domains called "micro-worlds" (due to the common sense knowledge problem[32]). Margaret Masterman believed that it was meaning, and not grammar that was the key to understanding languages, and that thesauri and not dictionaries should be the basis of computational language structure.

Modern deep learning techniques for NLP include word embedding (representing words, typically as vectors encoding their meaning),[55] transformers (a deep learning architecture using an attention mechanism),[56] and others.[57] In 2019, generative pre-trained transformer (or "GPT") language models began to generate coherent text,[58][59] and by 2023 these models were able to get human-level scores on the bar exam, SAT test, GRE test, and many other real-world applications.[60]

Perception

Machine perception is the ability to use input from sensors (such as cameras, microphones, wireless signals, active lidar, sonar, radar, and tactile sensors) to deduce aspects of the world. Computer vision is the ability to analyze visual input.[61]

The field includes speech recognition,[62] image classification,[63] facial recognition, object recognition,[64] and robotic perception.[65]

Social intelligence

Kismet, a robot head which was made in the 1990s; a machine that can recognize and simulate emotions.[66]

Affective computing is an interdisciplinary umbrella that comprises systems that recognize, interpret, process or simulate human feeling, emotion and mood.[67] For example, some virtual assistants are programmed to speak conversationally or even to banter humorously; it makes them appear more sensitive to the emotional dynamics of human interaction, or to otherwise facilitate human–computer interaction.

However, this tends to give naïve users an unrealistic conception of the intelligence of existing computer agents.[68] Moderate successes related to affective computing include textual sentiment analysis and, more recently, multimodal sentiment analysis, wherein AI classifies the affects displayed by a videotaped subject.[69]

General intelligence

A machine with artificial general intelligence should be able to solve a wide variety of problems with breadth and versatility similar to human intelligence.[14]

Проблем дефиниције вештачке интелигенције

За разлику од других области, у вештачкој интелигенцији не постоји сагласност око једне дефиниције, него их има више зависно од различитих погледа и метода за решавање проблема.

Дефиниција и циљеви

Упркос времену које је прошло од када је Џон Макарти дао име овој области на конференцији одржаној 1956. године у Дартмуду, није нимало лако тачно дефинисати садржај и достигнућа вештачке интелигенције.

Највероватније, једна од најкраћих и најједноставнијих карактеристика која се приписује вештачкој интелигенцији, парафразирајући Марвина Минског, (једног од стручњака и најпознатијих истраживача вештачке интелигенције), је „конструисање рачунарских система са особинама које би код људских бића биле окарактерисане као интелигентне“.

Тјурингов тест

Људско и вештачко интелигентно понашање.

У познатом такозваном Тјуринговом тесту, који је Алан Тјуринг описао и објавио у једном чланку из 1950. године, под насловом Computing machinery and intelligence (Рачунске машине и интелигенција), предлаже се један експеримент чији је циљ откривање интелигентног понашања једне машине. Тест полази од једне игре у којој испитивач треба да погоди пол два интерлокутора, A и Б, а који се налазе у посебним и одвојеним собама. Иако обоје тврде да су женског пола, у ствари ради се о мушкарцу и жени. У изворном Тјуринговом предлогу урађена је извесна модификација, те је жену заменио рачунар. Испитивач треба да погоди ко је од њих машина, полазећи од њиховог међусобног разговора и имајући у виду да обоје тврде да су људи. Задатак треба постићи упркос чињеници да ниједан од интерлокутора није обавезан да говори истину, те на пример, машина може одлучити да да погрешан резултат једне аритметичке операције, или чак да га саопшти много касније како би варка била уверљивија.

По оптимистичкој хипотези самог Тјуринга, око 2000. године, већ је требало да постоје рачунари оспособљени за игру ове игре довољно добро, тако да просечан испитивач нема више од 70% шансе да уради исправну идентификацију, након пет минута постављања питања. Када би то данас заиста било тако, налазили би се пред једном истински интелигентном машином, или у најмању руку машином која уме да се представи као интелигентна. Не треба ни поменути да су Тјурингова предвиђања била превише оптимистична, што је био врло чест случај у самим почецима развоја области вештачке интелигенције. У стварности проблем није само везан за способност рачунара за обраду података, него на првом мјесту, за могућност програмирања рачунара са способностима за интелигентно понашање.

Вештачка интелигенција у образовању

Сан о рачунарима који би могли да образују ученике и студенте, више деценија је инспирисао научнике когнитивне науке. Прва генерација таквих система (названи Computer Aided Instruction или Computer Based Instruction), углавном су се заснивали на хипертексту. Структура тих система се састојала од презентације материјала и питања са више избора, која шаљу ученика на даље информације, у зависности од одговора на постављена питања.

Наредна генерација ових система Intelligent CAI или Intelligent Tutoring Systems, заснивали су се на имплементацији знања о одређеној теми, у сам рачунар. Постајала су два типа оваквих система. Први је тренирао ученика у самом процесу решавања сложених проблема, као што је нпр. препознавање грешака дизајна у једном електричном колу или писање рачунарског програма. Други тип система је покушавао да одржава силогистички дијалог са студентима. Имплементацију другог типа система је било врло тешко спровести у праксу, великим делом због проблема програмирања система за разумевање спонтаног и природног људског језика. Из тог разлога, пројектовано их је само неколико.

Типични систем за тренирање ученика и студената се обично састоји од четири основне компоненте.

  1. Прва компонента је окружење у којем ученик или студент ради на решавању сложених задатака. То може бити симулација компоненте или компонената електронских уређаја представљена као серија проблема које студент треба да реши.
  2. Друга компонента је експертски систем који може решити представљене проблеме на којима студент ради.
  3. Трећу чини један посебан модул који може упоредити решења која нуди студент са онима које су уграђене у експертски систем и његов циљ је да препозна студентов план за решење проблема, као и које делове знања највероватније студент користи.
  4. Четврту чини педагошки модул који сугерише задатке које треба решити, одговара на питања студента и указује му на могуће грешке. Одговори на питања студента и сугестије за планирање решавања задатака, заснивају се на прикупљеним подацима из претходног модула.

Свака од ових компонената може користити технологију вештачке интелигенције. Окружење може садржати софистицирану симулацију или интелигентног агента, односно симулираног студента или чак опонента студенту. Модул који чини експертски систем се састоји од класичних проблема вештачке интелигенције, као што су препознавање плана и резоновање над проблемима који укључују неизвесност. Задатак педагошког модула је надгледање плана инструкције и његово адаптирање на основу нових информација о компетентности студента за решавање проблема. Упркос сложености система за тренирање ученика и студената, пројектовани су у великом броју, а неки од њих се регуларно користе у школама, индустрији и за војне инструкције.

Технике

AI research uses a wide variety of techniques to accomplish the goals above.[б]

Search and optimization

AI can solve many problems by intelligently searching through many possible solutions.[70] There are two very different kinds of search used in AI: state space search and local search.

State space search

State space search searches through a tree of possible states to try to find a goal state.[71] For example, planning algorithms search through trees of goals and subgoals, attempting to find a path to a target goal, a process called means-ends analysis.[72]

Simple exhaustive searches[73] are rarely sufficient for most real-world problems: the search space (the number of places to search) quickly grows to astronomical numbers. The result is a search that is too slow or never completes.[18] "Heuristics" or "rules of thumb" can help to prioritize choices that are more likely to reach a goal.[74]

Adversarial search is used for game-playing programs, such as chess or Go. It searches through a tree of possible moves and counter-moves, looking for a winning position.[75]

Local search

Illustration of gradient descent for 3 different starting points. Two parameters (represented by the plan coordinates) are adjusted in order to minimize the loss function (the height).

Local search uses mathematical optimization to find a solution to a problem. It begins with some form of guess and refines it incrementally.[76]

Gradient descent is a type of local search that optimizes a set of numerical parameters by incrementally adjusting them to minimize a loss function. Variants of gradient descent are commonly used to train neural networks.[77]

Another type of local search is evolutionary computation, which aims to iteratively improve a set of candidate solutions by "mutating" and "recombining" them, selecting only the fittest to survive each generation.[78]

Distributed search processes can coordinate via swarm intelligence algorithms. Two popular swarm algorithms used in search are particle swarm optimization (inspired by bird flocking) and ant colony optimization (inspired by ant trails).[79]

Logic

Formal Logic is used for reasoning and knowledge representation.[80] Formal logic comes in two main forms: propositional logic (which operates on statements that are true or false and uses logical connectives such as "and", "or", "not" and "implies")[81] and predicate logic (which also operates on objects, predicates and relations and uses quantifiers such as "Every X is a Y" and "There are some Xs that are Ys").[82]

Logical inference (or deduction) is the process of proving a new statement (conclusion) from other statements that are already known to be true (the premises).[83] A logical knowledge base also handles queries and assertions as a special case of inference.[84] An inference rule describes what is a valid step in a proof. The most general inference rule is resolution.[85] Inference can be reduced to performing a search to find a path that leads from premises to conclusions, where each step is the application of an inference rule.[86] Inference performed this way is intractable except for short proofs in restricted domains. No efficient, powerful and general method has been discovered.

Fuzzy logic assigns a "degree of truth" between 0 and 1. It can therefore handle propositions that are vague and partially true.[87] Non-monotonic logics are designed to handle default reasoning.[31] Other specialized versions of logic have been developed to describe many complex domains (see knowledge representation above).

Probabilistic methods for uncertain reasoning

A simple Bayesian network, with the associated conditional probability tables

Many problems in AI (including in reasoning, planning, learning, perception, and robotics) require the agent to operate with incomplete or uncertain information. AI researchers have devised a number of tools to solve these problems using methods from probability theory and economics.[88]

Bayesian networks[89] are a very general tool that can be used for many problems, including reasoning (using the Bayesian inference algorithm),[е][91] learning (using the expectation-maximization algorithm),[ж][93] planning (using decision networks)[94] and perception (using dynamic Bayesian networks).[95]

Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding explanations for streams of data, helping perception systems to analyze processes that occur over time (e.g., hidden Markov models or Kalman filters).[95]

Precise mathematical tools have been developed that analyze how an agent can make choices and plan, using decision theory, decision analysis,[96] and information value theory.[97] These tools include models such as Markov decision processes,[98] dynamic decision networks,[95] game theory and mechanism design.[99]

Expectation-maximization clustering of Old Faithful eruption data starts from a random guess but then successfully converges on an accurate clustering of the two physically distinct modes of eruption.

Класификатори и статистичке методе учења

The simplest AI applications can be divided into two types: classifiers (e.g., "if shiny then diamond"), on one hand, and controllers (e.g., "if diamond then pick up"), on the other hand. Classifiers[100] are functions that use pattern matching to determine the closest match. They can be fine-tuned based on chosen examples using supervised learning. Each pattern (also called an "observation") is labeled with a certain predefined class. All the observations combined with their class labels are known as a data set. When a new observation is received, that observation is classified based on previous experience.[48]

There are many kinds of classifiers in use. The decision tree is the simplest and most widely used symbolic machine learning algorithm.[101] K-nearest neighbor algorithm was the most widely used analogical AI until the mid-1990s, and Kernel methods such as the support vector machine (SVM) displaced k-nearest neighbor in the 1990s.[102] The naive Bayes classifier is reportedly the "most widely used learner"[103] at Google, due in part to its scalability.[104] Neural networks are also used as classifiers.[105]

Вештачке неуронске мреже

A neural network is an interconnected group of nodes, akin to the vast network of neurons in the human brain.

