Пређи на садржај

Каолинит — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Бот: исправљена преусмерења
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{Short description|Слојевити небубрећи алуминосиликат који је 1:1 минерал глине}}{{рут}}
{{Кутијица за минерале
{{Infobox mineral
| име =Каолинит
| name = Каолинит
| ширина_кутије =
| category = [[Phyllosilicates]] <br />Kaolinite-[[serpentine group]]
| слика =KaoliniteUSGOV.jpg
| boxwidth =
| формула =Al<sub>4</sub>[Si<sub>4</sub>O<sub>10</sub>](OH)<sub>8</sub>
| image = Kaolinite from Twiggs County in Georgia in USA.jpg
| молска_маса =
| боја =
| alt =
| хабитус =
| caption =
| formula = {{Chem2|Al2(OH)4Si2O5}}
| система =триклинична
| strunz = 9.ED.05
| ближњење =
| system = [[Triclinic]]
| цепљивост =
| class = Pedial (1) <br /><small>(same [[H-M symbol]])</small>
| прелом =
| symmetry = ''P''1
| мосова_скала =2 - 2,5
| unit cell = a = 5.13&nbsp;[[Ångstrom|Å]], b = 8.89&nbsp;Å <br />c = 7.25&nbsp;Å; α = 90° <br />β = 104.5°, γ = 89.8°; Z&nbsp;=&nbsp;2
| сјај =мат
| color = White to cream, sometimes red, blue or brown tints from impurities and pale-yellow; also often stained various hues, tans and browns being common.
| сјајполирањем =
| habit = Rarely as crystals, thin plates or stacked, More commonly as microscopic pseudohexagonal plates and clusters of plates, aggregated into compact, claylike masses
| индекс =
| огреб =
| twinning =
| cleavage = Perfect on {001}
| густина =
| fracture =
| растворљивост =
| tenacity = Flexible but inelastic
| mohs = 2–2.5
| luster = Pearly to dull earthy
| refractive = n<sub>α</sub> = 1.553–1.565, <br />n<sub>β</sub> = 1.559–1.569,<br /> n<sub>γ</sub> = 1.569–1.570
| opticalprop = Biaxial (–)
| pleochroism =
| 2V = Measured: 24° to 50°, Calculated: 44°
| streak = White
| gravity = 2.16–2.68
| melt =
| fusibility =
| diagnostic =
| solubility =
| references = <ref name=Mindat>{{Mindat |id=2156 |name=Kaolinite |access-date=5 August 2009}}</ref><ref name=Webmin>{{WebMineral |url=http://www.webmineral.com/data/Kaolinite.shtml |title=Kaolinite Mineral Data |access-date=5 August 2009}}</ref><ref name=Handbook>{{cite book |title=Handbook of Mineralogy: Silica, silicates |publisher=Mineral Data Publishing |year=1995 |isbn=9780962209734 |veditors=Anthony JW, Bideaux RA, Bladh KW, Nichols MC |location=Tucson, Ariz. |chapter=Kaolinite |oclc=928816381 |display-editors=3 |chapter-url=http://www.handbookofmineralogy.org/pdfs/kaolinite.pdf}}</ref>
}}
}}
{{Infobox Chinese
|s=高岭石
|t=高嶺石
|p=Gāolǐng shí
|w=Kao<sup>1</sup>-ling<sup>3</sup> shih<sup>2</sup>
|mi={{IPAc-cmn|g|ao|1|.|l|ing|3|-|sh|^|2}}
|l="Gaoling stone"
}}

'''Каолинит''' је [[минерал]] глине са општом [[хемијска формула|молекулском формулом]]: -{[[Aluminium|Al]]<sub>2</sub>[[Silicon|Si]]<sub>2</sub>[[Oxygen|O]]<sub>5</sub>([[hydroxide|OH]])<sub>4</sub>}-.<ref name="CRC">{{RubberBible87th}}</ref><ref name="Merck13th">{{Merck13th}}</ref> Спада у групу [[силикати|алуминосиликата]]. У себи садржи 39,5% [[Алуминијум оксид|-{Al<sub>2</sub>O<sub>3</sub>}-]], 46,5% [[Силицијум диоксид|-{SiO<sub>2</sub>}-]] и 14% [[Вода|-{H<sub>2</sub>O}-]]. Познат је и под називом кинеска глина. Велике количине каолинита поседују: [[Бразил]], [[Кина]], [[Француска]], [[Немачка]], [[Енглеска]], [[Индија]], [[Аустралија]] и [[Јапан]]. Користи се у [[Керамика (материјал)|керамици]], [[козметика|козметици]], за производњу [[папир]]а и као адитив за [[храна|храну]]. Састојак је многих врста [[глина]].

