Пређи на садржај

Сванте Аренијус — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Исправљене словне грешке
.
Ред 1: Ред 1:
{{short description|Шведски научник (1859–1927)}}{{рут}}
{{Научник
{{Научник
|име = Сванте Август Аренијус
|име = Сванте Август Аренијус
Ред 19: Ред 20:
|напомене =
|напомене =
}}
}}
'''Сванте Август Аренијус''' ({{јез-шв|Svante August Arrhenius}}; [[Вик]], [[19. фебруар]] [[1859]] — [[Стокхолм]], [[2. октобар]] [[1927]]) је био шведски истраживач, један од оснивача [[физичка хемија|физичке хемије]] као модерне научне дисциплине.


Године [[1884]]. докторском дисертацијом из [[електрична проводљивост|електричне проводљивости]] [[електролит]]а није импресионирао своје професоре на универзитету у Упсали, али је зато за исту 1903. године добио [[Нобелова награда за хемију|Нобелову награду за хемију]].
'''Сванте Август Аренијус''' ({{јез-шв|Svante August Arrhenius}};<ref>{{Lexico|Arrhenius, Svante August|access-date=16 August 2021}}</ref><ref>{{MW|Arrhenius|access-date=16 August 2021}}</ref> [[Вик]], [[19. фебруар]] [[1859]] — [[Стокхолм]], [[2. октобар]] [[1927]]) је био шведски истраживач, један од оснивача [[физичка хемија|физичке хемије]] као модерне научне дисциплине. Године [[1884]]. докторском дисертацијом из [[електрична проводљивост|електричне проводљивости]] [[електролит]]а није импресионирао своје професоре на универзитету у Упсали, али је зато за исту 1903. године добио [[Нобелова награда за хемију|Нобелову награду за хемију]].<ref name=Chambers>"Arrhenius, Svante August" in ''[[Chambers's Encyclopædia]]''. London: [[George Newnes Ltd|George Newnes]], 1961, Vol. 1, p. 635.</ref> У својој дисертацији изложио је 56 теза од којих би и данас већина била прихваћена са неким мањим изменама. Најважнија идеја из дисертације је објашњење електричне проводљивости електролита - раствор соли у води је одличан проводник мада су и чиста со и чиста вода врло слаби проводници. Аренијусово објашњење је било да приликом растварања со дисосује у наелектрисане честице (које је [[Мајкл Фарадеј|Фарадеј]] много раније назвао [[јон]]има). Фарадеј је веровао да јони настају у процесу [[електролиза|електролизе]]; Аренијус је, међутим, тврдио да јони у раствору постоје чак и када нема електричне струје.


Године [[1889]]. Аренијус је објаснио зашто већина реакција захтева топлотну енергију да би се одвијала формулишући концепт [[енергија активације|енергије активације]], енергијске баријере која мора бити савладана да би два молекула реаговала. [[Аренијусова једначина]] даје квантитативну основу за однос између енергије активације и брзине хемијске реакције.
У својој дисертацији изложио је 56 теза од којих би и данас већина била прихваћена са неким мањим изменама. Најважнија идеја из дисертације је објашњење електричне проводљивости електролита - раствор соли у води је одличан проводник мада су и чиста со и чиста вода врло слаби проводници.


Arrhenius was the first to use principles of [[physical chemistry]] to estimate the extent to which increases in atmospheric [[carbon dioxide]] are responsible for the Earth's increasing surface temperature. His work played an important role in the emergence of modern climate science.<ref>{{Cite book |last=Dessler |first=Andrew E. |url=https://books.google.com/books?id=Ivw7EAAAQBAJ |title=Introduction to Modern Climate Change |date=2021 |publisher=Cambridge University Press |isbn=978-1-108-84018-7 |pages=222 |language=en}}</ref> In the 1960s, [[Charles David Keeling]] demonstrated that the quantity of human-caused carbon dioxide emissions into the air is enough to cause [[global warming]].<ref name="Baum">{{cite journal|last1=Baum, Sr.|first1=Rudy M.|title=Future Calculations: The first climate change believer|journal=Distillations|date=2016|volume=2|issue=2 |pages=38–39 |url=https://www.sciencehistory.org/distillations/magazine/future-calculations|access-date=22 March 2018}}</ref>
Аренијусово објашњење је било да приликом растварања со дисосује у наелектрисане честице (које је [[Мајкл Фарадеј|Фарадеј]] много раније назвао [[јон]]има). Фарадеј је веровао да јони настају у процесу [[електролиза|електролизе]]; Аренијус је, међутим, тврдио да јони у раствору постоје чак и када нема електричне струје.