An artificial neural network is based on a collection of nodes also known as artificial neurons, which loosely model the neurons in a biological brain. It is trained to recognise patterns; once trained, it can recognise those patterns in fresh data. There is an input, at least one hidden layer of nodes and an output. Each node applies a function and once the weight crosses its specified threshold, the data is transmitted to the next layer. A network is typically called a deep neural network if it has at least 2 hidden layers.[105]

Learning algorithms for neural networks use local search to choose the weights that will get the right output for each input during training. The most common training technique is the backpropagation algorithm.[106] Neural networks learn to model complex relationships between inputs and outputs and find patterns in data. In theory, a neural network can learn any function.[107]

In feedforward neural networks the signal passes in only one direction.[108] Recurrent neural networks feed the output signal back into the input, which allows short-term memories of previous input events. Long short term memory is the most successful network architecture for recurrent networks.[109] Perceptrons[110] use only a single layer of neurons, deep learning[111] uses multiple layers. Convolutional neural networks strengthen the connection between neurons that are "close" to each other – this is especially important in image processing, where a local set of neurons must identify an "edge" before the network can identify an object.[112]

Дубоко учење

Дубоко учење[111] uses several layers of neurons between the network's inputs and outputs. The multiple layers can progressively extract higher-level features from the raw input. For example, in image processing, lower layers may identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters or faces.[113]

Дубоко учење has profoundly improved the performance of programs in many important subfields of artificial intelligence, including computer vision, speech recognition, natural language processing, image classification[114] and others. The reason that deep learning performs so well in so many applications is not known as of 2023.[115] The sudden success of deep learning in 2012–2015 did not occur because of some new discovery or theoretical breakthrough (deep neural networks and backpropagation had been described by many people, as far back as the 1950s)[з] but because of two factors: the incredible increase in computer power (including the hundred-fold increase in speed by switching to GPUs) and the availability of vast amounts of training data, especially the giant curated datasets used for benchmark testing, such as ImageNet.[и]

GPT

Generative pre-trained transformers (GPT) are large language models that are based on the semantic relationships between words in sentences (natural language processing). Text-based GPT models are pre-trained on a large corpus of text which can be from the internet. The pre-training consists in predicting the next token (a token being usually a word, subword, or punctuation). Throughout this pre-training, GPT models accumulate knowledge about the world, and can then generate human-like text by repeatedly predicting the next token. Typically, a subsequent training phase makes the model more truthful, useful and harmless, usually with a technique called reinforcement learning from human feedback (RLHF). Current GPT models are still prone to generating falsehoods called "hallucinations", although this can be reduced with RLHF and quality data. They are used in chatbots, which allow you to ask a question or request a task in simple text.[124][125]

Current models and services include: Gemini (formerly Bard), ChatGPT, Grok, Claude, Copilot and LLaMA.[126] Multimodal GPT models can process different types of data (modalities) such as images, videos, sound and text.[127]

Specialized hardware and software

In the late 2010s, graphics processing units (GPUs) that were increasingly designed with AI-specific enhancements and used with specialized TensorFlow software, had replaced previously used central processing unit (CPUs) as the dominant means for large-scale (commercial and academic) machine learning models' training.[128] Historically, specialized languages, such as Lisp, Prolog, Python and others, had been used.

Примене

AI and machine learning technology is used in most of the essential applications of the 2020s, including: search engines (such as Google Search), targeting online advertisements, recommendation systems (offered by Netflix, YouTube or Amazon), driving internet traffic, targeted advertising (AdSense, Facebook), virtual assistants (such as Siri or Alexa), autonomous vehicles (including drones, ADAS and self-driving cars), automatic language translation (Microsoft Translator, Google Translate), facial recognition (Apple's Face ID or Microsoft's DeepFace and Google's FaceNet) and image labeling (used by Facebook, Apple's iPhoto and TikTok).

Health and medicine

The application of AI in medicine and medical research has the potential to increase patient care and quality of life.[129] Through the lens of the Hippocratic Oath, medical professionals are ethically compelled to use AI, if applications can more accurately diagnose and treat patients.

For medical research, AI is an important tool for processing and integrating Big Data. This is particularly important for organoid and tissue engineering development which use microscopy imaging as a key technique in fabrication.[130] It has been suggested that AI can overcome discrepancies in funding allocated to different fields of research.[130] New AI tools can deepen our understanding of biomedically relevant pathways. For example, AlphaFold 2 (2021) demonstrated the ability to approximate, in hours rather than months, the 3D structure of a protein.[131] In 2023 it was reported that AI guided drug discovery helped find a class of antibiotics capable of killing two different types of drug-resistant bacteria.[132]

Games

Game playing programs have been used since the 1950s to demonstrate and test AI's most advanced techniques.[133] Deep Blue became the first computer chess-playing system to beat a reigning world chess champion, Garry Kasparov, on 11 May 1997.[134] In 2011, in a Jeopardy! quiz show exhibition match, IBM's question answering system, Watson, defeated the two greatest Jeopardy! champions, Brad Rutter and Ken Jennings, by a significant margin.[135] In March 2016, AlphaGo won 4 out of 5 games of Go in a match with Go champion Lee Sedol, becoming the first computer Go-playing system to beat a professional Go player without handicaps. Then in 2017 it defeated Ke Jie, who was the best Go player in the world.[136] Other programs handle imperfect-information games, such as the poker-playing program Pluribus.[137] DeepMind developed increasingly generalistic reinforcement learning models, such as with MuZero, which could be trained to play chess, Go, or Atari games.[138] In 2019, DeepMind's AlphaStar achieved grandmaster level in StarCraft II, a particularly challenging real-time strategy game that involves incomplete knowledge of what happens on the map.[139] In 2021 an AI agent competed in a Playstation Gran Turismo competition, winning against four of the world's best Gran Turismo drivers using deep reinforcement learning.[140]

Military

Various countries are deploying AI military applications.[141] The main applications enhance command and control, communications, sensors, integration and interoperability.[142] Research is targeting intelligence collection and analysis, logistics, cyber operations, information operations, and semiautonomous and autonomous vehicles.[141] AI technologies enable coordination of sensors and effectors, threat detection and identification, marking of enemy positions, target acquisition, coordination and deconfliction of distributed Joint Fires between networked combat vehicles involving manned and unmanned teams.[142] AI was incorporated into military operations in Iraq and Syria.[141]

In November 2023, US Vice President Kamala Harris disclosed a declaration signed by 31 nations to set guardrails for the military use of IA. The commitments include using legal reviews to ensure the compliance of military AI with international laws, and being cautious and transparent in the development of this technology.[143]

Generative AI

Vincent van Gogh in watercolour created by generative AI software

In the early 2020s, generative AI gained widespread prominence. In March 2023, 58% of US adults had heard about ChatGPT and 14% had tried it.[144] The increasing realism and ease-of-use of AI-based text-to-image generators such as Midjourney, DALL-E, and Stable Diffusion sparked a trend of viral AI-generated photos. Widespread attention was gained by a fake photo of Pope Francis wearing a white puffer coat, the fictional arrest of Donald Trump, and a hoax of an attack on the Pentagon, as well as the usage in professional creative arts.[145][146]

Industry-specific tasks

There are also thousands of successful AI applications used to solve specific problems for specific industries or institutions. In a 2017 survey, one in five companies reported they had incorporated "AI" in some offerings or processes.[147] A few examples are energy storage, medical diagnosis, military logistics, applications that predict the result of judicial decisions, foreign policy, or supply chain management.

In agriculture, AI has helped farmers identify areas that need irrigation, fertilization, pesticide treatments or increasing yield. Agronomists use AI to conduct research and development. AI has been used to predict the ripening time for crops such as tomatoes, monitor soil moisture, operate agricultural robots, conduct predictive analytics, classify livestock pig call emotions, automate greenhouses, detect diseases and pests, and save water.

Artificial intelligence is used in astronomy to analyze increasing amounts of available data and applications, mainly for "classification, regression, clustering, forecasting, generation, discovery, and the development of new scientific insights" for example for discovering exoplanets, forecasting solar activity, and distinguishing between signals and instrumental effects in gravitational wave astronomy. It could also be used for activities in space such as space exploration, including analysis of data from space missions, real-time science decisions of spacecraft, space debris avoidance, and more autonomous operation.

Етика

AI, like any powerful technology, has potential benefits and potential risks. AI may be able to advance science and find solutions for serious problems: Demis Hassabis of Deep Mind hopes to "solve intelligence, and then use that to solve everything else".[148] However, as the use of AI has become widespread, several unintended consequences and risks have been identified.[149]

Anyone looking to use machine learning as part of real-world, in-production systems needs to factor ethics into their AI training processes and strive to avoid bias. This is especially true when using AI algorithms that are inherently unexplainable in deep learning.[150]

Risks and harm

Privacy and copyright

Machine learning algorithms require large amounts of data. The techniques used to acquire this data have raised concerns about privacy, surveillance and copyright.

Technology companies collect a wide range of data from their users, including online activity, geolocation data, video and audio.[151] For example, in order to build speech recognition algorithms, Amazon have recorded millions of private conversations and allowed temporary workers to listen to and transcribe some of them.[152] Opinions about this widespread surveillance range from those who see it as a necessary evil to those for whom it is clearly unethical and a violation of the right to privacy.[153]

AI developers argue that this is the only way to deliver valuable applications. and have developed several techniques that attempt to preserve privacy while still obtaining the data, such as data aggregation, de-identification and differential privacy.[154] Since 2016, some privacy experts, such as Cynthia Dwork, began to view privacy in terms of fairness. Brian Christian wrote that experts have pivoted "from the question of 'what they know' to the question of 'what they're doing with it'.".[155]

Generative AI is often trained on unlicensed copyrighted works, including in domains such as images or computer code; the output is then used under a rationale of "fair use". Also website owners who do not wish to have their copyrighted content be AI indexed or 'scraped' can add code to their site, as you would, if you did not want your website to be indexed by a search engine which is currently available to certain services such as OpenAI. Experts disagree about how well, and under what circumstances, this rationale will hold up in courts of law; relevant factors may include "the purpose and character of the use of the copyrighted work" and "the effect upon the potential market for the copyrighted work".[156] In 2023, leading authors (including John Grisham and Jonathan Franzen) sued AI companies for using their work to train generative AI.[157][158]

Misinformation

YouTube, Facebook and others use recommender systems to guide users to more content. These AI programs were given the goal of maximizing user engagement (that is, the only goal was to keep people watching). The AI learned that users tended to choose misinformation, conspiracy theories, and extreme partisan content, and, to keep them watching, the AI recommended more of it. Users also tended to watch more content on the same subject, so the AI led people into filter bubbles where they received multiple versions of the same misinformation.[159] This convinced many users that the misinformation was true, and ultimately undermined trust in institutions, the media and the government.[160] The AI program had correctly learned to maximize its goal, but the result was harmful to society. After the U.S. election in 2016, major technology companies took steps to mitigate the problem.