It is an important [[industrial mineral]]. It is a layered [[silicate mineral]], with one [[tetrahedron|tetrahedral]] sheet of silica ({{Chem2|SiO4}}) linked through [[oxygen]] [[atom]]s to one [[octahedron|octahedral]] sheet of [[alumina]] ({{Chem2|AlO6}}) octahedra.<ref>{{cite book |title=An Introduction to the Rock-forming Minerals|vauthors=Deer WA, Howie RA, Zussman J |publisher=Longman |year=1992 |isbn=9780470218099 |edition=2nd |location=Harlow}}</ref> Rocks that are rich in kaolinite are known as '''kaolin''' or '''[[porcelain|china]] clay'''.<ref>{{cite book|url=https://books.google.com/books?id=Jq2rpN-6AccC|title=Economic geology: principles and practice: metals, minerals, coal and hydrocarbons – introduction to formation and sustainable exploitation of mineral deposits|last=Pohl|first=Walter L.|publisher=Wiley-Blackwell|year=2011|isbn=9781444336627|location=Chichester, West Sussex|pages=331 }}</ref>

The name ''kaolin'' is derived from Gaoling ({{zh|t=高嶺|p=Gāolǐng|l=High Ridge}}), a Chinese village near [[Jingdezhen]] in southeastern China's [[Jiangxi|Jiangxi Province]].<ref name=":0">{{cite encyclopedia |last=Schroeder PA |encyclopedia=[[New Georgia Encyclopedia]] |title=Kaolin |url=http://www.georgiaencyclopedia.org/nge/Article.jsp?id=h-1178 |access-date=14 March 2019 |date=31 July 2018 |type=online }}</ref> The name entered English in 1727 from the French version of the word: {{lang|fr|kaolin}}, following [[François Xavier d'Entrecolles]]'s reports on the making of [[Jingdezhen porcelain]].<ref>{{OEtymD|kaolin}}</ref>

== Хемија ==
=== Нотација ===
The [[chemical formula]] for kaolinite as used in [[mineralogy]] is {{Chem2|Al2Si2O5(OH)4}},<ref name=Handbook/> however, in [[ceramic engineering|ceramics]] applications the formula is typically written in terms of oxides, thus the formula for kaolinite is {{Chem2|Al2O3*2SiO2*2H2O}}.<ref>{{Cite book|title=Handbook of Inorganic Compounds|vauthors=Perry DL|publisher=Taylor & Francis|year=2011|isbn=9781439814611|edition=2nd|location=Boca Raton|oclc=587104373}}</ref>

===Structure===
[[File:Beevers crystal structure model of Kaolinite.jpg|thumb|Kaolinite structure, showing the interlayer hydrogen bonds]]
Compared with other clay minerals, kaolinite is chemically and structurally simple. It is described as a 1:1 or ''TO'' clay mineral because its crystals consist of stacked ''TO'' layers. Each ''TO'' layer consists of a tetrahedral (''T'') sheet composed of silicon and oxygen ions bonded to an octahedral (''O'') sheet composed of oxygen, aluminum, and hydroxyl ions. The ''T'' sheet is so called because each silicon ion is surrounded by four oxygen ions forming a tetrahedron. The ''O'' sheet is so called because each aluminum ion is surrounded by six oxygen or hydroxyl ions arranged at the corners of an octahedron. The two sheets in each layer are strongly bonded together via shared oxygen ions, while layers are bonded via [[hydrogen bonding]] between oxygen on the outer face of the ''T'' sheet of one layer and hydroxyl on the outer face of the ''O'' sheet of the next layer.<ref name="nesse">{{cite book |last1=Nesse |first1=William D. |title=Introduction to mineralogy |date=2000 |publisher=Oxford University Press |location=New York |isbn=9780195106916 |pages=254–255}}</ref>
<gallery>
File:Mica T.png|View of the structure of the tetrahedral (''T'') sheet of kaolinite
File:Mica dO.png|View of the structure of the octahedral (''O'') sheet of kaolinite
File:Kaolinite crystal structure.png|Kaolinite crystal structure looking along the layers
</gallery>
A kaolinite layer has no net electrical charge and so there are no large cations (such as calcium, sodium, or potassium) between layers as with most other clay minerals. This accounts for kaolinite's relatively low ion exchange capacity. The close hydrogen bonding between layers also hinders water molecules from infiltrating between layers, accounting for kaolinite's nonswelling character.<ref name="nesse"/>