The [[Arrhenius equation]], [[Acid–base reaction#Arrhenius definition|Arrhenius acid]], Arrhenius base, [[Moon|lunar]] [[Impact crater|crater]] [[Arrhenius (lunar crater)|Arrhenius]], [[Mars|Martian]] crater [[Arrhenius (Martian crater)|Arrhenius]],<ref name=deVaucouleurs1975>{{cite journal | title=The new Martian nomenclature of the International Astronomical Union | display-authors=1 | last1=de Vaucouleurs | first1=G. | last2=Blunck | first2=J. | last3=Davies | first3=M. | last4=Dollfus | first4=A. | last5=Koval | first5=I. K. | last6=Kuiper | first6=G. P. | last7=Masursky | first7=H. | last8=Miyamoto | first8=S. | last9=Moroz | first9=V. I. | last10=Sagan | first10=Carl | last11=Smith | first11=Bradford | journal=Icarus | volume=26 | issue=1 | date=September 1975 | pages=85−98 | doi=10.1016/0019-1035(75)90146-3 | bibcode=1975Icar...26...85D }}</ref> the mountain of [[Arrheniusfjellet]], and the Arrhenius Labs at [[Stockholm University]] were so named to commemorate his contributions to science.
Године [[1889]]. Аренијус је објаснио зашто већина реакција захтева топлотну енергију да би се одвијала формулишући концепт [[енергија активације|енергије активације]], енергијске баријере која мора бити савладана да би два молекула реаговала. [[Аренијусова једначина]] даје квантитативну основу за однос између енергије активације и брзине хемијске реакције.


== Литература ==
== Биографија ==

=== Ране године ===
Arrhenius was born on 19 February 1859 at [[Vik Castle|Vik]] (also spelled Wik or Wijk), near [[Uppsala]], [[Kingdom of Sweden]], [[Union between Sweden and Norway|United Kingdoms of Sweden and Norway]], the son of Svante Gustav and Carolina Thunberg Arrhenius, who were Lutheran.<ref>{{Cite book|url=https://www.google.com/books/edition/The_Who_s_who_of_Nobel_Prize_Winners_190/Y0c4PgFznyMC?hl=en&gbpv=1&bsq=%22Christina+Thunberg+Arrhenius%22+%22lutheran%22&dq=%22Christina+Thunberg+Arrhenius%22+%22lutheran%22&printsec=frontcover|isbn = 9780897748995|title = The Who's Who of Nobel Prize Winners, 1901-1995|year = 1996|publisher = Oryx Press}}</ref> His father had been a [[surveying|land surveyor]] for [[Uppsala University]], moving up to a supervisory position. At the age of three, Arrhenius taught himself to read without the encouragement of his parents and, by watching his father's addition of numbers in his account books, became an [[arithmetic]]al [[child prodigy|prodigy]]. In later life, Arrhenius was profoundly passionate about mathematical concepts, data analysis and discovering their relationships and laws.

At age eight, he entered the local cathedral school, starting in the [[fifth grade]], distinguishing himself in [[physics]] and [[mathematics]], and graduating as the youngest and most able student in 1876.

===Ionic disassociation===
At the University of Uppsala, he was dissatisfied with the chief instructor of physics and the only faculty member who could have supervised him in chemistry, [[Per Teodor Cleve]], so he left to study at the Physical Institute of the Swedish Academy of Sciences in [[Stockholm]] under the physicist [[Erik Edlund]] in 1881.

