Амонијак

Из Википедије, слободне енциклопедије
Амонијак
Ammonia-2D-dimensions.png
Ammonia-3D-vdW.png
Називи
IUPAC назив
Амонијак (енгл. azane)
Други називи
хидроген-нитрид
Идентификација
3D модел (Јмол)
ECHA InfoCard 100.028.760
MeSH Ammonia
RTECS BO0875000
Својства
NH3
Моларна маса 17.0306 g/mol
Агрегатно стање безбојан гас оштрог мириса
Густина 0.6942
Тачка топљења -77.73 °C (195.42 K)
Тачка кључања -33.34 °C (239.81 K)
89.9 g/100 mL на 0°C
Базност (pKb) 4.75 (у реакцији са H2O)
Индекс рефракције (nD) εr
Структура
Облик молекула (орбитале и хибридизација) тригонална пирамида
Диполни момент 1.42 D
Опасности
Главне опасности опасан гас, нагриза, корозиван
Р-ознаке R10, R23, R34, R50
(S1/2), S16, S36/37/39,
S45, S61
Тачка паљења не
Сродна једињења
Други анјони
амонијум-хидроксид (NH4OH)
Други катјони
амонијум (NH4+)
Уколико није другачије напоменуто, подаци се односе на стандардно стање материјала (на 25 °C [77 °F], 100 kPa).
Референце инфокутије

Амонијак је хемијско једињење азота и водоника са молекулском формулом NH3. При нормалним условима амонијак је гас. То је отрован гас, корозиван је за неке материје, карактеристичног је непријатног мириса.

Особине[уреди]

Молекули амонијака имају облик правилног тетраедра. Ова форма и даје молекулу велики диполни моменат и, поред разлика у електронегативности, узрок је што је амонијак поларан. Услед поларности амонијак је растворљив у поларним протичним неорганским растварачима као што је вода.[3][4]

Азотов атом у молекулу има један слободан електронски пар, па се амонијак понаша као Луисова база. У киселом или неутралном воденом раствору амонијак може да се сједини са хидронијум јоном (H3O+), при при чему се ослобађа молекул воде (H2O) и формира позитивно наелектрисан амонијум јон (NH4+) који има облик правилног тетраедра. Формирање амонијум јона зависи од pH вредности раствора.

Особине[уреди]

Особина Вредност
Број акцептора водоника 1
Број донора водоника 1
Број ротационих веза 0
Партициони коефицијент[5] (ALogP) -0,3
Растворљивост[6] (logS, log(mol/L)) 1,5
Поларна површина[7] (PSA, Å2) 35,0

Примена[уреди]

Најважнија област у којој се користи амонијак је производња азотне киселине Оствалдовим методом. Такође користи се за производњу азот(II)-оксида, који је уједно и прво прекурсорско једињење у производњи нитратне киселине.

Амонијак се употребљава у производњи вештачких ђубрива, експлозива и полимера. Такође амонијак је и састојак неких детерџената за стакло.

Течан амонијак се користи и као растварач. Такође амонијак се примењује у расхладним уређајима.

Добијање и распрострањеност[уреди]

Може се добити директном синтезом азота и водоника (Хабер-Бошова синтеза):

Такође може се добити дејством калцијум оксида на амонијум-хлорид, као и дејством воде на магнезијум-нитрид:

У атмосфери се налази у веома малим количинама а настаје процесом распада животињских или биљних материја. Амонијум хлорид и амонијум сулфат су нађени у вулканским областима на. Кристали амонијум бикарбоната се налазе у измету неких морских птица неких слепих мишева (гуано). Амонијумове соли се могу срести и у морској води. Супстанце кои садрже амонијак или су сличне њему називају се амонијачне супстанце.

Растворљивост соли[уреди]

Растворљивост (број грама на 100 g амонијака)
Амонијум ацетат 253.2
Амонијум нитрат 389.6
Литијум нитрат 243.7
Натријум нитрат 97.6
Калијум нитрат 10.4
Натријум флуорид 0.35
Натријум хлорид 3.0
Натријум бромид 138.0
Натријум јодид 161.9

Извори[уреди]

  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today. 15 (23-24): 1052—7. PMID 20970519. doi:10.1016/j.drudis.2010.10.003.  edit
  2. Evan E. Bolton; Yanli Wang; Paul A. Thiessen; Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry. 4: 217—241. doi:10.1016/S1574-1400(08)00012-1. 
  3. Lide David R., ур. (2006). CRC Handbook of Chemistry and Physics (87th изд.). Boca Raton, FL: CRC Press. 0-8493-0487-3. 
  4. Susan Budavari, ур. (2001). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (13th изд.). Merck Publishing. ISBN 0911910131. 
  5. Ghose, A.K.; Viswanadhan V.N. & Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A. 102: 3762—3772. doi:10.1021/jp980230o. 
  6. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488—1493. PMID 11749573. doi:10.1021/ci000392t. 
  7. Ertl P.; Rohde B.; Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714—3717. PMID 11020286. doi:10.1021/jm000942e. 

Литература[уреди]

Спољашње везе[уреди]