When moistened, the tiny platelike crystals of kaolinite acquire a layer of water molecules that cause crystals to adhere to each other and give kaolin clay its cohesiveness. The bonds are weak enough to allow the plates to slip past each other when the clay is being molded, but strong enough to hold the plates in place and allow the molded clay to retain its shape. When the clay is dried, most of the water molecules are removed, and the plates hydrogen bond directly to each other, so that the dried clay is rigid but still fragile. If the clay is moistened again, it will once more become plastic.<ref>{{cite journal |last1=Breuer |first1=Stephen |title=The chemistry of pottery |journal=Education in Chemistry |date=July 2012 |pages=17–20 |url=https://www.qvevriproject.org/Files/2012.07.00_RSC_Breuer_ChemistryOfPottery.pdf |access-date=8 December 2020}}</ref>

===Structural transformations===

Kaolinite group clays undergo a series of phase transformations upon thermal treatment in air at atmospheric pressure.

====Milling====
High-energy milling of the kaolinite results in the formation of a mechanochemically amorphized phase similar to [[metakaolin]], although, the properties of this solid are quite different.<ref name="kaol">{{cite journal|vauthors=Kasa E, Szabados M, Baan K, Konya Z, Kukovecz A, Kutus B, Palinko I, Sipos P|year=2021|title=The dissolution kinetics of raw and mechanochemically treated kaolinites in industrial spent liquor – The effect of the physico-chemical properties of the solids|journal=[[Applied Clay Science|Appl. Clay Sci.]]|volume=203|page=105994|doi=10.1016/j.clay.2021.105994|doi-access=free}}</ref> The high-energy milling process is highly inefficient and consumes a large amount of energy.<ref>{{cite journal |last1=Baláž |first1=Peter |title=High-Energy Milling |journal=Mechanochemistry in Nanoscience and Minerals Engineering |date=2008 |pages=103–132 |doi=10.1007/978-3-540-74855-7_2|isbn=978-3-540-74854-0 }}</ref>

====Drying====
{{See also|Buell dryer}}Below {{convert|100|C}}, exposure to dry air will slowly remove liquid water from the kaolin. The end-state for this transformation is referred to as "leather dry". Between 100&nbsp;°C and about {{convert|550|C}}, any remaining liquid water is expelled from kaolinite. The end state for this transformation is referred to as "bone dry". Throughout this temperature range, the expulsion of water is reversible: if the kaolin is exposed to liquid water, it will be reabsorbed and disintegrate into its fine particulate form. Subsequent transformations are ''not'' reversible, and represent permanent chemical changes.

====Metakaolin====
Endothermic dehydration of kaolinite begins at 550–600&nbsp;°C producing disordered [[metakaolin]], but continuous [[hydroxyl]] loss is observed up to {{convert|900|C}}.<ref name="b1">{{cite journal|display-authors=3|vauthors=Bellotto M, Gualtieri A, Artioli G, Clark SM|year=1995|title=Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation|journal=[[Physics and Chemistry of Minerals|Phys. Chem. Miner.]]|volume=22|issue=4|pages=207–214|bibcode=1995PCM....22..207B|doi=10.1007/BF00202253|s2cid=95897543}}</ref> Although historically there was much disagreement concerning the nature of the metakaolin phase, extensive research has led to a general consensus that metakaolin is not a simple mixture of amorphous silica ({{Chem2|SiO2}}) and alumina ({{Chem2|Al2O3}}), but rather a complex amorphous structure that retains some longer-range order (but not [[quasicrystal|strictly crystalline]]) due to stacking of its hexagonal layers.<ref name=b1/><blockquote><chem>Al2Si2O5(OH)4 -> Al2Si2O7 + 2 H2O</chem></blockquote>