His work focused on the [[Conductivity (electrolytic)|conductivities]] of [[electrolyte]]s. In 1884, based on this work, he submitted a 150-page dissertation on electrolytic conductivity to Uppsala for the [[Doctor of Philosophy|doctorate]]. It did not impress the professors, who included Cleve, and he received a fourth-class degree, but upon his defense it was reclassified as third-class. Later, extensions of this very work would earn him the [[List of Nobel laureates in Chemistry|1903 Nobel Prize in Chemistry]].<ref>{{cite web|url=https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1903/index.html|title=The Nobel Prize in Chemistry 1903|website=www.nobelprize.org|access-date=18 March 2018}}</ref>

Arrhenius put forth 56 theses in his 1884 dissertation, most of which would still be accepted today unchanged or with minor modifications. The most important idea in the dissertation was his explanation of the fact that solid crystalline salts disassociate into paired charged particles when dissolved, for which he would win the 1903 Nobel Prize in Chemistry. Arrhenius's explanation was that in forming a [[Solution (chemistry)|solution]], the salt disassociates into charged particles that [[Michael Faraday]] had given the name [[ion]]s many years earlier. Faraday's belief had been that ions were produced in the process of [[electrolysis]], that is, an external direct current source of electricity was necessary to form ions. Arrhenius proposed that, even in the absence of an electric current, [[aqueous solution]]s of salts contained ions. He thus proposed that chemical reactions in solution were reactions between ions.<ref name="columbia">{{cite book|editor1-last=Harris|editor1-first=William|editor2-last=Levey|editor2-first=Judith|title=The New Columbia Encyclopedia|date=1975|publisher=Columbia University|location=New York City|isbn=978-0-231035-729|page=[https://archive.org/details/newcolumbiaencyc00harr/page/155 155]|edition=4th|url-access=registration|url=https://archive.org/details/newcolumbiaencyc00harr/page/155}}</ref><ref name="EncBrit">{{cite book|editor1-last=McHenry|editor1-first=Charles|title=The New Encyclopædia Britannica|date=1992|publisher=Encyclopædia Britannica, Inc.|location=Chicago|isbn=978-085-229553-3|page=587|volume=1|edition=15}}</ref><ref name="SciBio">{{cite book|editor1-last=Cillispie|editor1-first=Charles|title=Dictionary of Scientific Biography|date=1970|publisher=Charles Scribner's Sons|location=New York City|isbn=978-0-684101-125|pages=296–302|edition=1}}</ref>

The dissertation did not impress the professors at Uppsala, but Arrhenius sent it to a number of scientists in Europe who were developing the new science of [[physical chemistry]], such as [[Rudolf Clausius]], [[Wilhelm Ostwald]], and [[Jacobus Henricus van 't Hoff]].
They were far more impressed, and Ostwald even came to Uppsala to persuade Arrhenius to join his research team. Arrhenius declined, however, as he preferred to stay in Sweden-Norway for a while (his father was very ill and would die in 1885) and had received an appointment at Uppsala.<ref name="columbia"/><ref name="EncBrit"/><ref name="SciBio"/>

In an extension of his [[ion|ionic theory]] Arrhenius proposed definitions for [[acid]]s and [[Base (chemistry)|bases]], in 1884. He believed that acids were substances that produce [[hydrogen ions]] in solution and that bases were substances that produce [[hydroxide]] ions in solution.

===Middle period===
[[File:Arrhenius, Svante August – Lehrbuch der kosmischen Physik, 1903 – BEIC 6781113.jpg|thumb|''Lehrbuch der kosmischen Physik'', 1903]]

In 1885, Arrhenius next received a travel grant from the Swedish Academy of Sciences, which enabled him to study with Ostwald in [[Riga]] (now in [[Latvia]]), with [[Friedrich Kohlrausch (physicist)|Friedrich Kohlrausch]] in [[Würzburg]], [[Germany]], with [[Ludwig Boltzmann]] in [[Graz, Austria]], and with [[Jacobus Henricus van 't Hoff]] in [[Amsterdam]].

