Sunčev vetar
Sunčev vetar, ili solarni vetar, je struja naelektrisanih čestica (plazma), koju izbacuje gornja atmosfera Sunca. Sastoji se od visokoenergetskih elektrona ili protona energije oko keV. Čestice uspevaju da delimično pobegnu iz Sunčevog gravitacionog polja zbog visoke temperature korone i energetskog dobitka putem procesa koji još uvek nije potpuno objašnjen. Sastav plazme solarnog vetra takođe uključuje mešavinu materijala koji se nalaze u solarnoj plazmi: količine u tragovima teških jona i atomskih jezgara kao što su C, N, O, Ne, Mg, Si, S, i Fe. Postoje i ređi tragovi nekih drugih jezgara i izotopa kao što su P, Ti, Cr, 54Fe i 56Fe, i 58Ni, 60Ni, i 62Ni.[2] Nad plazmom solarnog vetra nalazi se međuplanetarno magnetno polje.[3]
Mnogi fenomeni su povezani sa Sunčevim vetrom, među kojima su geomagnetna oluja, polarna svetlost, aurore i repovi kometa koji su uvek usmereni suprotno od Sunca.[4] Kod ostalih zvezda ova pojava se naziva zvezdanim vetrom, a kod mnogih je i znatno većeg intenziteta.
Istorija
[uredi | uredi izvor]Norveški istraživač Kristijan Birkeland je 1916. prvi predvideo postojanje Sunčevog vetra. Pretpostavio je da su Sunčevi zraci i pozitivnog i negativnog naelektrisanja. Frederik Lindeman je 1919. pretpostavio da sa Sunca dolaze protoni i elektroni.[5] Tridesetih godina 20. veka naučnici su pretpostavili da Sunčeva korona ima temperaturu od nekoliko miliona stepeni. Britanski matematičar Sidni Čapman je pedesetih izračunao svojstva gasa na takvoj temperaturi i zaključio da se toplota kroz koronu mora protezati u prostoru još dalje od Zemlje.[6] Nemački naučnik Ludvig Birman se takođe pedesetih zainteresovao za činjenicu da kometa uvek ima rep suprotno od Sunca. Birman je zaključio da Sunce emituje stalnu struju čestica koja potiskuje kometin rep.
Eugen Parker je 1958. taj fenomen nazvao „Sunčev vetar“. Parker je pokazao da je Sunčeva korona, iako jako privučena Sunčevom gravitacijom, tako dobar provodnik da je još uvek vruća na velikim udaljenostima.[7][8] Pošto jačina gravitacije opada sa udaljenošću od Sunca, spoljna koronarna atmosfera nadzvučnom brzinom beži u međuzvezdani prostor. Parker je poslao svoj rad u Astrofisical Journal, ali dvoje recenzenata su ga odbili. Rad je ipak prihvatio Čandrasekar (dobitnik Nobelove nagrade za fiziku 1983).
Sovjetski satelit Luna 1 je januara 1959. prvi put izmerio jačinu Sunčevog vetra. Koristili su scintilacione brojače i gasne jonizacione detektore. Merenje su tri godine kasnije ponovili američki naučnici koristeći sondu Mariner 2. Prvu numeričku simulaciju Solarnog vetra u Sunčevoj koroni, koristeći magnetohidrodinamičke jednačine, izveli su Pneuman i Knop 1971.
Kasnih devedesetih, merenja izvršena ultraljubičastim koronalnim spektrometrom, koji se nalazio na svemirskoj opservatoriji SOHO (Solarna i heliografska opservatorija), pokazala su da se područje ubrzanja Sunčevog vetra nalazi u polarnim regionima Sunca i utvrđeno je da je ono mnogo veće od onoga koje bi se očekivalo samo od toplotnog efekta. Parkerov model je predviđao da se beg Sunčevog vetra dešava na udaljenosti od 4 Sunčeva poluprečnika, ali merenja su pokazala da se dešava na udaljenosti od 1 poluprečnika iznad fotosfere. To govori da postoji dodatni mehanizam ubrzanja Sunčevog vetra.