In 2022, generative AI began to create images, audio, video and text that are indistinguishable from real photographs, recordings, films or human writing. It is possible for bad actors to use this technology to create massive amounts of misinformation or propaganda.[161] AI pioneer Geoffrey Hinton expressed concern about AI enabling "authoritarian leaders to manipulate their electorates" on a large scale, among other risks.[162]

Algorithmic bias and fairness

Machine learning applications will be biased if they learn from biased data.[163] The developers may not be aware that the bias exists.[164] Bias can be introduced by the way training data is selected and by the way a model is deployed.[165][163] If a biased algorithm is used to make decisions that can seriously harm people (as it can in medicine, finance, recruitment, housing or policing) then the algorithm may cause discrimination.[166] Fairness in machine learning is the study of how to prevent the harm caused by algorithmic bias. It has become serious area of academic study within AI. Researchers have discovered it is not always possible to define "fairness" in a way that satisfies all stakeholders.[167]

On June 28, 2015, Google Photos's new image labeling feature mistakenly identified Jacky Alcine and a friend as "gorillas" because they were black. The system was trained on a dataset that contained very few images of black people,[168] a problem called "sample size disparity".[169] Google "fixed" this problem by preventing the system from labelling anything as a "gorilla". Eight years later, in 2023, Google Photos still could not identify a gorilla, and neither could similar products from Apple, Facebook, Microsoft and Amazon.[170]

COMPAS is a commercial program widely used by U.S. courts to assess the likelihood of a defendant becoming a recidivist. In 2016, Julia Angwin at ProPublica discovered that COMPAS exhibited racial bias, despite the fact that the program was not told the races of the defendants. Although the error rate for both whites and blacks was calibrated equal at exactly 61%, the errors for each race were different—the system consistently overestimated the chance that a black person would re-offend and would underestimate the chance that a white person would not re-offend.[171] In 2017, several researchers[ј] showed that it was mathematically impossible for COMPAS to accommodate all possible measures of fairness when the base rates of re-offense were different for whites and blacks in the data.[173]

A program can make biased decisions even if the data does not explicitly mention a problematic feature (such as "race" or "gender"). The feature will correlate with other features (like "address", "shopping history" or "first name"), and the program will make the same decisions based on these features as it would on "race" or "gender".[174] Moritz Hardt said "the most robust fact in this research area is that fairness through blindness doesn't work."[175]

Criticism of COMPAS highlighted a deeper problem with the misuse of AI. Machine learning models are designed to make "predictions" that are only valid if we assume that the future will resemble the past. If they are trained on data that includes the results of racist decisions in the past, machine learning models must predict that racist decisions will be made in the future. Unfortunately, if an application then uses these predictions as recommendations, some of these "recommendations" will likely be racist.[176] Thus, machine learning is not well suited to help make decisions in areas where there is hope that the future will be better than the past. It is necessarily descriptive and not proscriptive.[к]

Bias and unfairness may go undetected because the developers are overwhelmingly white and male: among AI engineers, about 4% are black and 20% are women.[169]

At its 2022 Conference on Fairness, Accountability, and Transparency (ACM FAccT 2022) the Association for Computing Machinery, in Seoul, South Korea, presented and published findings recommending that until AI and robotics systems are demonstrated to be free of bias mistakes, they are unsafe and the use of self-learning neural networks trained on vast, unregulated sources of flawed internet data should be curtailed.[178]

Недостатак транспарентности

Lidar testing vehicle for autonomous driving

Many AI systems are so complex that their designers cannot explain how they reach their decisions.[179] Particularly with deep neural networks, in which there are a large amount of non-linear relationships between inputs and outputs. But some popular explainability techniques exist.[180]

There have been many cases where a machine learning program passed rigorous tests, but nevertheless learned something different than what the programmers intended. For example, a system that could identify skin diseases better than medical professionals was found to actually have a strong tendency to classify images with a ruler as "cancerous", because pictures of malignancies typically include a ruler to show the scale.[181] Another machine learning system designed to help effectively allocate medical resources was found to classify patients with asthma as being at "low risk" of dying from pneumonia. Having asthma is actually a severe risk factor, but since the patients having asthma would usually get much more medical care, they were relatively unlikely to die according to the training data. The correlation between asthma and low risk of dying from pneumonia was real, but misleading.[182]

People who have been harmed by an algorithm's decision have a right to an explanation. Doctors, for example, are required to clearly and completely explain the reasoning behind any decision they make.[183] Early drafts of the European Union's General Data Protection Regulation in 2016 included an explicit statement that this right exists.[л] Industry experts noted that this is an unsolved problem with no solution in sight. Regulators argued that nevertheless the harm is real: if the problem has no solution, the tools should not be used.[184]

DARPA established the XAI ("Explainable Artificial Intelligence") program in 2014 to try and solve these problems.[185]

There are several potential solutions to the transparency problem. SHAP helps visualise the contribution of each feature to the output.[186] LIME can locally approximate a model with a simpler, interpretable model.[187] Multitask learning provides a large number of outputs in addition to the target classification. These other outputs can help developers deduce what the network has learned.[188] Deconvolution, DeepDream and other generative methods can allow developers to see what different layers of a deep network have learned and produce output that can suggest what the network is learning.[189]

Конфликт, присмотра и наоружана вештачка интелигенција

A lethal autonomous weapon is a machine that locates, selects and engages human targets without human supervision.[љ] By 2015, over fifty countries were reported to be researching battlefield robots.[191] These weapons are considered especially dangerous for several reasons: if they kill an innocent person it is not clear who should be held accountable, it is unlikely they will reliably choose targets, and, if produced at scale, they are potentially weapons of mass destruction.[192] In 2014, 30 nations (including China) supported a ban on autonomous weapons under the United Nations' Convention on Certain Conventional Weapons, however the United States and others disagreed.[193]

AI provides a number of tools that are particularly useful for authoritarian governments: smart spyware, face recognition and voice recognition allow widespread surveillance; such surveillance allows machine learning to classify potential enemies of the state and can prevent them from hiding; recommendation systems can precisely target propaganda and misinformation for maximum effect; deepfakes and generative AI aid in producing misinformation; advanced AI can make authoritarian centralized decision making more competitive with liberal and decentralized systems such as markets.[194]

AI facial recognition systems are used for mass surveillance, notably in China.[195][196] In 2019, Bengaluru, India deployed AI-managed traffic signals. This system uses cameras to monitor traffic density and adjust signal timing based on the interval needed to clear traffic.[197] Terrorists, criminals and rogue states can use weaponized AI such as advanced digital warfare and lethal autonomous weapons. Machine-learning AI is also able to design tens of thousands of toxic molecules in a matter of hours.[198]

Technological unemployment

From the early days of the development of artificial intelligence there have been arguments, for example those put forward by Joseph Weizenbaum, about whether tasks that can be done by computers actually should be done by them, given the difference between computers and humans, and between quantitative calculation and qualitative, value-based judgement.[199]

Economists have frequently highlighted the risks of redundancies from AI, and speculated about unemployment if there is no adequate social policy for full employment.[200]

In the past, technology has tended to increase rather than reduce total employment, but economists acknowledge that "we're in uncharted territory" with AI.[201] A survey of economists showed disagreement about whether the increasing use of robots and AI will cause a substantial increase in long-term unemployment, but they generally agree that it could be a net benefit if productivity gains are redistributed.[202] Risk estimates vary; for example, in the 2010s, Michael Osborne and Carl Benedikt Frey estimated 47% of U.S. jobs are at "high risk" of potential automation, while an OECD report classified only 9% of U.S. jobs as "high risk".[м][204] The methodology of speculating about future employment levels has been criticised as lacking evidential foundation, and for implying that technology, rather than social policy, creates unemployment, as opposed to redundancies.[200]

Unlike previous waves of automation, many middle-class jobs may be eliminated by artificial intelligence; The Economist stated in 2015 that "the worry that AI could do to white-collar jobs what steam power did to blue-collar ones during the Industrial Revolution" is "worth taking seriously".[205] Jobs at extreme risk range from paralegals to fast food cooks, while job demand is likely to increase for care-related professions ranging from personal healthcare to the clergy.[206]

In April 2023, it was reported that 70% of the jobs for Chinese video game illustrators had been eliminated by generative artificial intelligence.[207][208]

Existential risk

It has been argued AI will become so powerful that humanity may irreversibly lose control of it. This could, as physicist Stephen Hawking stated, "spell the end of the human race".[209] This scenario has been common in science fiction, when a computer or robot suddenly develops a human-like "self-awareness" (or "sentience" or "consciousness") and becomes a malevolent character.[н] These sci-fi scenarios are misleading in several ways.

First, AI does not require human-like "sentience" to be an existential risk. Modern AI programs are given specific goals and use learning and intelligence to achieve them. Philosopher Nick Bostrom argued that if one gives almost any goal to a sufficiently powerful AI, it may choose to destroy humanity to achieve it (he used the example of a paperclip factory manager).[211] Stuart Russell gives the example of household robot that tries to find a way to kill its owner to prevent it from being unplugged, reasoning that "you can't fetch the coffee if you're dead."[212] In order to be safe for humanity, a superintelligence would have to be genuinely aligned with humanity's morality and values so that it is "fundamentally on our side".[213]

Second, Yuval Noah Harari argues that AI does not require a robot body or physical control to pose an existential risk. The essential parts of civilization are not physical. Things like ideologies, law, government, money and the economy are made of language; they exist because there are stories that billions of people believe. The current prevalence of misinformation suggests that an AI could use language to convince people to believe anything, even to take actions that are destructive.[214]

The opinions amongst experts and industry insiders are mixed, with sizable fractions both concerned and unconcerned by risk from eventual superintelligent AI.[215] Personalities such as Stephen Hawking, Bill Gates, and Elon Musk have expressed concern about existential risk from AI.[216]

In the early 2010s, experts argued that the risks are too distant in the future to warrant research or that humans will be valuable from the perspective of a superintelligent machine.[217] However, after 2016, the study of current and future risks and possible solutions became a serious area of research.[218]

AI pioneers including Fei-Fei Li, Geoffrey Hinton, Yoshua Bengio, Cynthia Breazeal, Rana el Kaliouby, Demis Hassabis, Joy Buolamwini, and Sam Altman have expressed concerns about the risks of AI. In 2023, many leading AI experts issued the joint statement that "Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war".[219]

Other researchers, however, spoke in favor of a less dystopian view. AI pioneer Juergen Schmidhuber did not sign the joint statement, emphasising that in 95% of all cases, AI research is about making "human lives longer and healthier and easier."[220] While the tools that are now being used to improve lives can also be used by bad actors, "they can also be used against the bad actors."[221][222] Andrew Ng also argued that "it's a mistake to fall for the doomsday hype on AI—and that regulators who do will only benefit vested interests."[223] Yann LeCun "scoffs at his peers' dystopian scenarios of supercharged misinformation and even, eventually, human extinction."[224]

Limiting AI

Possible options for limiting AI include: using Embedded Ethics or Constitutional AI where companies or governments can add a policy, restricting high levels of compute power in training, restricting the ability to rewrite its own code base, restrict certain AI techniques but not in the training phase, open-source (transparency) vs proprietary (could be more restricted), backup model with redundancy, restricting security, privacy and copyright, restricting or controlling the memory, real-time monitoring, risk analysis, emergency shut-off, rigorous simulation and testing, model certification, assess known vulnerabilities, restrict the training material, restrict access to the internet, issue terms of use.