In 1889, Arrhenius explained the fact that most reactions require added heat energy to proceed by formulating the concept of [[activation energy]], an energy barrier that must be overcome before two molecules will react. The [[Arrhenius equation]] gives the quantitative basis of the relationship between the activation energy and the rate at which a reaction proceeds.

In 1891, he became a lecturer at the Stockholm University College (''Stockholms Högskola'', now [[Stockholm University]]), being promoted to professor of physics (with much opposition) in 1895, and [[Rector (academia)|rector]] in 1896.

===Nobel Prizes===
About 1900, Arrhenius became involved in setting up the Nobel Institutes and the [[Nobel Prize]]s. He was elected a member of the [[Royal Swedish Academy of Sciences]] in 1901. For the rest of his life, he would be a member of the [[Nobel Committee]] on Physics and a de facto member of the Nobel Committee on Chemistry. He used his positions to arrange prizes for his friends ([[Jacobus van 't Hoff]], [[Wilhelm Ostwald]], [[Theodore William Richards |Theodore Richards]]) and to attempt to deny them to his enemies ([[Paul Ehrlich]], [[Walther Nernst]], [[Dmitri Mendeleev]]).<ref>Patrick Coffey, Cathedrals of Science: ''The Personalities and Rivalries That Made Modern Chemistry'', Oxford University Press, 2008,</ref> In 1901 Arrhenius was elected to the Swedish Academy of Sciences, against strong opposition. In 1903 he became the first Swede to be awarded the [[Nobel Prize in chemistry |Nobel Prize in Chemistry]].
In 1905, upon the founding of the Nobel Institute for Physical Research at Stockholm, he was appointed [[Rector (academia)|rector]] of the institute, the position where he remained until retirement in 1927.

In 1911, he won the first Willard Gibbs Award.<ref>{{cite web|url=http://chicagoacs.org/content.php?page=Willard_Gibbs_Award|title=Willard Gibbs Award |website=chicagoacs.org |access-date=18 March 2018}}</ref>

== Библиографија ==
{{refbegin|30em}}
* Svante Arrhenius, 1884, ''Recherches sur la conductivité galvanique des électrolytes'', doctoral dissertation, Stockholm, Royal publishing house, P.A. Norstedt & söner, 89 pages.
* Svante Arrhenius, 1884, ''Recherches sur la conductivité galvanique des électrolytes'', doctoral dissertation, Stockholm, Royal publishing house, P.A. Norstedt & söner, 89 pages.
* Svante Arrhenius, 1896a, ''Ueber den Einfluss des Atmosphärischen Kohlensäurengehalts auf die Temperatur der Erdoberfläche'', in the Proceedings of the Royal Swedish Academy of Science, Stockholm 1896, Volume 22, I N. 1, pages 1-101.
* Svante Arrhenius, 1896a, ''Ueber den Einfluss des Atmosphärischen Kohlensäurengehalts auf die Temperatur der Erdoberfläche'', in the Proceedings of the Royal Swedish Academy of Science, Stockholm 1896, Volume 22, I N. 1, pages 1-101.
Ред 36: Ред 71:
* Svante Arrhenius, 1901b, ''Über Die Wärmeabsorption Durch Kohlensäure Und Ihren Einfluss Auf Die Temperatur Der Erdoberfläche''. Abstract of the proceedings of the Royal Academy of Science, 58, 25-58.
* Svante Arrhenius, 1901b, ''Über Die Wärmeabsorption Durch Kohlensäure Und Ihren Einfluss Auf Die Temperatur Der Erdoberfläche''. Abstract of the proceedings of the Royal Academy of Science, 58, 25-58.
* Svante Arrhenius, 1903, ''Lehrbuch der Kosmischen Physik'', Vol I and II, S. Hirschel publishing house, Leipzig, 1026 pages.
* Svante Arrhenius, 1903, ''Lehrbuch der Kosmischen Physik'', Vol I and II, S. Hirschel publishing house, Leipzig, 1026 pages.
* Arrhenius, Svante. [https://babel.hathitrust.org/cgi/pt?id=mdp.39015080300869;view=1up;seq=503 Die Verbreitung des Lebens im Weltenraum]. Die Umschau, Frankfurt a. M., 7, 1903, 481–486.
* Svante Arrhenius, 1908, ''Das Werden der Welten'', Academic Publishing House, Leipzig, 208 pages.
* {{Cite book|title=Lehrbuch der kosmischen Physik|volume=1|publisher=Hirzel|location=Leipzig|year=1903|language=de|url=https://gutenberg.beic.it/webclient/DeliveryManager?pid=6781113}}
** {{Cite book|title=Lehrbuch der kosmischen Physik|volume=2|publisher=Hirzel|location=Leipzig|year=1903|language=de|url=https://gutenberg.beic.it/webclient/DeliveryManager?pid=6779391}}
*1906, ''Die vermutliche Ursache der Klimaschwankungen'', Meddelanden från K. Vetenskapsakademiens Nobelinstitut, Vol 1 No 2, pages 1–10
* Svante Arrhenius, 1908, ''[https://archive.org/details/worldsinmakingev00arrhrich Das Werden der Welten]'', Academic Publishing House, Leipzig, 208 pages.
{{refend}}