== Појава ==
Kaolinite is one of the most common minerals; it is mined, as kaolin, in [[Malaysia]], [[Pakistan]], [[Vietnam]], [[Brazil]], [[Bulgaria]], [[Bangladesh]], [[France]], the [[United Kingdom]], [[Iran]], [[Germany]], [[India]], [[Australia]], [[South Korea]], the [[People's Republic of China]], the [[Czech Republic]], [[Spain]], [[South Africa]], [[Tanzania]] and the [[United States]].<ref name=Mindat/>

Mantles of kaolinitic [[saprolite]] are common in Western and Northern Europe. The ages of these mantles are [[Mesozoic]] to Early Cenozoic.<ref>{{cite journal|author-link=Piotr Migoń|author-link2=Karna Lidmar-Bergström|vauthors=Migoń P, Lidmar-Bergström K|date=2002|title=Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record|journal=Catena|volume=49|issue=1–2|pages=25–40|doi=10.1016/S0341-8162(02)00015-2}}</ref>

Kaolinite clay occurs in abundance in [[soil]]s that have formed from the chemical [[weathering]] of rocks in hot, moist [[climate]]s—for example in [[tropical rainforest]] areas. Comparing soils along a gradient towards progressively cooler or drier climates, the proportion of kaolinite decreases, while the proportion of other clay minerals such as [[illite]] (in cooler climates) or [[smectite]] (in drier climates) increases. Such climatically-related differences in clay mineral content are often used to infer changes in climates in the geological past, where ancient soils have been buried and preserved.<ref>{{Cite journal|date=2000-02-01|title=Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: an integrated study from Yaou, French Guiana|url=https://www.sciencedirect.com/science/article/abs/pii/S0016703799002999|journal=Geochimica et Cosmochimica Acta|language=en|volume=64|issue=3|pages=409–426|doi=10.1016/S0016-7037(99)00299-9|issn=0016-7037|last1=Girard|first1=Jean-Pierre|last2=Freyssinet|first2=Philippe|last3=Chazot|first3=Gilles|bibcode=2000GeCoA..64..409G}}</ref>


In the ''[[Institut National pour l'Étude Agronomique au Congo Belge]]'' (INEAC) classification system, soils in which the clay fraction is predominantly kaolinite are called ''kaolisol'' (from kaolin and soil).<ref>{{cite book|title=Tropical soils and soil survey|last=Young|first=Anthony|publisher=CUP Archive|year=1980|isbn=9780521297684|series=Cambridge Geographical Studies|volume=9|pages=132 }}</ref>
'''Каолинит''' је [[минерал]] глине са општом [[хемијска формула|молекулском формулом]]: -{Al<sub>4</sub>[Si<sub>4</sub>O<sub>10</sub>](OH)<sub>8</sub>}-.<ref name="CRC">{{RubberBible87th}}</ref><ref name="Merck13th">{{Merck13th}}</ref> Спада у групу [[силикати|алуминосиликата]]. У себи садржи 39,5% [[Алуминијум оксид|-{Al<sub>2</sub>O<sub>3</sub>}-]], 46,5% [[Силицијум диоксид|-{SiO<sub>2</sub>}-]] и 14% [[Вода|-{H<sub>2</sub>O}-]]. Познат је и под називом кинеска глина.
Велике количине каолинита поседују: [[Бразил]], [[Кина]], [[Француска]], [[Немачка]], [[Енглеска]], [[Индија]], [[Аустралија]] и [[Јапан]].


