Велики прасак

Из Википедије, слободне енциклопедије
Према теорији Великог праска, универзум потиче из стања бесконачно великог притиска и топлоте (сингуларитет). Од тада, простор се ширио током времена, удаљавајући тако галаксије једне од других.

У физичкој космологији, Велики прасак представља научну теорију о пореклу универзума као о ширењу простора и материје, који је у почетку био бесконачно мали простор бесконачно великог притиска и топлоте у неком коначном времену у прошлости. Сама идеја је настала из посматрања која указују на то да црвени помак галаксија (Хаблов закон) показује да се галаксије удаљавају једне од других, што наводи на тврдњу да су галаксије биле некад међусобно много ближе него данас.

Сам термин „Велики прасак“ се користи и у ужем смислу да укаже на тачку у времену када је посматрано ширење универзума почело (Хаблов закон) - отприлике пре око 13,7 милијарди година (13.7 × 109) - и у ширем смислу да укаже на преовладавајућу космолошку парадигму која треба да објасни порекло и еволуцију космоса.

Једна од последица Великог праска је та да физички закони који данас владају у универзуму се разликују од оних из прошлости или оних из будућности. Из овог модела, Џорџ Гамов је године 1948. успео да предвиди постојање космичког позадинског микроталасног зрачења (КПМ). КПМ је откривено 1960их и служило као потврда теорије Великог праска над главним ривалом, теоријом мирног стања.

Мотивација и развој[уреди]

Физичка космологија
WMAP.jpg
Сродни чланци

уреди

Уметничка визија галаксије Млечни пут

Теорија великог праска се развила из посматрања структуре свемира и из теоријског разматрања. Године 1912. Весто Слипер је измерио први Доплеров померај "спиралне маглине" (спирална маглина је застарео назив за спиралне галаксије), а убрзо су је открио да се готово све такве маглине удаљавају од Земље. Он није схватио космолошке импликације ове чињенице, и заиста у то време било је врло контроверзно да ли су ове маглине „острвски свемири“ изван Млечног пута.[1][2] Десет година касније, руски космолог и математичар Александар Фридман је изведео Фридманову једначину из једначина опште релативности Алберта Ајнштајна, која је показивала да се свемир шири за разлику од статичког модела свемира који је заговарао Ајнштајн у то време.[3] Године 1924. Хаблова мерење велике удаљености до најближе спиралне маглине је показало да су ови системи били заиста друге галаксије. Независно од Фридмана, белкијски физичар и римокатолички свештеник Жорж Леметр је такође извео Фирдманове једначине и предложио закључак да је разлог за удаљавање маглина ширење свемира.[4]

Године 1931. Леметр је отишао корак даље и предложио да евидентно ширење свемира, ако се пројектује назад у прошлост, значи да би се свемир био све мање како се иде назад у прошлост, све до неког коначног тренутка у прошлости, када је маса целог свемира била сконцентрисана у једну тачку, „исконски атом“, где су и када настали простор и време.[5]

Почевши од 1924, Хабл је мукотрпно развио низ индикатора удаљености, претече скале удаљености у астрономији, користећи 2500милиметарски телескоп Хукер у опсерваторији Маунт Вилсон. Ово му је омогућило да процени удаљености до галаксија чију су црвени помаци већ били измерени. Године 1929, Хабл је открио везу између удаљености и брзине удаљавања, данас познату под именом Хаблов закон.[6][7] Леметр је већ раније показао да је то очекивано, с обзиром на космолошки принцип.[8]

Током 1930-их предлагане су и друге идеје као нестандардне космологије да објасне Хаблова запажања, међу којима је био Милнов модел,[9] осцилаторни свемир (првобитно предложио Фридман, али су га заговарали Алберт Ајнштајн и Ричард Толман)[10] хипотеза о уморној светлости Фрица Звицког.[11]

Уметничка визија сателита WMPA.

После Другог светског рата, појавиле су се две различите могућности. Једна је била модел стабилног стања Фреда Хојла, у ком би се нова материја стварала ако би се чинило да се свемир шири. По овом моделу, свемир је приближно исти у сваком тренутку.[12] Други идеја је била Леметрова теорија великог праска, који је заступао и даље развијао Џорџ Гамов, који је увео првобитну нуклеосинтезу (BBN)[13] и чији су сарадници, Ралф Алфер и Роберт Херман, предвидели космичко позадинско микроталасно зрачење.[14] На крају, докази прикупљени псоматрањем свемира, као што су бројање вангалактичких радио извора и откриће квазара, су почели да фаворизују теорију великог праска у односу на модел мирног стања. Откриће и потврда космичког позадинског микроталасног зрачења 1964.[15] учврстили су модел великог праска као најбољу теорију о пореклу и еволуцији свемира. Већи део текућег рада у космологији укључује разумевање како настају галаксије у контексту великог праска, разумевање физике свемира далеко у његову прошлост, као и усклађивањем запажања са основном теоријом.