Svojstva
[uredi | uredi izvor]Sastav
[uredi | uredi izvor]Sastav Sunčevog vetra u heliosferi je identičan sastavu korone. To je plazma, koja je 95% jonizovani vodonik, 4% dvostruko jonizovani helijum i manje od 0,5% drugih jona. Sastav Sunčevog vetra varira i verovatno zavisi od fizičkih osobina korone. Prva detaljna analiza je izvedena na Mesecu. Solarni vetar je prikupljen specijalno pripremljenim metalnim folijama, nakon čega je dopremljen na Zemlju radi analize.
Brzina i gubitak mase
[uredi | uredi izvor]Blizu Zemlje, brzina solarnog vetra iznosi od 200 do 889 km u sekundi. Prosečna brzina je 450 kilometara u sekundi. Sunce gubi oko milion tona materijala u sekundi u vidu solarnog vetra. Fuzijom Sunce gubi oko 4,5 puta više mase u sekundi.
Međuplanetarno magnetsko polje
[uredi | uredi izvor]Pošto je solarni vetar plazma, ima karakteristike plazme, a ne gasa. Jako je provodljiv, tako da nosi linije sila Sunčeva magnetnog polja sa sobom. Dinamički pritisak vetra dominira nad magnetnim pritiskom u većem delu Sunčevog sistema, tako da magnetno polje čini spiralu. Sunce ima različitu polarizaciju magnetnog polja zavisno u kojoj fazi solarnog ciklusa se nalazi. Sunčev vetar nekad ima spiralu prema unutra, a nekad prema van. To se smenjuje približno svakih 11 godina.
Plazma u međuplanetarnom prostoru je odgovorna da je jačinu Sunčevog magnetnog polja, koje je oko 100 puta jače nego kada solarnog vetra ne bi bilo. Satelitska osmatranja pokazuju da je jačina Sunčevog magnetnog polja oko Zemlje oko 10-9 Т.
Brzi i spori sunčev vetar
[uredi | uredi izvor]Van eklipse Sunčev vetar je stalan i brz sa brzinama 600 do 800 kilometara u sekundi. Taj vetar potiče iz Sunčevih koronalnih rupa. U ravni eklipse vetar je sporiji i često promenljiv sa brzinama od 200 do 600 kilomeatara u sekundi, a dnevno fluktuira i dva ili više puta.
Promenljivost, sunčane oluje i geomagnetne oluje
[uredi | uredi izvor]Sunčev vetar je odgovoran za oblik Zemljine magnetosfere i takvo magnetno polje snažno utiče na prilike na planeti. Nivo jonizacije i radio smetnji mogu da se pojačaju sto, pa i hiljadu puta. Ponekad i na brzi i na spori Sunčev vetar snažno deluju veliki brzi plamenovi plazme zvani međuplanetarno koronalno izbacivanje mase. To se dešava tokom velikog oslobađanja magnetne energije na Suncu. Ti efekti se nazivaju i sunčane oluje. Kod takvih sunčevih oluja veliki plamenovi plazme dolaze do Zemlje i privremeno deformišu Zemljino magnetno polje, tako da menjaju smer igle kompasa, te izazivaju jake električne struje unutar same Zemlje. Takav efekat se naziva geomagnetnom olujom. Ponekad se u takvim uslovima javljaju polarna svetlost i aurore.
Kretanje naelektrisanih čestica iz Sunčevog vetra koje se kreću duž linija magnetnog polja i u blizini polova ulaze u atmosferu izazivaju električna pražnjenja u visokim slojevima koja se zovu „polarna svetlost“ i vide se kao svetleće zavese, igrajuća svetlost, svetlucanje neba veoma vidljivo tokom polarnih noći.
Reference
[uredi | uredi izvor]- ^ McComas, D. J.; Elliott, H. A.; Schwadron, N. A.; Gosling, J. T.; Skoug, R. M.; Goldstein, B. E. (2003-05-15). „The three-dimensional solar wind around solar maximum”. Geophysical Research Letters (na jeziku: engleski). 30 (10): 1517. Bibcode:2003GeoRL..30.1517M. ISSN 1944-8007. doi:10.1029/2003GL017136 .