Ethical machines and alignment

Friendly AI are machines that have been designed from the beginning to minimize risks and to make choices that benefit humans. Eliezer Yudkowsky, who coined the term, argues that developing friendly AI should be a higher research priority: it may require a large investment and it must be completed before AI becomes an existential risk.[225]

Machines with intelligence have the potential to use their intelligence to make ethical decisions. The field of machine ethics provides machines with ethical principles and procedures for resolving ethical dilemmas.[226] The field of machine ethics is also called computational morality,[226] and was founded at an AAAI symposium in 2005.[227]

Other approaches include Wendell Wallach's "artificial moral agents"[228] and Stuart J. Russell's three principles for developing provably beneficial machines.[229]

Frameworks

Artificial Intelligence projects can have their ethical permissibility tested while designing, developing, and implementing an AI system. An AI framework such as the Care and Act Framework containing the SUM values – developed by the Alan Turing Institute tests projects in four main areas:[230][231]

  • RESPECT the dignity of individual people
  • CONNECT with other people sincerely, openly and inclusively
  • CARE for the wellbeing of everyone
  • PROTECT social values, justice and the public interest

Other developments in ethical frameworks include those decided upon during the Asilomar Conference, the Montreal Declaration for Responsible AI, and the IEEE's Ethics of Autonomous Systems initiative, among others;[232] however, these principles do not go without their criticisms, especially regards to the people chosen contributes to these frameworks.[233]

Promotion of the wellbeing of the people and communities that these technologies affect requires consideration of the social and ethical implications at all stages of AI system design, development and implementation, and collaboration between job roles such as data scientists, product managers, data engineers, domain experts, and delivery managers.[234]

Regulation

AI Safety Summit
The first global AI Safety Summit was held in 2023 with a declaration calling for international co-operation.

The regulation of artificial intelligence is the development of public sector policies and laws for promoting and regulating artificial intelligence (AI); it is therefore related to the broader regulation of algorithms.[235] The regulatory and policy landscape for AI is an emerging issue in jurisdictions globally.[236] According to AI Index at Stanford, the annual number of AI-related laws passed in the 127 survey countries jumped from one passed in 2016 to 37 passed in 2022 alone.[237][238] Between 2016 and 2020, more than 30 countries adopted dedicated strategies for AI.[239] Most EU member states had released national AI strategies, as had Canada, China, India, Japan, Mauritius, the Russian Federation, Saudi Arabia, United Arab Emirates, US and Vietnam. Others were in the process of elaborating their own AI strategy, including Bangladesh, Malaysia and Tunisia.[239] The Global Partnership on Artificial Intelligence was launched in June 2020, stating a need for AI to be developed in accordance with human rights and democratic values, to ensure public confidence and trust in the technology.[239] Henry Kissinger, Eric Schmidt, and Daniel Huttenlocher published a joint statement in November 2021 calling for a government commission to regulate AI.[240] In 2023, OpenAI leaders published recommendations for the governance of superintelligence, which they believe may happen in less than 10 years.[241] In 2023, the United Nations also launched an advisory body to provide recommendations on AI governance; the body comprises technology company executives, governments officials and academics.[242]

In a 2022 Ipsos survey, attitudes towards AI varied greatly by country; 78% of Chinese citizens, but only 35% of Americans, agreed that "products and services using AI have more benefits than drawbacks".[237] A 2023 Reuters/Ipsos poll found that 61% of Americans agree, and 22% disagree, that AI poses risks to humanity.[243] In a 2023 Fox News poll, 35% of Americans thought it "very important", and an additional 41% thought it "somewhat important", for the federal government to regulate AI, versus 13% responding "not very important" and 8% responding "not at all important".[244][245]

In November 2023, the first global AI Safety Summit was held in Bletchley Park in the UK to discuss the near and far term risks of AI and the possibility of mandatory and voluntary regulatory frameworks.[246] 28 countries including the United States, China, and the European Union issued a declaration at the start of the summit, calling for international co-operation to manage the challenges and risks of artificial intelligence.[247][248]

Историја

Историјски преглед развоја

Појам вештачка интелигенција (VI), настаје лета 1956. године у Дартмуду, Хановер (САД), на скупу истраживача заинтересованих за теме интелигенције, неуронских мрежа и теорије аутомата. Скуп је организовао Џон Макарти, уједно са Клодом Шеноном, Марвином Минским и Н. Рочестером. На скупу су такође учествовали Т. Мур (Принстон), А. Семјуел (IBM), Р. Соломоноф и О. Селфриџ (МИТ), као и А. Невил, Х. Сајмон (Carnegie Tech, данас Карнеги Мелон универзитет). На скупу су постављене основе области вештачке интелигенције и трасиран пут за њен даљи развој.

Раније, 1950. године, Алан Тјуринг је објавио један чланак у ревији Мајнд ((Mind)), под насловом „Рачунари и интелигенција“, где говори о концепту вештачке интелигенције и поставља основе једне врсте пробе, преко које би се утврђивало да ли се одређени рачунарски систем понаша у складу са оним што се подразумева под вештачком интелигенцијом, или не. Касније ће та врста пробе добити име, Тјурингов тест.

Скуп је последица првих радова у области. Невил и Сајмон су на њему представили свој програм за аутоматско резоновање, Логик Теорист (који је направио сензацију). Данас се сматра да су концепт вештачке интелигенције поставили В. Мекулок и M. Питс, 1943. године, у раду у ком се представља модел вештачких неурона на бази три извора: спознаја о физиологији и функционисању можданих неурона, исказна логика Расела и Вајтехеда, и Тјурингова компутациона теорија. Неколико година касније створен је први неурални рачунар SNARC. Заслужни за подухват су студенти Принстона, Марвин Мински и Д. Едмонс, 1951. године. Негде из исте епохе су и први програми за шах, чији су аутори Шенон и Тјуринг.

Иако се ова истраживања сматрају зачетком вештачке интелигенције, постоје многа друга који су битно утицала на развој ове области. Нека потичу из области као што су филозофија (први покушаји формализације резоновања су силогизми грчког филозофа Аристотела), математика (теорија одлучивања и теорија пробабилитета се примењују у многим данашњим системима), или психологија (која је заједно са вештачком интелигенцијом формирала област когнитивне науке).

У годинама које следе скуп у Дартмуду постижу се значајни напреци. Конструишу се програми који решавају различите проблеме. На пример, студенти Марвина Минског су крајем шездесетих година имплементирати програм Analogy, који је оспособљен за решавање геометријских проблема, сличним онима који се јављају у тестовима интелигенције, и програм Студент, који решава алгебарске проблеме написане на енглеском језику. Невил и Сајмон ће развити General Problem Solver (ГПС), који покушава да имитира људско резоновање. Семјуел је написао програме за игру сличну дами, који су били оспособљени за учење те игре. Макарти, који је у међувремену отишао на МИТ, имплементира програмски језик Лисп, 1958. године. Исте године је написао чланак, Programs With Common Sense, где описује један хипотетички програм који се сматра првим комплетним системом вештачке интелигенције.

Ова серија успеха се ломи средином шездесетих година и превише оптимистичка предвиђања из ранијих година се фрустрирају. До тада имплементирани системи су функционисали у ограниченим доменима, познатим као микросветови (microworlds). Трансформација која би омогућила њихову примену у стварним окружењима није била тако лако изводљива, упркос очекивањима многих истраживача. По Раселу и Норивигу, постоје три фундаментална фактора који су то онемогућили:

  1. Многи дизајнирани системи нису поседовали сазнање о окружењу примене, или је имплементирано сазнање било врло ниског нивоа и састојало се од неких једноставних синтактичких манипулација.
  2. Многи проблеми које су покушавали решити су били у суштини нерешиви, боље речено, док је количина сазнања била мала и ограничена решење је било могуће, али када би дошло до пораста обима сазнања, проблеми постају нерешиви.
  3. Неке од основних структура које су се користиле за стварање одређеног интелигентног понашања су биле веома ограничене.

До тог момента решавање проблема је било засновано на једном механизму опште претраге преко којег се покушавају повезати, корак по корак, елементарне основе размишљања да би се дошло до коначног решења. Наравно такав приступ подразумева и велике издатке, те да би се смањили, развијају се први алгоритми за потребе контролисања трошкова истраживања. На пример, Едсхер Дајкстра 1959. године дизајнира један метод за стабилизацију издатака, Невил и Ернст, 1965. године развијају концепт хеуристичке претраге и Харт, Нилсон и Рафаел, алгоритам А. У исто време, у вези програма за игре, дефинише се претрага алфа-бета. Творац идеје је иначе био Макарти, 1956. године, а касније ју је користио Невил, 1958. године.

Важност схватања сазнања у контексту домена и примене, као и грађе структуре, којој би било лако приступати, довела је до детаљнијих студија метода представљања сазнања. Између осталих, дефинисале су се семантичке мреже (дефинисане почетком шездесетих година, од стране Килијана) и окружења (које је дефинисао Мински 1975. године). У истом периоду почињу да се користе одређене врсте логике за представљање сазнања.

Паралелно с тим, током истих година, настављају се истраживања за стварање система за игру чекерс, за који је заслужан Самуел, оријентисан на имплементацију неке врсте методе учења. Е. Б. Хунт, Ј. Мартин и П. Т. Стоне, 1969. године конструишу хијерархијску структуру одлука (ради класификације), коју је већ идејно поставио Шенон, 1949. године. Килијан, 1979, представља метод IDZ који треба да послужи као основа за конструкцију такве структуре. С друге стране, П. Винстон, 1979. године, развија властити програм за учење описа сложених објеката, и Т. Мичел, 1977, развија тзв. простор верзија. Касније, средином осамдесетих, поновна примена методе учења на неуралне мреже тзв., backpropagation, доводи до поновног оживљавања ове области. Конструкција апликација за стварна окружења, довела је до потребе разматрања аспеката као што су неизвесност, или непрецизност (који се такође јављају приликом решавања проблема у играма). За решавање ових проблема примењиване су пробабилистичке методе (теорија пробабилитета, или пробабилистичке мреже) и развијали други формализми као дифузни скупови (дефинисани од Л. Задеха 1965. године), или Демпстер-Шаферова теорија (творац теорије је А. Демпстер, 1968, са значајним доприносом Г. Шафера 1976. године). На основу ових истраживања, почев од осамдесетих година, конструишу се први комерцијални системи вештачке интелигенције, углавном тзв. експертски системи.

Савремени проблеми који се настоје решити у истраживањима вештачке интелигенције, везани су за настојања конструисања кооперативних система на бази агената, укључујући системе за управљање подацима, утврђивање редоследа обраде података и покушаје имитације природног језика, између осталих.