In the US, the main kaolin deposits are found in central [[Georgia (U.S. state)|Georgia]], on a stretch of the [[Atlantic Seaboard fall line]] between [[Augusta, Georgia|Augusta]] and [[Macon, Georgia|Macon]]. This area of thirteen counties is called the "white gold" belt; [[Sandersville, Georgia|Sandersville]] is known as the "Kaolin Capital of the World" due to its abundance of kaolin.<ref name="sandersville-ga">{{cite web|url=http://www.sandersville.net/KaolinCapitaloftheWorld.cfm|title=Kaolin Capital of the World|website=City of Sandersville, GA|access-date=27 August 2018}}</ref><ref name="bitter-southerner">{{cite web|url=http://bittersoutherner.com/eat-white-dirt/|title=Making Peace With the Age-Old Practice of Eating White Dirt|last=Reece C|website=The Bitter Southerner|access-date=27 August 2018}}</ref><ref>{{cite news |last1=Smothers |first1=Ronald |title=White George clay turns into cash |url=https://www.nytimes.com/1987/12/12/us/white-georgia-clay-turns-into-cash.html |access-date=19 January 2021 |work=The New York Times |date=12 December 1987}}</ref> In the late 1800s, an active kaolin surface-mining industry existed in the extreme southeast corner of Pennsylvania, near the towns of [[Landenberg, Pennsylvania|Landenberg]] and [[Kaolin, Pennsylvania|Kaolin]], and in what is present-day White Clay Creek Preserve. The product was brought by train to [[Newark, Delaware]], on the [[Pomeroy and Newark Railroad|Newark-Pomeroy]] line, along which can still be seen many open-pit clay mines. The deposits were formed between the late [[Cretaceous]] and early [[Paleogene]], about 100 to 45 million years ago, in sediments derived from weathered [[Igneous rock|igneous]] and metakaolin rocks.<ref name=":0" /> Kaolin production in the US during 2011 was 5.5 million tons.<ref>{{cite techreport|last=Virta R|title=Mineral Commodity Summaries|institution=U.S. Geological Survey|pages=44–45|year=2012|url=http://minerals.usgs.gov/minerals/pubs/commodity/clays/mcs-2012-clays.pdf}}</ref>
Користи се у [[Керамика (материјал)|керамици]], [[козметика|козметици]], за производњу [[папир]]а и као адитив за [[храна|храну]]


During the [[Paleocene–Eocene Thermal Maximum]] sediments deposited in the Esplugafreda area of [[Spain]] were enriched with kaolinite from a [[detrital]] source due to [[denudation]].<ref>{{cite journal|display-authors=3|vauthors=Adatte T, Khozyem H, Spangenberg JE, Samant B, Keller G|year=2014|title=Response of terrestrial environment to the Paleocene-Eocene Thermal Maximum (PETM), new insights from India and NE Spain|url=https://www.researchgate.net/publication/263430375|journal=Rendiconti Online della Società Geologica Italiana|volume=31|pages=5–6|doi=10.3301/ROL.2014.17}}</ref>
Састојак је многих врста [[глина]].


== Извори ==
== Извори ==
Ред 31: Ред 94:


== Литература ==
== Литература ==
{{refbegin|}}
* {{Cite book|title=An introduction to the rock-forming minerals|vauthors=Deer WA, Howie RA, Zussman J|publisher=Longman|year=1992|isbn=0582300940|edition=2nd|location=Harlow|title-link=An introduction to the rock-forming minerals}}
* {{Cite book|title=Manual of mineralogy – after J. D. Dana|vauthors=Hurlbut CS, Klein C|publisher=Wiley|year=1985|isbn=0471805807|edition=20th|pages=[https://archive.org/details/manualofmineralo00klei/page/428 428–429]|url-access=registration|url=https://archive.org/details/manualofmineralo00klei/page/428}}
* {{Cite book|title=Zeolite molecular sieves|vauthors=Breck DW|publisher=R. E. Krieger Publishing Co.|year=1984|isbn=0898746485|location=Malabar, FL|pages=314–315}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Kaolinite}}
{{Commonscat|Kaolinite}}
* [https://www.cdc.gov/niosh/npg/npgd0364.html CDC – NIOSH Pocket Guide to Chemical Hazards]


{{Клица-минералогија}}
{{Минерали}}
{{Минерали}}
{{Authority control}}


[[Категорија:Минерали алуминијума]]
[[Категорија:Минерали алуминијума]]