- ^ „Stanford SOLAR Center – Ask A Solar Physicist FAQs – Answer”. solar-center.stanford.edu. Pristupljeno 2019-11-09.
- ^ Owens, Mathew J.; Forsyth, Robert J. (2013-11-28). „The Heliospheric Magnetic Field”. Living Reviews in Solar Physics (na jeziku: engleski). 10 (1): 5. Bibcode:2013LRSP...10....5O. ISSN 2367-3648. S2CID 122870891. arXiv:1002.2934 . doi:10.12942/lrsp-2013-5.
- ^ McGaw-Hill Encyclopedia OF Science & Technology, 8th ed., (c)1997, vol. 16, page 685
- ^ Cliver, Edward W.; Dietrich, William F. (2013-01-01). „The 1859 space weather event revisited: limits of extreme activity”. Journal of Space Weather and Space Climate (na jeziku: engleski). 3: A31. Bibcode:2013JSWSC...3A..31C. ISSN 2115-7251. doi:10.1051/swsc/2013053 .
- ^ Meyer-Vernet, Nicole (2007). Basics of the Solar Wind. Cambridge University Press. ISBN 978-0-521-81420-1.
- ^ Christopher T. Russell. „THE SOLAR WIND AND MAGNETOSPHERIC DYNAMICS”. Institute of Geophysics and Planetary Physics University of California, Los Angeles. Arhivirano iz originala 13. 8. 2018. g. Pristupljeno 2007-02-07.
- ^ Roach, John (27. 8. 2003). „Astrophysicist Recognized for Discovery of Solar Wind”. National Geographic Society. Arhivirano iz originala 30. 8. 2003. g. Pristupljeno 2006-06-13.
Literatura
[uredi | uredi izvor]- Grünwaldt H et al. (1997) Venus tail ray observation near Earth. Geophysical Research Letters. . 24 (10): 163—1166 http://scholar.google.com/scholar?num=100&hl=en&lr=&safe=active&cluster=13741676747552292586. Nedostaje ili je prazan parametar
|title=
(pomoć) GS - S.Cuperman and N. Metzler, Role of fluctuations in the interplanetary magnetic field on the heat conduction in the Solar Wind.J.Geophys. Res. 78 (16), 3167–3168, 1973.
- S. Cuperman and N. Metzler. Astrophys. J., 182 (3), 961–975, 1973.
- S. Cuperman and N. Metzler, Solution of 3-fluid model equations with anomalous transport coefficients for thequiet Solar Wind. Astrophys.J., 196 (1) 205–219, 1975
- S. Cuperman, N. Metzler and M. Spygelglass, Confirmation of known numerical solutions for the
quiet Solar Wind equations. Astrophys. J., 198 (3), 755–759, 1975.
- S.Cuperman and N. Metzler, Relative magnitude of streaming velocities of alpha particles and protons at 1AU. Astrophys. and Space Sci. 45 (2) 411–417,1976.
- N. Metzler. A multi-fluid model for stellar winds. Proceedings of the L.D.de Feiter Memorial Symposium on the Study of Traveling Interplanetary Phenomena. AFGL-TR-77-0309, Air Force Systems Command, USAF, 1978.
- N. Metzler and M. Dryer, A self-consistent solution of the three-fluid model of the Solar Wind. Astrophys. J., 222 (2), 689–695, 1978.
- S. Cuperman and N. Metzler, Comments on Acceleration of Solar Wind He++3 effects of Resonant and nonresonant interactions with transverse waves. J. Geophys. Res. 84 (NA5), 2139–2140 (1979)
- N. Metzler, S. Cuperman, M. Dryer and P. Rosenau, A time-dependent two-fluid model with
thermal conduction for Solar Wind. Astrophys. J., 231 (3) 960–976, 1979.