Историја вештачке интелигенције

The study of mechanical or "formal" reasoning began with philosophers and mathematicians in antiquity. The study of logic led directly to Alan Turing's theory of computation, which suggested that a machine, by shuffling symbols as simple as "0" and "1", could simulate both mathematical deduction and formal reasoning, which is known as the Church–Turing thesis.[249] This, along with concurrent discoveries in cybernetics and information theory, led researchers to consider the possibility of building an "electronic brain".[њ][251]

Alan Turing was thinking about machine intelligence at least as early as 1941, when he circulated a paper on machine intelligence which could be the earliest paper in the field of AI – though it is now lost.[5] The first available paper generally recognized as "AI" was McCullouch and Pitts design for Turing-complete "artificial neurons" in 1943 – the first mathematical model of a neural network.[252] The paper was influenced by Turing's earlier paper 'On Computable Numbers' from 1936 using similar two-state boolean 'neurons', but was the first to apply it to neuronal function.[5]

The term 'machine intelligence' was used by Alan Turing during his life which was later often referred to as 'artificial intelligence' after his death in 1954. In 1950 Turing published the best known of his papers 'Computing Machinery and Intelligence', the paper introduced his concept of what is now known as the Turing test to the general public. Then followed three radio broadcasts on AI by Turing, the lectures: 'Intelligent Machinery, A Heretical Theory', 'Can Digital Computers Think'? and the panel discussion 'Can Automatic Calculating Machines be Said to Think'. By 1956 computer intelligence had been actively pursued for more than a decade in Britain; the earliest AI programmes were written there in 1951–1952.[5]

In 1951, using a Ferranti Mark 1 computer of the University of Manchester, checkers and chess programs were written where you could play against the computer.[253] The field of American AI research was founded at a workshop at Dartmouth College in 1956.[о][6] The attendees became the leaders of AI research in the 1960s.[п] They and their students produced programs that the press described as "astonishing":[р] computers were learning checkers strategies, solving word problems in algebra, proving logical theorems and speaking English.[с][7] Artificial Intelligence laboratories were set up at a number of British and US Universities in the latter 1950s and early 1960s.[5]

They had, however, underestimated the difficulty of the problem.[т] Both the U.S. and British governments cut off exploratory research in response to the criticism of Sir James Lighthill[258] and ongoing pressure from the U.S. Congress to fund more productive projects. Minsky's and Papert's book Perceptrons was understood as proving that artificial neural networks would never be useful for solving real-world tasks, thus discrediting the approach altogether.[259] The "AI winter", a period when obtaining funding for AI projects was difficult, followed.[9]

In the early 1980s, AI research was revived by the commercial success of expert systems,[260] a form of AI program that simulated the knowledge and analytical skills of human experts. By 1985, the market for AI had reached over a billion dollars. At the same time, Japan's fifth generation computer project inspired the U.S. and British governments to restore funding for academic research.[8] However, beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into disrepute, and a second, longer-lasting winter began.[10]

Many researchers began to doubt that the current practices would be able to imitate all the processes of human cognition, especially perception, robotics, learning and pattern recognition.[261] A number of researchers began to look into "sub-symbolic" approaches.[262] Robotics researchers, such as Rodney Brooks, rejected "representation" in general and focussed directly on engineering machines that move and survive.[ћ] Judea Pearl, Lofti Zadeh and others developed methods that handled incomplete and uncertain information by making reasonable guesses rather than precise logic.[88][267] But the most important development was the revival of "connectionism", including neural network research, by Geoffrey Hinton and others.[268] In 1990, Yann LeCun successfully showed that convolutional neural networks can recognize handwritten digits, the first of many successful applications of neural networks.[269]

AI gradually restored its reputation in the late 1990s and early 21st century by exploiting formal mathematical methods and by finding specific solutions to specific problems. This "narrow" and "formal" focus allowed researchers to produce verifiable results and collaborate with other fields (such as statistics, economics and mathematics).[270] By 2000, solutions developed by AI researchers were being widely used, although in the 1990s they were rarely described as "artificial intelligence".[271]

Several academic researchers became concerned that AI was no longer pursuing the original goal of creating versatile, fully intelligent machines. Beginning around 2002, they founded the subfield of artificial general intelligence (or "AGI"), which had several well-funded institutions by the 2010s.[14]

Deep learning began to dominate industry benchmarks in 2012 and was adopted throughout the field.[11] For many specific tasks, other methods were abandoned.[у] Deep learning's success was based on both hardware improvements (faster computers,[273] graphics processing units, cloud computing[274]) and access to large amounts of data[275] (including curated datasets,[274] such as ImageNet).

Deep learning's success led to an enormous increase in interest and funding in AI.[ф] The amount of machine learning research (measured by total publications) increased by 50% in the years 2015–2019,[239] and WIPO reported that AI was the most prolific emerging technology in terms of the number of patent applications and granted patents.[276] According to 'AI Impacts', about $50 billion annually was invested in "AI" around 2022 in the US alone and about 20% of new US Computer Science PhD graduates have specialized in "AI";[277] about 800,000 "AI"-related US job openings existed in 2022.[278] The large majority of the advances have occurred within the United States, with its companies, universities, and research labs leading artificial intelligence research.[13]

In 2016, issues of fairness and the misuse of technology were catapulted into center stage at machine learning conferences, publications vastly increased, funding became available, and many researchers re-focussed their careers on these issues. The alignment problem became a serious field of academic study.[218]

Филозофија

Defining artificial intelligence

Alan Turing wrote in 1950 "I propose to consider the question 'can machines think'?"[279] He advised changing the question from whether a machine "thinks", to "whether or not it is possible for machinery to show intelligent behaviour".[279] He devised the Turing test, which measures the ability of a machine to simulate human conversation.[280] Since we can only observe the behavior of the machine, it does not matter if it is "actually" thinking or literally has a "mind". Turing notes that we can not determine these things about other people[х] but "it is usual to have a polite convention that everyone thinks"[281]

Russell and Norvig agree with Turing that AI must be defined in terms of "acting" and not "thinking".[282] However, they are critical that the test compares machines to people. "Aeronautical engineering texts," they wrote, "do not define the goal of their field as making 'machines that fly so exactly like pigeons that they can fool other pigeons.Шаблон:' "[283] AI founder John McCarthy agreed, writing that "Artificial intelligence is not, by definition, simulation of human intelligence".[284]

McCarthy defines intelligence as "the computational part of the ability to achieve goals in the world."[285] Another AI founder, Marvin Minsky similarly defines it as "the ability to solve hard problems".[286] These definitions view intelligence in terms of well-defined problems with well-defined solutions, where both the difficulty of the problem and the performance of the program are direct measures of the "intelligence" of the machine—and no other philosophical discussion is required, or may not even be possible.

Another definition has been adopted by Google,[287] a major practitioner in the field of AI. This definition stipulates the ability of systems to synthesize information as the manifestation of intelligence, similar to the way it is defined in biological intelligence.

Evaluating approaches to AI

No established unifying theory or paradigm has guided AI research for most of its history.[ц] The unprecedented success of statistical machine learning in the 2010s eclipsed all other approaches (so much so that some sources, especially in the business world, use the term "artificial intelligence" to mean "machine learning with neural networks"). This approach is mostly sub-symbolic, soft and narrow (see below). Critics argue that these questions may have to be revisited by future generations of AI researchers.

Symbolic AI and its limits

Symbolic AI (or "GOFAI")[289] simulated the high-level conscious reasoning that people use when they solve puzzles, express legal reasoning and do mathematics. They were highly successful at "intelligent" tasks such as algebra or IQ tests. In the 1960s, Newell and Simon proposed the physical symbol systems hypothesis: "A physical symbol system has the necessary and sufficient means of general intelligent action."[290]

However, the symbolic approach failed on many tasks that humans solve easily, such as learning, recognizing an object or commonsense reasoning. Moravec's paradox is the discovery that high-level "intelligent" tasks were easy for AI, but low level "instinctive" tasks were extremely difficult.[291] Philosopher Hubert Dreyfus had argued since the 1960s that human expertise depends on unconscious instinct rather than conscious symbol manipulation, and on having a "feel" for the situation, rather than explicit symbolic knowledge.[292] Although his arguments had been ridiculed and ignored when they were first presented, eventually, AI research came to agree with him.[ч][19]

The issue is not resolved: sub-symbolic reasoning can make many of the same inscrutable mistakes that human intuition does, such as algorithmic bias. Critics such as Noam Chomsky argue continuing research into symbolic AI will still be necessary to attain general intelligence,[294][295] in part because sub-symbolic AI is a move away from explainable AI: it can be difficult or impossible to understand why a modern statistical AI program made a particular decision. The emerging field of neuro-symbolic artificial intelligence attempts to bridge the two approaches.

Neat vs. scruffy

"Neats" hope that intelligent behavior is described using simple, elegant principles (such as logic, optimization, or neural networks). "Scruffies" expect that it necessarily requires solving a large number of unrelated problems. Neats defend their programs with theoretical rigor, scruffies rely mainly on incremental testing to see if they work. This issue was actively discussed in the 1970s and 1980s,[296] but eventually was seen as irrelevant. Modern AI has elements of both.

Soft vs. hard computing

Finding a provably correct or optimal solution is intractable for many important problems.[18] Soft computing is a set of techniques, including genetic algorithms, fuzzy logic and neural networks, that are tolerant of imprecision, uncertainty, partial truth and approximation. Soft computing was introduced in the late 1980s and most successful AI programs in the 21st century are examples of soft computing with neural networks.

Narrow vs. general AI

AI researchers are divided as to whether to pursue the goals of artificial general intelligence and superintelligence directly or to solve as many specific problems as possible (narrow AI) in hopes these solutions will lead indirectly to the field's long-term goals.[297][298] General intelligence is difficult to define and difficult to measure, and modern AI has had more verifiable successes by focusing on specific problems with specific solutions. The experimental sub-field of artificial general intelligence studies this area exclusively.

Machine consciousness, sentience and mind

The philosophy of mind does not know whether a machine can have a mind, consciousness and mental states, in the same sense that human beings do. This issue considers the internal experiences of the machine, rather than its external behavior. Mainstream AI research considers this issue irrelevant because it does not affect the goals of the field: to build machines that can solve problems using intelligence. Russell and Norvig add that "[t]he additional project of making a machine conscious in exactly the way humans are is not one that we are equipped to take on."[299] However, the question has become central to the philosophy of mind. It is also typically the central question at issue in artificial intelligence in fiction.

Consciousness

David Chalmers identified two problems in understanding the mind, which he named the "hard" and "easy" problems of consciousness.[300] The easy problem is understanding how the brain processes signals, makes plans and controls behavior. The hard problem is explaining how this feels or why it should feel like anything at all, assuming we are right in thinking that it truly does feel like something (Dennett's consciousness illusionism says this is an illusion). Human information processing is easy to explain, however, human subjective experience is difficult to explain. For example, it is easy to imagine a color-blind person who has learned to identify which objects in their field of view are red, but it is not clear what would be required for the person to know what red looks like.[301]

Computationalism and functionalism

Computationalism is the position in the philosophy of mind that the human mind is an information processing system and that thinking is a form of computing. Computationalism argues that the relationship between mind and body is similar or identical to the relationship between software and hardware and thus may be a solution to the mind–body problem. This philosophical position was inspired by the work of AI researchers and cognitive scientists in the 1960s and was originally proposed by philosophers Jerry Fodor and Hilary Putnam.[302]

Philosopher John Searle characterized this position as "strong AI": "The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds."[џ] Searle counters this assertion with his Chinese room argument, which attempts to show that, even if a machine perfectly simulates human behavior, there is still no reason to suppose it also has a mind.[306]

AI welfare and rights

It is difficult or impossible to reliably evaluate whether an advanced AI is sentient (has the ability to feel), and if so, to what degree.[307] But if there is a significant chance that a given machine can feel and suffer, then it may be entitled to certain rights or welfare protection measures, similarly to animals.[308][309] Sapience (a set of capacities related to high intelligence, such as discernment or self-awareness) may provide another moral basis for AI rights.[308] Robot rights are also sometimes proposed as a practical way to integrate autonomous agents into society.[310]

In 2017, the European Union considered granting "electronic personhood" to some of the most capable AI systems. Similarly to the legal status of companies, it would have conferred rights but also responsibilities.[311] Critics argued in 2018 that granting rights to AI systems would downplay the importance of human rights, and that legislation should focus on user needs rather than speculative futuristic scenarios. They also noted that robots lacked the autonomy to take part to society on their own.[312][313]

Progress in AI increased interest in the topic. Proponents of AI welfare and rights often argue that AI sentience, if it emerges, would be particularly easy to deny. They warn that this may be a moral blind spot analogous to slavery or factory farming, which could lead to large-scale suffering if sentient AI is created and carelessly exploited.[309][308]

Будућност

Superintelligence and the singularity

A superintelligence is a hypothetical agent that would possess intelligence far surpassing that of the brightest and most gifted human mind.[298]

If research into artificial general intelligence produced sufficiently intelligent software, it might be able to reprogram and improve itself. The improved software would be even better at improving itself, leading to what I. J. Good called an "intelligence explosion" and Vernor Vinge called a "singularity".[314]

However, technologies cannot improve exponentially indefinitely, and typically follow an S-shaped curve, slowing when they reach the physical limits of what the technology can do.[315]

Transhumanism

Robot designer Hans Moravec, cyberneticist Kevin Warwick, and inventor Ray Kurzweil have predicted that humans and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, has roots in Aldous Huxley and Robert Ettinger.[316]

Edward Fredkin argues that "artificial intelligence is the next stage in evolution", an idea first proposed by Samuel Butler's "Darwin among the Machines" as far back as 1863, and expanded upon by George Dyson in his book of the same name in 1998.[317]

У фикцији

The word "robot" itself was coined by Karel Čapek in his 1921 play R.U.R., the title standing for "Rossum's Universal Robots".