== Види још ==
== Види још ==
* [[Аренијусова једначина]]
* [[Аренијусова једначина]]

== Референце ==
{{Reflist}}

== Литература ==
{{refbegin|}}
* {{EB1911|wstitle=Arrhenius, Svante August|volume=2|page=648}}
* {{cite encyclopedia | last=Snelders | first=H. A. M. | title=Arrhenius, Svante August | encyclopedia=[[Dictionary of Scientific Biography]] | volume=1 | pages=296–301 | publisher=Charles Scribner's Sons | location=New York | date=1970 | isbn=978-0-684-10114-9}}
* {{cite book |last=Crawford |first=Elisabeth T. |title=Arrhenius: from ionic theory to the greenhouse effect |location=Canton, MA |publisher=Science History Publications |isbn=978-0-88135-166-8|year=1996 }}
* {{cite book |first=Patrick |last=Coffey |title=Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry |publisher=Oxford University Press |date=2008 |isbn=978-0-19-532134-0}}

{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commons category|Svante Arrhenius}}
{{портал|Биографија}}
* {{Gutenberg author|id=49834}}
{{Commonscat|Svante Arrhenius}}
* [https://web.archive.org/web/20110516030126/http://chimie.scola.ac-paris.fr/sitedechimie/hist_chi/text_origin/arrhenius/Arrhenius2.htm -{"On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground"}-]
* [https://web.archive.org/web/20110516030126/http://chimie.scola.ac-paris.fr/sitedechimie/hist_chi/text_origin/arrhenius/Arrhenius2.htm -{"On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground"}-]
* [http://nobelprize.org/chemistry/laureates/1903/index.html -{The Nobel Prize in Chemistry}- 1903]
* [http://nobelprize.org/chemistry/laureates/1903/index.html -{The Nobel Prize in Chemistry}- 1903]
* {{Nobelprize}} including the Nobel Lecture, December 11, 1903 ''Development of the Theory of Electrolytic Dissociation''
{{-}}
* [https://web.archive.org/web/20100902054559/http://www.iva.se/upload/Verksamhet/H%C3%B6gtidssammankomst/Minnesskrift%202008.pdf A Tribute to the Memory of Svante Arrhenius (1859–1927) – a scientist ahead of his time], published in 2008 by the [[Royal Swedish Academy of Engineering Sciences]]
* [http://www.royalsoc.ac.uk/page.asp?id=5971 Svante Arrhenius (1859–1927)]
* [http://adsabs.harvard.edu//full/seri/Obs../0050//0000363.000.html Obs '''50''' (1927) 363] – Obituary (one paragraph)
* [http://adsabs.harvard.edu//full/seri/PASP./0039//0000385.000.html PASP '''39''' (1927) 385] – Obituary (one paragraph)
* "On the influence of Carbonic Acid in the Air upon the Temperature of the Ground", Arrhenius, 1896, online and analyzed on ''[https://www.bibnum.education.fr/sciencesdelaterre/climatologie/de-l-influence-de-l-acide-carbonique-de-l-air-sur-la-temperature-terr BibNum]'' <small>[click 'à télécharger' for English analysis]</small>