Верзија на датум 22. новембар 2021. у 03:41

Каолинит
Опште информације
КатегоријаPhyllosilicates
Kaolinite-serpentine group
ФормулаAl
2
(OH)
4
Si
2
O
5
Струнцова класификација9.ED.05
Кристалне системеTriclinic
Кристална класаPedial (1)
(same H-M symbol)
Просторна групаP1
Јединична ћелијаa = 5.13 Å, b = 8.89 Å
c = 7.25 Å; α = 90°
β = 104.5°, γ = 89.8°; Z = 2
Идентификација
БојаWhite to cream, sometimes red, blue or brown tints from impurities and pale-yellow; also often stained various hues, tans and browns being common.
Кристални хабитусRarely as crystals, thin plates or stacked, More commonly as microscopic pseudohexagonal plates and clusters of plates, aggregated into compact, claylike masses
ЦепљивостPerfect on {001}
ЧврстинаFlexible but inelastic
Тврдоћа по Мосу2–2.5
СјајностPearly to dull earthy
ОгребWhite
Специфична тежина2.16–2.68
Оптичке особинеBiaxial (–)
Индекс преламањаnα = 1.553–1.565,
nβ = 1.559–1.569,
nγ = 1.569–1.570
2V угаоMeasured: 24° to 50°, Calculated: 44°
Референце[1][2][3]
Каолинит
Lua грешка in Модул:Infobox_multi-lingual_name at line 307: attempt to call field '_lang' (a nil value).

Каолинит је минерал глине са општом молекулском формулом: Al2Si2O5(OH)4.[4][5] Спада у групу алуминосиликата. У себи садржи 39,5% Al2O3, 46,5% SiO2 и 14% H2O. Познат је и под називом кинеска глина. Велике количине каолинита поседују: Бразил, Кина, Француска, Немачка, Енглеска, Индија, Аустралија и Јапан. Користи се у керамици, козметици, за производњу папира и као адитив за храну. Састојак је многих врста глина.

It is an important industrial mineral. It is a layered silicate mineral, with one tetrahedral sheet of silica (SiO
4
) linked through oxygen atoms to one octahedral sheet of alumina (AlO
6
) octahedra.[6] Rocks that are rich in kaolinite are known as kaolin or china clay.[7]

The name kaolin is derived from Gaoling (), a Chinese village near Jingdezhen in southeastern China's Jiangxi Province.[8] The name entered English in 1727 from the French version of the word: kaolin, following François Xavier d'Entrecolles's reports on the making of Jingdezhen porcelain.[9]

Хемија

Нотација

The chemical formula for kaolinite as used in mineralogy is Al
2
Si
2
O
5
(OH)
4
,[3] however, in ceramics applications the formula is typically written in terms of oxides, thus the formula for kaolinite is Al
2
O
3
·2SiO
2
·2H2O
.[10]

Structure

Kaolinite structure, showing the interlayer hydrogen bonds

Compared with other clay minerals, kaolinite is chemically and structurally simple. It is described as a 1:1 or TO clay mineral because its crystals consist of stacked TO layers. Each TO layer consists of a tetrahedral (T) sheet composed of silicon and oxygen ions bonded to an octahedral (O) sheet composed of oxygen, aluminum, and hydroxyl ions. The T sheet is so called because each silicon ion is surrounded by four oxygen ions forming a tetrahedron. The O sheet is so called because each aluminum ion is surrounded by six oxygen or hydroxyl ions arranged at the corners of an octahedron. The two sheets in each layer are strongly bonded together via shared oxygen ions, while layers are bonded via hydrogen bonding between oxygen on the outer face of the T sheet of one layer and hydroxyl on the outer face of the O sheet of the next layer.[11]

A kaolinite layer has no net electrical charge and so there are no large cations (such as calcium, sodium, or potassium) between layers as with most other clay minerals. This accounts for kaolinite's relatively low ion exchange capacity. The close hydrogen bonding between layers also hinders water molecules from infiltrating between layers, accounting for kaolinite's nonswelling character.[11]

When moistened, the tiny platelike crystals of kaolinite acquire a layer of water molecules that cause crystals to adhere to each other and give kaolin clay its cohesiveness. The bonds are weak enough to allow the plates to slip past each other when the clay is being molded, but strong enough to hold the plates in place and allow the molded clay to retain its shape. When the clay is dried, most of the water molecules are removed, and the plates hydrogen bond directly to each other, so that the dried clay is rigid but still fragile. If the clay is moistened again, it will once more become plastic.[12]

Structural transformations

Kaolinite group clays undergo a series of phase transformations upon thermal treatment in air at atmospheric pressure.