Thought-capable artificial beings have appeared as storytelling devices since antiquity,[318] and have been a persistent theme in science fiction.[319]

A common trope in these works began with Mary Shelley's Frankenstein, where a human creation becomes a threat to its masters. This includes such works as Arthur C. Clarke's and Stanley Kubrick's 2001: A Space Odyssey (both 1968), with HAL 9000, the murderous computer in charge of the Discovery One spaceship, as well as The Terminator (1984) and The Matrix (1999). In contrast, the rare loyal robots such as Gort from The Day the Earth Stood Still (1951) and Bishop from Aliens (1986) are less prominent in popular culture.[320]

Isaac Asimov introduced the Three Laws of Robotics in many books and stories, most notably the "Multivac" series about a super-intelligent computer of the same name. Asimov's laws are often brought up during lay discussions of machine ethics;[321] while almost all artificial intelligence researchers are familiar with Asimov's laws through popular culture, they generally consider the laws useless for many reasons, one of which is their ambiguity.[322]

Several works use AI to force us to confront the fundamental question of what makes us human, showing us artificial beings that have the ability to feel, and thus to suffer. This appears in Karel Čapek's R.U.R., the films A.I. Artificial Intelligence and Ex Machina, as well as the novel Do Androids Dream of Electric Sheep?, by Philip K. Dick. Dick considers the idea that our understanding of human subjectivity is altered by technology created with artificial intelligence.[323]

Напомене

  1. ^ а б Ова листа интелигентних особина заснована је на темама које покривају главни AI уџбеници, укључујући: Russell & Norvig (2021), Luger & Stubblefield (2004), Poole, Mackworth & Goebel (1998) and Nilsson (1998)
  2. ^ а б This list of tools is based on the topics covered by the major AI textbooks, including: Russell & Norvig (2021), Luger & Stubblefield (2004), Poole, Mackworth & Goebel (1998) and Nilsson (1998)
  3. ^ It is among the reasons that expert systems proved to be inefficient for capturing knowledge.[33][34]
  4. ^ "Rational agent" is general term used in economics, philosophy and theoretical artificial intelligence. It can refer to anything that directs its behavior to accomplish goals, such as a person, an animal, a corporation, a nation, or, in the case of AI, a computer program.
  5. ^ Alan Turing discussed the centrality of learning as early as 1950, in his classic paper "Computing Machinery and Intelligence".[45] In 1956, at the original Dartmouth AI summer conference, Ray Solomonoff wrote a report on unsupervised probabilistic machine learning: "An Inductive Inference Machine".[46]
  6. ^ See AI winter § Machine translation and the ALPAC report of 1966
  7. ^ Compared with symbolic logic, formal Bayesian inference is computationally expensive. For inference to be tractable, most observations must be conditionally independent of one another. AdSense uses a Bayesian network with over 300 million edges to learn which ads to serve.[90]
  8. ^ Expectation-maximization, one of the most popular algorithms in machine learning, allows clustering in the presence of unknown latent variables.[92]
  9. ^ Some form of deep neural networks (without a specific learning algorithm) were described by: Alan Turing (1948);[116] Frank Rosenblatt(1957);[116] Karl Steinbuch and Roger David Joseph (1961).[117] Deep or recurrent networks that learned (or used gradient descent) were developed by: Ernst Ising and Wilhelm Lenz (1925);[118] Oliver Selfridge (1959);[117] Alexey Ivakhnenko and Valentin Lapa (1965);[118] Kaoru Nakano (1977);[119] Shun-Ichi Amari (1972);[119] John Joseph Hopfield (1982).[119] Backpropagation was independently discovered by: Henry J. Kelley (1960);[116] Arthur E. Bryson (1962);[116] Stuart Dreyfus (1962);[116] Arthur E. Bryson and Yu-Chi Ho (1969);[116] Seppo Linnainmaa (1970);[120] Paul Werbos (1974).[116] In fact, backpropagation and gradient descent are straight forward applications of Gottfried Leibniz' chain rule in calculus (1676),[121] and is essentially identical (for one layer) to the method of least squares, developed independently by Johann Carl Friedrich Gauss (1795) and Adrien-Marie Legendre (1805).[122] There are probably many others, yet to be discovered by historians of science.
  10. ^ Geoffrey Hinton said, of his work on neural networks in the 1990s, "our labeled datasets were thousands of times too small. [And] our computers were millions of times too slow"[123]
  11. ^ Including Jon Kleinberg (Cornell), Sendhil Mullainathan (University of Chicago), Cynthia Chouldechova (Carnegie Mellon) and Sam Corbett-Davis (Stanford)[172]
  12. ^ Moritz Hardt (a director at the Max Planck Institute for Intelligent Systems) argues that machine learning "is fundamentally the wrong tool for a lot of domains, where you're trying to design interventions and mechanisms that change the world."[177]
  13. ^ When the law was passed in 2018, it still contained a form of this provision.
  14. ^ This is the United Nations' definition, and includes things like land mines as well.[190]
  15. ^ See table 4; 9% is both the OECD average and the US average.[203]
  16. ^ Sometimes called a "robopocalypse".[210]
  17. ^ "Electronic brain" was the term used by the press around this time.[250]
  18. ^ Daniel Crevier wrote, "the conference is generally recognized as the official birthdate of the new science."[254] Russell and Norvig called the conference "the inception of artificial intelligence."[252]
  19. ^ Russell and Norvig wrote "for the next 20 years the field would be dominated by these people and their students."[255]
  20. ^ Russell and Norvig wrote "it was astonishing whenever a computer did anything kind of smartish".[256]
  21. ^ The programs described are Arthur Samuel's checkers program for the IBM 701, Daniel Bobrow's STUDENT, Newell and Simon's Logic Theorist and Terry Winograd's SHRDLU.
  22. ^ Russell and Norvig write: "in almost all cases, these early systems failed on more difficult problems"[257]
  23. ^ Embodied approaches to AI[263] were championed by Hans Moravec[264] and Rodney Brooks[265] and went by many names: Nouvelle AI.[265] Developmental robotics,[266]
  24. ^ Matteo Wong wrote in The Atlantic: "Whereas for decades, computer-science fields such as natural-language processing, computer vision, and robotics used extremely different methods, now they all use a programming method called "deep learning." As a result, their code and approaches have become more similar, and their models are easier to integrate into one another."[272]
  25. ^ Jack Clark wrote in Bloomberg: "After a half-decade of quiet breakthroughs in artificial intelligence, 2015 has been a landmark year. Computers are smarter and learning faster than ever," and noted that the number of software projects that use machine learning at Google increased from a "sporadic usage" in 2012 to more than 2,700 projects in 2015.[274]
  26. ^ See Problem of other minds
  27. ^ Nils Nilsson wrote in 1983: "Simply put, there is wide disagreement in the field about what AI is all about."[288]
  28. ^ Daniel Crevier wrote that "time has proven the accuracy and perceptiveness of some of Dreyfus's comments. Had he formulated them less aggressively, constructive actions they suggested might have been taken much earlier."[293]
  29. ^ Searle presented this definition of "Strong AI" in 1999.[303] Searle's original formulation was "The appropriately programmed computer really is a mind, in the sense that computers given the right programs can be literally said to understand and have other cognitive states."[304] Strong AI is defined similarly by Russell and Norvig: "Stong AI – the assertion that machines that do so are actually thinking (as opposed to simulating thinking)."[305]