{{Нобелова награда за хемију}}
{{Нобелова награда за хемију}}
{{Добитници Нобелове награде 1903.|state = collapsed}}
{{Добитници Нобелове награде 1903.|state = collapsed}}
{{нормативна контрола}}
{{нормативна контрола}}
{{портал бар|Биографија}}


{{DEFAULTSORT:Аренијус, Сванте}}
{{DEFAULTSORT:Аренијус, Сванте}}

Верзија на датум 16. август 2022. у 19:32

Сванте Август Аренијус
Сванте Аренијус
Лични подаци
Датум рођења(1859-02-19)19. фебруар 1859.
Место рођењаВик, Шведска
Датум смрти2. октобар 1927.(1927-10-02) (68 год.)
Место смртиСтокхолм, Шведска
ОбразовањеУниверзитета у Упсали
Научни рад
Пољехемија, физика
Познат поАренијусова теорија киселина и база
Награде Нобелова награда за хемију

Сванте Август Аренијус (швед. Svante August Arrhenius;[1][2] Вик, 19. фебруар 1859Стокхолм, 2. октобар 1927) је био шведски истраживач, један од оснивача физичке хемије као модерне научне дисциплине. Године 1884. докторском дисертацијом из електричне проводљивости електролита није импресионирао своје професоре на универзитету у Упсали, али је зато за исту 1903. године добио Нобелову награду за хемију.[3] У својој дисертацији изложио је 56 теза од којих би и данас већина била прихваћена са неким мањим изменама. Најважнија идеја из дисертације је објашњење електричне проводљивости електролита - раствор соли у води је одличан проводник мада су и чиста со и чиста вода врло слаби проводници. Аренијусово објашњење је било да приликом растварања со дисосује у наелектрисане честице (које је Фарадеј много раније назвао јонима). Фарадеј је веровао да јони настају у процесу електролизе; Аренијус је, међутим, тврдио да јони у раствору постоје чак и када нема електричне струје.

Године 1889. Аренијус је објаснио зашто већина реакција захтева топлотну енергију да би се одвијала формулишући концепт енергије активације, енергијске баријере која мора бити савладана да би два молекула реаговала. Аренијусова једначина даје квантитативну основу за однос између енергије активације и брзине хемијске реакције.

Arrhenius was the first to use principles of physical chemistry to estimate the extent to which increases in atmospheric carbon dioxide are responsible for the Earth's increasing surface temperature. His work played an important role in the emergence of modern climate science.[4] In the 1960s, Charles David Keeling demonstrated that the quantity of human-caused carbon dioxide emissions into the air is enough to cause global warming.[5]

The Arrhenius equation, Arrhenius acid, Arrhenius base, lunar crater Arrhenius, Martian crater Arrhenius,[6] the mountain of Arrheniusfjellet, and the Arrhenius Labs at Stockholm University were so named to commemorate his contributions to science.

Биографија

Ране године

Arrhenius was born on 19 February 1859 at Vik (also spelled Wik or Wijk), near Uppsala, Kingdom of Sweden, United Kingdoms of Sweden and Norway, the son of Svante Gustav and Carolina Thunberg Arrhenius, who were Lutheran.[7] His father had been a land surveyor for Uppsala University, moving up to a supervisory position. At the age of three, Arrhenius taught himself to read without the encouragement of his parents and, by watching his father's addition of numbers in his account books, became an arithmetical prodigy. In later life, Arrhenius was profoundly passionate about mathematical concepts, data analysis and discovering their relationships and laws.