Milling

High-energy milling of the kaolinite results in the formation of a mechanochemically amorphized phase similar to metakaolin, although, the properties of this solid are quite different.[13] The high-energy milling process is highly inefficient and consumes a large amount of energy.[14]

Drying

Below 100 °C (212 °F), exposure to dry air will slowly remove liquid water from the kaolin. The end-state for this transformation is referred to as "leather dry". Between 100 °C and about 550 °C (1.022 °F), any remaining liquid water is expelled from kaolinite. The end state for this transformation is referred to as "bone dry". Throughout this temperature range, the expulsion of water is reversible: if the kaolin is exposed to liquid water, it will be reabsorbed and disintegrate into its fine particulate form. Subsequent transformations are not reversible, and represent permanent chemical changes.

Metakaolin

Endothermic dehydration of kaolinite begins at 550–600 °C producing disordered metakaolin, but continuous hydroxyl loss is observed up to 900 °C (1.650 °F).[15] Although historically there was much disagreement concerning the nature of the metakaolin phase, extensive research has led to a general consensus that metakaolin is not a simple mixture of amorphous silica (SiO
2
) and alumina (Al
2
O
3
), but rather a complex amorphous structure that retains some longer-range order (but not strictly crystalline) due to stacking of its hexagonal layers.[15]

Појава

Kaolinite is one of the most common minerals; it is mined, as kaolin, in Malaysia, Pakistan, Vietnam, Brazil, Bulgaria, Bangladesh, France, the United Kingdom, Iran, Germany, India, Australia, South Korea, the People's Republic of China, the Czech Republic, Spain, South Africa, Tanzania and the United States.[1]

Mantles of kaolinitic saprolite are common in Western and Northern Europe. The ages of these mantles are Mesozoic to Early Cenozoic.[16]

Kaolinite clay occurs in abundance in soils that have formed from the chemical weathering of rocks in hot, moist climates—for example in tropical rainforest areas. Comparing soils along a gradient towards progressively cooler or drier climates, the proportion of kaolinite decreases, while the proportion of other clay minerals such as illite (in cooler climates) or smectite (in drier climates) increases. Such climatically-related differences in clay mineral content are often used to infer changes in climates in the geological past, where ancient soils have been buried and preserved.[17]

In the Institut National pour l'Étude Agronomique au Congo Belge (INEAC) classification system, soils in which the clay fraction is predominantly kaolinite are called kaolisol (from kaolin and soil).[18]

In the US, the main kaolin deposits are found in central Georgia, on a stretch of the Atlantic Seaboard fall line between Augusta and Macon. This area of thirteen counties is called the "white gold" belt; Sandersville is known as the "Kaolin Capital of the World" due to its abundance of kaolin.[19][20][21] In the late 1800s, an active kaolin surface-mining industry existed in the extreme southeast corner of Pennsylvania, near the towns of Landenberg and Kaolin, and in what is present-day White Clay Creek Preserve. The product was brought by train to Newark, Delaware, on the Newark-Pomeroy line, along which can still be seen many open-pit clay mines. The deposits were formed between the late Cretaceous and early Paleogene, about 100 to 45 million years ago, in sediments derived from weathered igneous and metakaolin rocks.[8] Kaolin production in the US during 2011 was 5.5 million tons.[22]

During the Paleocene–Eocene Thermal Maximum sediments deposited in the Esplugafreda area of Spain were enriched with kaolinite from a detrital source due to denudation.[23]