- Cohen, Richard (2010). Chasing the Sun: The Epic Story of the Star That Gives Us Life. Simon & Schuster. ISBN 978-1-4000-6875-3.
- Hudson, Hugh (2008). „Solar Activity”. Scholarpedia. 3 (3): 3967. Bibcode:2008SchpJ...3.3967H. doi:10.4249/scholarpedia.3967 .
- Thompson, M.J. (avgust 2004). „Solar interior: Helioseismology and the Sun's interior”. Astronomy & Geophysics. 45 (4): 21—25. Bibcode:2004A&G....45d..21T. doi:10.1046/j.1468-4004.2003.45421.x .
- Daglis, Ioannis A.: Effects of Space Weather on Technology Infrastructure. Springer, Dordrecht 2005, ISBN 1-4020-2748-6.
- Lilensten, Jean, and Jean Bornarel, Space Weather, Environment and Societies, Springer, ISBN 978-1-4020-4331-4.
- Moldwin, Mark: An Introduction to Space Weather. Cambridge Univ. Press, Cambridge 2008, ISBN 978-0-521-86149-6.
- Schwenn, Rainer, Space Weather, Living Reviews in Solar Physics 3, (2006), 2, online article.
- Bothmer, V.; Daglis, I., 2006, Space Weather: Physics and Effects, Springer-Verlag New York, ISBN 3-642-06289-X.
- Carlowicz, M. J., and R. E. Lopez, 2002, Storms from the Sun, Joseph Henry Press, Washington DC, ISBN 0-309-07642-0.
- Clark, T. D. G. and E. Clarke, 2001. Space weather services for the offshore drilling industry. In Space Weather Workshop: Looking Towards a Future European Space Weather Programme. ESTEC, ESA WPP-194.
- Daglis, I. A. (Editor), 2001, Space Storms and Space Weather Hazards, Springer-Verlag New York, ISBN 1-4020-0031-6.
- Freeman, John W., 2001, Storms in Space, Cambridge University Press, Cambridge, UK, ISBN 0-521-66038-6.
- Gombosi, Tamas I., Houghton, John T., and Dessler, Alexander J., (Editors), 2006, Physics of the Space Environment, Cambridge University Press, ISBN 978-0-521-60768-1.
- Odenwald, S. 2006, The 23rd Cycle;Learning to live with a stormy star, Columbia University Press, ISBN 0-231-12078-8.
- Reay, S. J., W. Allen, O. Baillie, J. Bowe, E. Clarke, V. Lesur, S. Macmillan, 2005. Space weather effects on drilling accuracy in the North Sea. Annales Geophysicae, Vol. 23, pp. 3081–3088.
- Ruffenach, A., 2018, "Enabling Resilient UK Energy Infrastructure: Natural Hazard Characterisation Technical Volumes and Case Studies, Volume 10 - Space Weather"; IMechE, IChemE.
- Song, P., Singer, H., and Siscoe, G., (Editors), 2001, Space Weather (Geophysical Monograph), Union, Washington, D.C, ISBN 0-87590-984-1.
- Strong, Keith; J. Saba; T. Kucera (2012). „Understanding Space Weather: The Sun as a Variable Star”. Bull. Am. Meteorol. Soc. 93 (9): 1327—35. Bibcode:2012BAMS...93.1327S. S2CID 73637606. doi:10.1175/BAMS-D-11-00179.1. hdl:2060/20120002541 .
- Strong, Keith; J. T. Schmelz; J. L. R. Saba; T. A. Kucera (2017). „Understanding Space Weather: Part II: The Violent Sun”. Bull. Am. Meteorol. Soc. 98 (11): 2387—96. Bibcode:2017BAMS...98.2387S. doi:10.1175/BAMS-D-16-0191.1.
- Strong, Keith; N. Viall; J. Schmelz; J. Saba (2017). „Understanding Space Weather: The Sun's Domain”. Bull. Am. Meteorol. Soc. 98 (12): 2593. Bibcode:2017BAMS...98.2593S. doi:10.1175/BAMS-D-16-0204.1.