At age eight, he entered the local cathedral school, starting in the fifth grade, distinguishing himself in physics and mathematics, and graduating as the youngest and most able student in 1876.

Ionic disassociation

At the University of Uppsala, he was dissatisfied with the chief instructor of physics and the only faculty member who could have supervised him in chemistry, Per Teodor Cleve, so he left to study at the Physical Institute of the Swedish Academy of Sciences in Stockholm under the physicist Erik Edlund in 1881.

His work focused on the conductivities of electrolytes. In 1884, based on this work, he submitted a 150-page dissertation on electrolytic conductivity to Uppsala for the doctorate. It did not impress the professors, who included Cleve, and he received a fourth-class degree, but upon his defense it was reclassified as third-class. Later, extensions of this very work would earn him the 1903 Nobel Prize in Chemistry.[8]

Arrhenius put forth 56 theses in his 1884 dissertation, most of which would still be accepted today unchanged or with minor modifications. The most important idea in the dissertation was his explanation of the fact that solid crystalline salts disassociate into paired charged particles when dissolved, for which he would win the 1903 Nobel Prize in Chemistry. Arrhenius's explanation was that in forming a solution, the salt disassociates into charged particles that Michael Faraday had given the name ions many years earlier. Faraday's belief had been that ions were produced in the process of electrolysis, that is, an external direct current source of electricity was necessary to form ions. Arrhenius proposed that, even in the absence of an electric current, aqueous solutions of salts contained ions. He thus proposed that chemical reactions in solution were reactions between ions.[9][10][11]

The dissertation did not impress the professors at Uppsala, but Arrhenius sent it to a number of scientists in Europe who were developing the new science of physical chemistry, such as Rudolf Clausius, Wilhelm Ostwald, and Jacobus Henricus van 't Hoff. They were far more impressed, and Ostwald even came to Uppsala to persuade Arrhenius to join his research team. Arrhenius declined, however, as he preferred to stay in Sweden-Norway for a while (his father was very ill and would die in 1885) and had received an appointment at Uppsala.[9][10][11]

In an extension of his ionic theory Arrhenius proposed definitions for acids and bases, in 1884. He believed that acids were substances that produce hydrogen ions in solution and that bases were substances that produce hydroxide ions in solution.

Middle period

Lehrbuch der kosmischen Physik, 1903

In 1885, Arrhenius next received a travel grant from the Swedish Academy of Sciences, which enabled him to study with Ostwald in Riga (now in Latvia), with Friedrich Kohlrausch in Würzburg, Germany, with Ludwig Boltzmann in Graz, Austria, and with Jacobus Henricus van 't Hoff in Amsterdam.

In 1889, Arrhenius explained the fact that most reactions require added heat energy to proceed by formulating the concept of activation energy, an energy barrier that must be overcome before two molecules will react. The Arrhenius equation gives the quantitative basis of the relationship between the activation energy and the rate at which a reaction proceeds.

In 1891, he became a lecturer at the Stockholm University College (Stockholms Högskola, now Stockholm University), being promoted to professor of physics (with much opposition) in 1895, and rector in 1896.

Nobel Prizes

About 1900, Arrhenius became involved in setting up the Nobel Institutes and the Nobel Prizes. He was elected a member of the Royal Swedish Academy of Sciences in 1901. For the rest of his life, he would be a member of the Nobel Committee on Physics and a de facto member of the Nobel Committee on Chemistry. He used his positions to arrange prizes for his friends (Jacobus van 't Hoff, Wilhelm Ostwald, Theodore Richards) and to attempt to deny them to his enemies (Paul Ehrlich, Walther Nernst, Dmitri Mendeleev).[12] In 1901 Arrhenius was elected to the Swedish Academy of Sciences, against strong opposition. In 1903 he became the first Swede to be awarded the Nobel Prize in Chemistry. In 1905, upon the founding of the Nobel Institute for Physical Research at Stockholm, he was appointed rector of the institute, the position where he remained until retirement in 1927.