Референце

  1. ^ Russell, Stuart J.; Norvig, Peter. (2021). Artificial Intelligence: A Modern Approach (4th изд.). Hoboken: Pearson. ISBN 978-0134610993. LCCN 20190474. 
  2. ^ Rich, Elaine; Knight, Kevin; Nair, Shivashankar B (2010). Artificial Intelligence (на језику: енглески) (3rd изд.). New Delhi: Tata McGraw Hill India. ISBN 978-0070087705. 
  3. ^ Artificial Intelligence Архивирано на сајту Wayback Machine (21. фебруар 2011), Приступљено 28. 3. 2013.
  4. ^ Google (2016).
  5. ^ а б в г д Copeland, J., ур. (2004). The Essential Turing: the ideas that gave birth to the computer age (на језику: енглески). Oxford, England: Clarendon Press. ISBN 0-19-825079-7. 
  6. ^ а б Dartmouth workshop: The proposal:
  7. ^ а б Successful programs the 1960s:
  8. ^ а б Funding initiatives in the early 1980s: Fifth Generation Project (Japan), Alvey (UK), Microelectronics and Computer Technology Corporation (US), Strategic Computing Initiative (US):
  9. ^ а б First AI Winter, Lighthill report, Mansfield Amendment
  10. ^ а б Second AI Winter:
  11. ^ а б Deep learning revolution, AlexNet:
  12. ^ Toews (2023).
  13. ^ а б Frank (2023).
  14. ^ а б в Artificial general intelligence: Proposal for the modern version: Warnings of overspecialization in AI from leading researchers:
  15. ^ Russell & Norvig (2021, §1.2).
  16. ^ Problem solving, puzzle solving, game playing and deduction:
  17. ^ Uncertain reasoning:
  18. ^ а б в Intractability and efficiency and the combinatorial explosion:
  19. ^ а б в Psychological evidence of the prevalence sub-symbolic reasoning and knowledge:
  20. ^ Knowledge representation and knowledge engineering:
  21. ^ Smoliar & Zhang (1994).
  22. ^ Neumann & Möller (2008).
  23. ^ Kuperman, Reichley & Bailey (2006).
  24. ^ McGarry (2005).
  25. ^ Bertini, Del Bimbo & Torniai (2006).
  26. ^ Russell & Norvig (2021), стр. 272.
  27. ^ Representing categories and relations: Semantic networks, description logics, inheritance (including frames and scripts):
  28. ^ Representing events and time:Situation calculus, event calculus, fluent calculus (including solving the frame problem):
  29. ^ Causal calculus:
  30. ^ Representing knowledge about knowledge: Belief calculus, modal logics:
  31. ^ а б Default reasoning, Frame problem, default logic, non-monotonic logics, circumscription, closed world assumption, abduction: (Poole et al. places abduction under "default reasoning". Luger et al. places this under "uncertain reasoning").
  32. ^ а б Breadth of commonsense knowledge:
  33. ^ Newquist (1994), стр. 296.
  34. ^ Crevier (1993), стр. 204–208.
  35. ^ Russell & Norvig (2021), стр. 528.
  36. ^ Automated planning:
  37. ^ Automated decision making, Decision theory:
  38. ^ Classical planning:
  39. ^ Sensorless or "conformant" planning, contingent planning, replanning (a.k.a online planning):
  40. ^ Uncertain preferences: Inverse reinforcement learning:
  41. ^ Information value theory:
  42. ^ Markov decision process:
  43. ^ Game theory and multi-agent decision theory:
  44. ^ Learning:
  45. ^ Turing (1950).
  46. ^ Solomonoff (1956).
  47. ^ Unsupervised learning:
  48. ^ а б Supervised learning:
  49. ^ Reinforcement learning:
  50. ^ Transfer learning:
  51. ^ „Artificial Intelligence (AI): What Is AI and How Does It Work? | Built In”. builtin.com. Приступљено 2023-10-30. 
  52. ^ Computational learning theory:
  53. ^ Natural language processing (NLP):
  54. ^ Subproblems of NLP:
  55. ^ Russell & Norvig (2021), стр. 856–858.
  56. ^ Dickson (2022).
  57. ^ Modern statistical and deep learning approaches to NLP:
  58. ^ Vincent (2019).
  59. ^ Russell & Norvig (2021), стр. 875–878.
  60. ^ Bushwick (2023).
  61. ^ Computer vision:
  62. ^ Russell & Norvig (2021), стр. 849–850.
  63. ^ Russell & Norvig (2021), стр. 895–899.
  64. ^ Russell & Norvig (2021), стр. 899–901.
  65. ^ Russell & Norvig (2021), стр. 931–938.
  66. ^ MIT AIL (2014).
  67. ^ Affective computing:
  68. ^ Waddell (2018).
  69. ^ Poria et al. (2017).
  70. ^ Search algorithms:
  71. ^ State space search:
  72. ^ Russell & Norvig (2021), §11.2.
  73. ^ Uninformed searches (breadth first search, depth-first search and general state space search):
  74. ^ Heuristic or informed searches (e.g., greedy best first and A*):
  75. ^ Adversarial search:
  76. ^ Local or "optimization" search:
  77. ^ Singh Chauhan, Nagesh (18. 12. 2020). „Optimization Algorithms in Neural Networks”. KDnuggets (на језику: енглески). Приступљено 2024-01-13. 
  78. ^ Evolutionary computation:
  79. ^ Merkle & Middendorf (2013).
  80. ^ Logic:
  81. ^ Propositional logic:
  82. ^ First-order logic and features such as equality:
  83. ^ Logical inference:
  84. ^ Russell & Norvig (2021), §8.3.1.
  85. ^ Resolution and unification:
  86. ^ Forward chaining, backward chaining, Horn clauses, and logical deduction as search:
  87. ^ Fuzzy logic:
  88. ^ а б Stochastic methods for uncertain reasoning:
  89. ^ Bayesian networks:
  90. ^ Domingos (2015), chapter 6.
  91. ^ Bayesian inference algorithm:
  92. ^ Domingos (2015), стр. 210.
  93. ^ Bayesian learning and the expectation-maximization algorithm:
  94. ^ Bayesian decision theory and Bayesian decision networks:
  95. ^ а б в Stochastic temporal models: Hidden Markov model: Kalman filters: Dynamic Bayesian networks:
  96. ^ decision theory and decision analysis:
  97. ^ Information value theory:
  98. ^ Markov decision processes and dynamic decision networks:
  99. ^ Game theory and mechanism design:
  100. ^ Statistical learning methods and classifiers:
  101. ^ Decision trees:
  102. ^ Non-parameteric learning models such as K-nearest neighbor and support vector machines:
  103. ^ Domingos (2015), стр. 152.
  104. ^ Naive Bayes classifier:
  105. ^ а б Neural networks:
  106. ^ Gradient calculation in computational graphs, backpropagation, automatic differentiation:
  107. ^ Universal approximation theorem: The theorem:
  108. ^ Feedforward neural networks:
  109. ^ Recurrent neural networks:
  110. ^ Perceptrons:
  111. ^ а б Deep learning:
  112. ^ Convolutional neural networks:
  113. ^ Deng & Yu (2014), стр. 199–200.
  114. ^ Ciresan, Meier & Schmidhuber (2012).
  115. ^ Russell & Norvig (2021), стр. 751.
  116. ^ а б в г д ђ е Russell & Norvig (2021), стр. 785.
  117. ^ а б Schmidhuber (2022), §5.
  118. ^ а б Schmidhuber (2022), §6.
  119. ^ а б в Schmidhuber (2022), §7.
  120. ^ Schmidhuber (2022), §8.
  121. ^ Schmidhuber (2022), §2.
  122. ^ Schmidhuber (2022), §3.
  123. ^ Quoted in Christian (2020, стр. 22)
  124. ^ Smith (2023).
  125. ^ „Explained: Generative AI”. 9. 11. 2023. 
  126. ^ „AI Writing and Content Creation Tools”. MIT Sloan Teaching & Learning Technologies. Приступљено 25. 12. 2023. 
  127. ^ Marmouyet (2023).
  128. ^ Kobielus (2019).
  129. ^ Davenport, T; Kalakota, R (јун 2019). „The potential for artificial intelligence in healthcare”. Future Healthc J. (на језику: енглески). 6 (2): 94—98. PMC 6616181Слободан приступ. PMID 31363513. doi:10.7861/futurehosp.6-2-94. 
  130. ^ а б Bax, Monique; Thorpe, Jordan; Romanov, Valentin (децембар 2023). „The future of personalized cardiovascular medicine demands 3D and 4D printing, stem cells, and artificial intelligence”. Frontiers in Sensors (на језику: енглески). 4. ISSN 2673-5067. doi:10.3389/fsens.2023.1294721Слободан приступ. 
  131. ^ Jumper, J; Evans, R; Pritzel, A (2021). „Highly accurate protein structure prediction with AlphaFold”. Nature (на језику: енглески). 596 (7873): 583—589. Bibcode:2021Natur.596..583J. PMC 8371605Слободан приступ. PMID 34265844. doi:10.1038/s41586-021-03819-2. 
  132. ^ „AI discovers new class of antibiotics to kill drug-resistant bacteria”. 2023-12-20. 
  133. ^ Grant, Eugene F.; Lardner, Rex (1952-07-25). „The Talk of the Town – It”. The New Yorker (на језику: енглески). ISSN 0028-792X. Приступљено 2024-01-28. 
  134. ^ Anderson, Mark Robert (2017-05-11). „Twenty years on from Deep Blue vs Kasparov: how a chess match started the big data revolution”. The Conversation (на језику: енглески). Приступљено 2024-01-28. 
  135. ^ Markoff, John (2011-02-16). „Computer Wins on 'Jeopardy!': Trivial, It's Not”Неопходна новчана претплата. The New York Times (на језику: енглески). ISSN 0362-4331. Приступљено 2024-01-28. 
  136. ^ Byford, Sam (2017-05-27). „AlphaGo retires from competitive Go after defeating world number one 3-0”. The Verge (на језику: енглески). Приступљено 2024-01-28. 
  137. ^ Brown, Noam; Sandholm, Tuomas (2019-08-30). „Superhuman AI for multiplayer poker”. Science (на језику: енглески). 365 (6456): 885—890. ISSN 0036-8075. doi:10.1126/science.aay2400. 
  138. ^ „MuZero: Mastering Go, chess, shogi and Atari without rules”. Google DeepMind (на језику: енглески). 2020-12-23. Приступљено 2024-01-28. 
  139. ^ Sample, Ian (2019-10-30). „AI becomes grandmaster in 'fiendishly complex' StarCraft II”. The Guardian (на језику: енглески). ISSN 0261-3077. Приступљено 2024-01-28. 
  140. ^ Wurman, P.R.; Barrett, S.; Kawamoto, K. (2022). „Outracing champion Gran Turismo drivers with deep reinforcement learning”. Nature 602. 602 (7896): 223—228. doi:10.1038/s41586-021-04357-7. 
  141. ^ а б в Congressional Research Service (2019). Artificial Intelligence and National Security (PDF). Washington, DC: Congressional Research Service. PD-notice
  142. ^ а б Slyusar, Vadym (2019). „Artificial intelligence as the basis of future control networks”. ResearchGate. doi:10.13140/RG.2.2.30247.50087. 
  143. ^ Knight, Will. „The US and 30 Other Nations Agree to Set Guardrails for Military AI”. Wired (на језику: енглески). ISSN 1059-1028. Приступљено 2024-01-24. 
  144. ^ Marcelline, Marco (27. 5. 2023). „ChatGPT: Most Americans Know About It, But Few Actually Use the AI Chatbot”. PCMag (на језику: енглески). Приступљено 2024-01-28. 
  145. ^ Lu, Donna (2023-03-31). „Misinformation, mistakes and the Pope in a puffer: what rapidly evolving AI can – and can't – do”. The Guardian (на језику: енглески). ISSN 0261-3077. Приступљено 2024-01-28. 
  146. ^ Hurst, Luke (2023-05-23). „How a fake image of a Pentagon explosion shared on Twitter caused a real dip on Wall Street”. euronews (на језику: енглески). Приступљено 2024-01-28. 
  147. ^ Ransbotham, Sam; Kiron, David; Gerbert, Philipp; Reeves, Martin (2017-09-06). „Reshaping Business With Artificial Intelligence”. MIT Sloan Management Review (на језику: енглески). Архивирано из оригинала 13. 2. 2024. г. 
  148. ^ Simonite (2016).
  149. ^ Russell & Norvig (2021), стр. 987.
  150. ^ Laskowski (2023).
  151. ^ GAO (2022).
  152. ^ Valinsky (2019).