Извори

  1. ^ а б Kaolinite, Mindat.org, Приступљено 5. 8. 2009 
  2. ^ Kaolinite Mineral Data, WebMineral.com, Приступљено 5. 8. 2009 
  3. ^ а б Anthony JW, Bideaux RA, Bladh KW, et al., ур. (1995). „Kaolinite” (PDF). Handbook of Mineralogy: Silica, silicates. Tucson, Ariz.: Mineral Data Publishing. ISBN 9780962209734. OCLC 928816381. 
  4. ^ Lide David R., ур. (2006). CRC Handbook of Chemistry and Physics (87th изд.). Boca Raton, FL: CRC Press. ISBN 978-0-8493-0487-3. 
  5. ^ Susan Budavari, ур. (2001). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (13th изд.). Merck Publishing. ISBN 0911910131. 
  6. ^ Deer WA, Howie RA, Zussman J (1992). An Introduction to the Rock-forming Minerals (2nd изд.). Harlow: Longman. ISBN 9780470218099. 
  7. ^ Pohl, Walter L. (2011). Economic geology: principles and practice: metals, minerals, coal and hydrocarbons – introduction to formation and sustainable exploitation of mineral deposits. Chichester, West Sussex: Wiley-Blackwell. стр. 331. ISBN 9781444336627. 
  8. ^ а б Schroeder PA (31. 7. 2018). „Kaolin”. New Georgia Encyclopedia (online). Приступљено 14. 3. 2019. 
  9. ^ Harper, Douglas. „kaolin”. Online Etymology Dictionary. 
  10. ^ Perry DL (2011). Handbook of Inorganic Compounds (2nd изд.). Boca Raton: Taylor & Francis. ISBN 9781439814611. OCLC 587104373. 
  11. ^ а б Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. стр. 254—255. ISBN 9780195106916. 
  12. ^ Breuer, Stephen (јул 2012). „The chemistry of pottery” (PDF). Education in Chemistry: 17—20. Приступљено 8. 12. 2020. 
  13. ^ Kasa E, Szabados M, Baan K, Konya Z, Kukovecz A, Kutus B, Palinko I, Sipos P (2021). „The dissolution kinetics of raw and mechanochemically treated kaolinites in industrial spent liquor – The effect of the physico-chemical properties of the solids”. Appl. Clay Sci. 203: 105994. doi:10.1016/j.clay.2021.105994Слободан приступ. 
  14. ^ Baláž, Peter (2008). „High-Energy Milling”. Mechanochemistry in Nanoscience and Minerals Engineering: 103—132. ISBN 978-3-540-74854-0. doi:10.1007/978-3-540-74855-7_2. 
  15. ^ а б Bellotto M, Gualtieri A, Artioli G, et al. (1995). „Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation”. Phys. Chem. Miner. 22 (4): 207—214. Bibcode:1995PCM....22..207B. S2CID 95897543. doi:10.1007/BF00202253. 
  16. ^ Migoń P, Lidmar-Bergström K (2002). „Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record”. Catena. 49 (1–2): 25—40. doi:10.1016/S0341-8162(02)00015-2. 
  17. ^ Girard, Jean-Pierre; Freyssinet, Philippe; Chazot, Gilles (2000-02-01). „Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: an integrated study from Yaou, French Guiana”. Geochimica et Cosmochimica Acta (на језику: енглески). 64 (3): 409—426. Bibcode:2000GeCoA..64..409G. ISSN 0016-7037. doi:10.1016/S0016-7037(99)00299-9. 
  18. ^ Young, Anthony (1980). Tropical soils and soil survey. Cambridge Geographical Studies. 9. CUP Archive. стр. 132. ISBN 9780521297684. 
  19. ^ „Kaolin Capital of the World”. City of Sandersville, GA. Приступљено 27. 8. 2018. 
  20. ^ Reece C. „Making Peace With the Age-Old Practice of Eating White Dirt”. The Bitter Southerner. Приступљено 27. 8. 2018. 
  21. ^ Smothers, Ronald (12. 12. 1987). „White George clay turns into cash”. The New York Times. Приступљено 19. 1. 2021. 
  22. ^ Virta R (2012). Mineral Commodity Summaries (PDF) (Технички извештај). U.S. Geological Survey. стр. 44—45. 
  23. ^ Adatte T, Khozyem H, Spangenberg JE, et al. (2014). „Response of terrestrial environment to the Paleocene-Eocene Thermal Maximum (PETM), new insights from India and NE Spain”. Rendiconti Online della Società Geologica Italiana. 31: 5—6. doi:10.3301/ROL.2014.17. 

Литература

Спољашње везе