In 1911, he won the first Willard Gibbs Award.[13]

Библиографија

  • Svante Arrhenius, 1884, Recherches sur la conductivité galvanique des électrolytes, doctoral dissertation, Stockholm, Royal publishing house, P.A. Norstedt & söner, 89 pages.
  • Svante Arrhenius, 1896a, Ueber den Einfluss des Atmosphärischen Kohlensäurengehalts auf die Temperatur der Erdoberfläche, in the Proceedings of the Royal Swedish Academy of Science, Stockholm 1896, Volume 22, I N. 1, pages 1-101.
  • Svante Arrhenius, 1896b, On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (fifth series), April 1896. vol 41, pages 237-275.
  • Svante Arrhenius, 1901a, Ueber die Wärmeabsorption durch Kohlensäure, Annalen der Physik, Vol 4, 1901, pages 690-705.
  • Svante Arrhenius, 1901b, Über Die Wärmeabsorption Durch Kohlensäure Und Ihren Einfluss Auf Die Temperatur Der Erdoberfläche. Abstract of the proceedings of the Royal Academy of Science, 58, 25-58.
  • Svante Arrhenius, 1903, Lehrbuch der Kosmischen Physik, Vol I and II, S. Hirschel publishing house, Leipzig, 1026 pages.
  • Arrhenius, Svante. Die Verbreitung des Lebens im Weltenraum. Die Umschau, Frankfurt a. M., 7, 1903, 481–486.
  • Lehrbuch der kosmischen Physik (на језику: немачки). 1. Leipzig: Hirzel. 1903. 
  • 1906, Die vermutliche Ursache der Klimaschwankungen, Meddelanden från K. Vetenskapsakademiens Nobelinstitut, Vol 1 No 2, pages 1–10
  • Svante Arrhenius, 1908, Das Werden der Welten, Academic Publishing House, Leipzig, 208 pages.

Види још

Референце

  1. ^ „Arrhenius, Svante August”. Oxford Dictionaries. Oxford University Press. Приступљено 16. 8. 2021. 
  2. ^ „Arrhenius”. Merriam-Webster Dictionary. Приступљено 16. 8. 2021. 
  3. ^ "Arrhenius, Svante August" in Chambers's Encyclopædia. London: George Newnes, 1961, Vol. 1, p. 635.
  4. ^ Dessler, Andrew E. (2021). Introduction to Modern Climate Change (на језику: енглески). Cambridge University Press. стр. 222. ISBN 978-1-108-84018-7. 
  5. ^ Baum, Sr., Rudy M. (2016). „Future Calculations: The first climate change believer”. Distillations. 2 (2): 38—39. Приступљено 22. 3. 2018. 
  6. ^ de Vaucouleurs, G.; et al. (септембар 1975). „The new Martian nomenclature of the International Astronomical Union”. Icarus. 26 (1): 85−98. Bibcode:1975Icar...26...85D. doi:10.1016/0019-1035(75)90146-3. 
  7. ^ The Who's Who of Nobel Prize Winners, 1901-1995. Oryx Press. 1996. ISBN 9780897748995. 
  8. ^ „The Nobel Prize in Chemistry 1903”. www.nobelprize.org. Приступљено 18. 3. 2018. 
  9. ^ а б Harris, William; Levey, Judith, ур. (1975). The New Columbia EncyclopediaНеопходна слободна регистрација (4th изд.). New York City: Columbia University. стр. 155. ISBN 978-0-231035-729. 
  10. ^ а б McHenry, Charles, ур. (1992). The New Encyclopædia Britannica. 1 (15 изд.). Chicago: Encyclopædia Britannica, Inc. стр. 587. ISBN 978-085-229553-3. 
  11. ^ а б Cillispie, Charles, ур. (1970). Dictionary of Scientific Biography (1 изд.). New York City: Charles Scribner's Sons. стр. 296—302. ISBN 978-0-684101-125. 
  12. ^ Patrick Coffey, Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry, Oxford University Press, 2008,
  13. ^ „Willard Gibbs Award”. chicagoacs.org. Приступљено 18. 3. 2018. 

Литература

Спољашње везе