  153. ^ Russell & Norvig (2021), стр. 991.
  154. ^ Russell & Norvig (2021), стр. 991–992.
  155. ^ Christian (2020), стр. 63.
  156. ^ Vincent (2022).
  157. ^ Reisner (2023).
  158. ^ Alter & Harris (2023).
  159. ^ Nicas (2018).
  160. ^ Rainie, Lee; Keeter, Scott; Perrin, Andrew (22. 7. 2019). „Trust and Distrust in America”. Pew Research Center. Архивирано из оригинала 22. 2. 2024. г. 
  161. ^ Williams (2023).
  162. ^ Taylor & Hern (2023).
  163. ^ а б Rose (2023).
  164. ^ CNA (2019).
  165. ^ Goffrey (2008), стр. 17.
  166. ^ Berdahl et al. (2023); Goffrey (2008, стр. 17); Rose (2023); Russell & Norvig (2021, стр. 995)
  167. ^ Algorithmic bias and Fairness (machine learning):
  168. ^ Christian (2020), стр. 25.
  169. ^ а б Russell & Norvig (2021), стр. 995.
  170. ^ Grant & Hill (2023).
  171. ^ Larson & Angwin (2016).
  172. ^ Christian (2020), стр. 67–70.
  173. ^ Christian (2020, стр. 67–70); Russell & Norvig (2021, стр. 993–994)
  174. ^ Russell & Norvig (2021, стр. 995); Lipartito (2011, стр. 36); Goodman & Flaxman (2017, стр. 6); Christian (2020, стр. 39–40, 65)
  175. ^ Quoted in Christian (2020, стр. 65).
  176. ^ Russell & Norvig (2021, стр. 994); Christian (2020, стр. 40, 80–81)
  177. ^ Quoted in Christian (2020, стр. 80)
  178. ^ Dockrill (2022).
  179. ^ Sample (2017).
  180. ^ „Black Box AI”. 16. 6. 2023. 
  181. ^ Christian (2020), стр. 110.
  182. ^ Christian (2020), стр. 88–91.
  183. ^ Christian (2020, стр. 83); Russell & Norvig (2021, стр. 997)
  184. ^ Christian (2020), стр. 91.
  185. ^ Christian (2020), стр. 83.
  186. ^ Verma (2021).
  187. ^ Rothman (2020).
  188. ^ Christian (2020), стр. 105-108.
  189. ^ Christian (2020), стр. 108–112.
  190. ^ Russell & Norvig (2021), стр. 989.
  191. ^ Robitzski (2018); Sainato (2015)
  192. ^ Russell & Norvig (2021), стр. 987-990.
  193. ^ Russell & Norvig (2021), стр. 988.
  194. ^ Harari (2018).
  195. ^ Buckley, Chris; Mozur, Paul (22. 5. 2019). „How China Uses High-Tech Surveillance to Subdue Minorities”. The New York Times. 
  196. ^ „Security lapse exposed a Chinese smart city surveillance system”. 3. 5. 2019. Архивирано из оригинала 7. 3. 2021. г. Приступљено 14. 9. 2020. 
  197. ^ „AI traffic signals to be installed in Bengaluru soon”. NextBigWhat (на језику: енглески). 24. 9. 2019. Приступљено 1. 10. 2019. 
  198. ^ Urbina et al. (2022).
  199. ^ Tarnoff, Ben (4. 8. 2023). „Lessons from Eliza”. The Guardian Weekly. стр. 34—9. 
  200. ^ а б E McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2022) 51(3) Industrial Law Journal 511–559 Архивирано 27 мај 2023 на сајту Wayback Machine
  201. ^ Ford & Colvin (2015);McGaughey (2022)
  202. ^ IGM Chicago (2017).
  203. ^ Arntz, Gregory & Zierahn (2016), стр. 33.
  204. ^ Lohr (2017); Frey & Osborne (2017); Arntz, Gregory & Zierahn (2016, стр. 33)
  205. ^ Morgenstern (2015).
  206. ^ Mahdawi (2017); Thompson (2014)
  207. ^ Zhou, Viola (2023-04-11). „AI is already taking video game illustrators' jobs in China”. Rest of World (на језику: енглески). Приступљено 2023-08-17. 
  208. ^ Carter, Justin (2023-04-11). „China's game art industry reportedly decimated by growing AI use”. Game Developer (на језику: енглески). Приступљено 2023-08-17. 
  209. ^ Cellan-Jones (2014).
  210. ^ Russell & Norvig 2021, стр. 1001.
  211. ^ Bostrom (2014).
  212. ^ Russell (2019).
  213. ^ Bostrom (2014); Müller & Bostrom (2014); Bostrom (2015).
  214. ^ Harari (2023).
  215. ^ Müller & Bostrom (2014).
  216. ^ Leaders' concerns about the existential risks of AI around 2015:
  217. ^ Arguments that AI is not an imminent risk:
  218. ^ а б Christian (2020), стр. 67, 73.
  219. ^ Valance (2023).
  220. ^ Taylor, Josh (7. 5. 2023). „Rise of artificial intelligence is inevitable but should not be feared, 'father of AI' says”. The Guardian (на језику: енглески). Приступљено 26. 5. 2023. 
  221. ^ Colton, Emma (7. 5. 2023). „'Father of AI' says tech fears misplaced: 'You cannot stop it'. Fox News (на језику: енглески). Приступљено 26. 5. 2023. 
  222. ^ Jones, Hessie (23. 5. 2023). „Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life's Work Won't Lead To Dystopia”. Forbes (на језику: енглески). Приступљено 26. 5. 2023. 
  223. ^ McMorrow, Ryan (19. 12. 2023). „Andrew Ng: 'Do we think the world is better off with more or less intelligence?'. Financial Times (на језику: енглески). Приступљено 30. 12. 2023. 
  224. ^ Levy, Steven (22. 12. 2023). „How Not to Be Stupid About AI, With Yann LeCun”. Wired (на језику: енглески). Приступљено 30. 12. 2023. 
  225. ^ Yudkowsky (2008).
  226. ^ а б Anderson & Anderson (2011).
  227. ^ AAAI (2014).
  228. ^ Wallach (2010).
  229. ^ Russell (2019), стр. 173.
  230. ^ Alan Turing Institute (2019). „Understanding artificial intelligence ethics and safety” (PDF). 
  231. ^ Alan Turing Institute (2023). „AI Ethics and Governance in Practice” (PDF). 
  232. ^ Floridi, Luciano; Cowls, Josh (2019-06-23). „A Unified Framework of Five Principles for AI in Society”. Harvard Data Science Review (на језику: енглески). 1 (1). S2CID 198775713. doi:10.1162/99608f92.8cd550d1Слободан приступ. 
  233. ^ Buruk, Banu; Ekmekci, Perihan Elif; Arda, Berna (2020-09-01). „A critical perspective on guidelines for responsible and trustworthy artificial intelligence”. Medicine, Health Care and Philosophy (на језику: енглески). 23 (3): 387—399. ISSN 1572-8633. PMID 32236794. S2CID 214766800. doi:10.1007/s11019-020-09948-1. 
  234. ^ Kamila, Manoj Kumar; Jasrotia, Sahil Singh (2023-01-01). „Ethical issues in the development of artificial intelligence: recognizing the risks”. International Journal of Ethics and Systems. ahead-of-print (ahead-of-print). ISSN 2514-9369. S2CID 259614124. doi:10.1108/IJOES-05-2023-0107. 
  235. ^ Regulation of AI to mitigate risks:
  236. ^ а б Vincent (2023).
  237. ^ Stanford University (2023).
  238. ^ а б в г UNESCO (2021).
  239. ^ Kissinger (2021).
  240. ^ Altman, Brockman & Sutskever (2023).
  241. ^ VOA News (25. 10. 2023). „UN Announces Advisory Body on Artificial Intelligence”. 
  242. ^ Edwards (2023).
  243. ^ Kasperowicz (2023).
  244. ^ Fox News (2023).
  245. ^ Milmo, Dan (3. 11. 2023). „Hope or Horror? The great AI debate dividing its pioneers”. The Guardian Weekly. стр. 10—12. 
  246. ^ „The Bletchley Declaration by Countries Attending the AI Safety Summit, 1-2 November 2023”. GOV.UK. 1. 11. 2023. Архивирано из оригинала 1. 11. 2023. г. Приступљено 2. 11. 2023. 
  247. ^ „Countries agree to safe and responsible development of frontier AI in landmark Bletchley Declaration”. GOV.UK (Саопштење). Архивирано из оригинала 1. 11. 2023. г. Приступљено 1. 11. 2023. 
  248. ^ Berlinski (2000).
  249. ^ „Google books ngram”. 
  250. ^ AI's immediate precursors:
  251. ^ а б Russell & Norvig (2021), стр. 17.
  252. ^ See "A Brief History of Computing" at AlanTuring.net.
  253. ^ Crevier (1993), стр. 47–49.
  254. ^ Russell & Norvig (2003), стр. 17.
  255. ^ Russell & Norvig (2003), стр. 18.
  256. ^ Russell & Norvig (2021), стр. 21.
  257. ^ Lighthill (1973).
  258. ^ Russell & Norvig (2021), стр. 22.
  259. ^ Expert systems:
  260. ^ Russell & Norvig (2021), стр. 24.
  261. ^ Nilsson (1998), стр. 7.
  262. ^ McCorduck (2004), стр. 454–462.
  263. ^ Moravec (1988).
  264. ^ а б Brooks (1990).
  265. ^ Developmental robotics:
  266. ^ Russell & Norvig (2021), стр. 25.
  267. ^
  268. ^ Russell & Norvig (2021), стр. 26.
  269. ^ Formal and narrow methods adopted in the 1990s:
  270. ^ AI widely used in the late 1990s:
  271. ^ Wong (2023).
  272. ^ Moore's Law and AI:
  273. ^ а б в Clark (2015b).
  274. ^ Big data:
  275. ^ „Intellectual Property and Frontier Technologies”. WIPO. Архивирано из оригинала 2. 4. 2022. г. Приступљено 30. 3. 2022. 
  276. ^ DiFeliciantonio (2023).
  277. ^ Goswami (2023).
  278. ^ а б Turing (1950), стр. 1.
  279. ^ Turing's original publication of the Turing test in "Computing machinery and intelligence": Historical influence and philosophical implications:
  280. ^ Turing (1950), Under "The Argument from Consciousness".
  281. ^ Russell & Norvig (2021), chpt. 2.
  282. ^ Russell & Norvig (2021), стр. 3.
  283. ^ Maker (2006).
  284. ^ McCarthy (1999).
  285. ^ Minsky (1986).
  286. ^ „What Is Artificial Intelligence (AI)?”. Google Cloud Platform. Архивирано из оригинала 31. 7. 2023. г. Приступљено 16. 10. 2023. 
  287. ^ Nilsson (1983), стр. 10.
  288. ^ Haugeland (1985), стр. 112–117.
  289. ^ Physical symbol system hypothesis: Historical significance:
  290. ^ Moravec's paradox:
  291. ^ Dreyfus' critique of AI: Historical significance and philosophical implications:
  292. ^ Crevier (1993), стр. 125.
  293. ^ Langley (2011).
  294. ^ Katz (2012).
  295. ^ Neats vs. scruffies, the historic debate: A classic example of the "scruffy" approach to intelligence: A modern example of neat AI and its aspirations in the 21st century:
  296. ^ Pennachin & Goertzel (2007).
  297. ^ а б Roberts (2016).
  298. ^ Russell & Norvig (2021), стр. 986.
  299. ^ Chalmers (1995).
  300. ^ Dennett (1991).
  301. ^ Horst (2005).
  302. ^ Searle (1999).
  303. ^ Searle (1980), стр. 1.
  304. ^ Russell & Norvig (2021), стр. 9817.
  305. ^ Searle's Chinese room argument: Discussion:
  306. ^ Leith, Sam (2022-07-07). „Nick Bostrom: How can we be certain a machine isn’t conscious?”. The Spectator (на језику: енглески). Приступљено 2024-02-23. 
  307. ^ а б в Thomson, Jonny (2022-10-31). „Why don't robots have rights?”. Big Think (на језику: енглески). Приступљено 2024-02-23. 
  308. ^ а б Kateman, Brian (2023-07-24). „AI Should Be Terrified of Humans”. TIME (на језику: енглески). Приступљено 2024-02-23. 
  309. ^ Wong, Jeff (10. 7. 2023). „What leaders need to know about robot rights”. Fast Company. 
  310. ^ Hern, Alex (2017-01-12). „Give robots 'personhood' status, EU committee argues”. The Guardian (на језику: енглески). ISSN 0261-3077. Приступљено 2024-02-23. 
  311. ^ Dovey, Dana (2018-04-14). „Experts Don't Think Robots Should Have Rights”. Newsweek (на језику: енглески). Приступљено 2024-02-23. 
  312. ^ Cuddy, Alice (2018-04-13). „Robot rights violate human rights, experts warn EU”. euronews (на језику: енглески). Приступљено 2024-02-23. 
  313. ^ The Intelligence explosion and technological singularity: I. J. Good's "intelligence explosion" Vernor Vinge's "singularity"
  314. ^ Russell & Norvig (2021), стр. 1005.
  315. ^ Transhumanism:
  316. ^ AI as evolution:
  317. ^ AI in myth:
  318. ^ McCorduck (2004), стр. 340–400.
  319. ^ Buttazzo (2001).
  320. ^ Anderson (2008).
  321. ^ McCauley (2007).
  322. ^ Galvan (1997).

Литература

Спољашње везе