Огромне кораке у моделу великог праска су учињени од касних 1990-их година као резултат великих достигнућа у развоју телескопа, као и анализу обилних података добијених од сателита, као што су мисије COBE,[16] свемирски телескоп Хабл и WMAP[17] Космолози сада имају прилично прецизна и тачна мерења многих параметара модела Великог праска, па су начинили неочекивано откриће по ком се чини да се ширење свемира убрзава.

Преглед[уреди]

Хронологија[уреди]

Екстрапилација ширења свемира уназад коришћењем опште реалтивности даје бесконачну густину и температуру у коначном временском тренутнку у прошлости.[18] Овај сингуларитет означава прекид опште релативности. Колико близу можемо ектраполирати ка сингуларитету је тема расправа - сигурно се не може ближе него од краја Планкове епохе. Овај сингуларитет се понекад назива „велики прасак“,[19] али се овај израз може употребити и на рану, врућу фазу,[20][a] што се може сматрати „рођењем“ свемира. Према мерењима ширења супернове типа Ia, мерењима температурних флуктиација у космичком микроталасном зрачењу, и мерењем корелационе функције галаксија, израчуната је старост свемира на 13,75 ± 0,11 милијарди година.[21] Подударање ова три независна мерења снажно подржава ΛCDM модел који у детаље описује садржај свемира.

Најраније фазе великог праска су предмет многих нагађања. У најчешћим моделима, свемир је био напуњен хомогено и изотропно са невероватно великом густином енергије и огромним температурама и притисцима и врло брзо се ширио и хладио. Након прилбижно 10−37 секунди по екплозији, фазна транзиција је изазвала космичку инфлацију, током које је свемир растао експоненцијално.[22] Након што је инфлација престала, свемир се састојао од кварковско-глуонске плазме, као и од других елементарних честица.[23] Температуре су биле толико високе да се неуређено кретање честица одвијало релативистичким брзинама, а парови честица-античестица свих врста су били стално стварани и уништавани у сударима. У неком тренутку нека непозната реакција названа бариогенеза је нарушила закон очувања барионског броја, доводећу до врло малог вишка кваркова и лептона над антикварковима и антилептонима, реда 1:30.000.000. Ово је довело до доминације материје над антиматеријом у данашњем свемиру.[24]

Свемир је наставио да се шири, а његова температура да расте, па се типична енергија сваке честице смањивала. Транзиционе фазе ломљења симетрије су поставиле основне интеракције физике и параметре елементарних честица у њихов садашњи облик.[25] Након неких 10−11 секунди, догађај је постао мање сепкулативан, пошто су енергије честица пале на вредност које се могу достићи у експериментима физике честица. Након 10−6 секунди, кваркови и глуони су се комбиновали да образују барионе као што су протони и неутрони. Мали вишак кваркова над антикваркова је довео до малог вишка бариона над антибарионима. Температура сада више није била довољно висока да се образују нови парови протона-антипротона (исто тако за неутроне-антинеутроне), па је одмах уследила анихилација масе, остављајући само један на сваких 1010 првобитних протона и неутрона и ниједну њихову античестицу. Сличан процес се десио након једне секунде електронима и позитронима. После ових анихилација, преостали протони, неутрони и електрони се више нису кретали релативистичким брзинама, а енергетском густином свемира су доминирали фотони (уз малу примесу неутрина).

Пар минута после ширења, када је температура била око милијарду келвина, а густина једнака густини ваздуха, неутрони су се комбиновали са протонима и образовали језгра деутеријума и хелијума у процесу који се назива првобитна нуклеосинтеза.[26] Већина протона је остала некомбинована у виду језгра водоника. Како се универзум хладио, преостала густина масене енергије материје је почела да гравитационо доминира над зрачењем фотона.

Напомене[уреди]

  1. ^ Не постоји консенсуз колико је фаза великог праска трајала. Неки аутори тиме означавају само почетни сингуларитет, док је за друге то цела историја свемира. Обично се за првих пар минута (током којих је синтетизован хелијум) се каже да су се догодили током великог праска

Извори[уреди]

  1. ^ Slipher, V.M (1913). „The Radial Velocity of the Andromeda Nebula“. Lowell Observatory Bulletin 1: 56-57. Bibcode 1913LowOB...2...56S. 
  2. ^ Slipher, V.M (1915). „Spectrographic Observations of Nebulae“. Popular Astronomy 23: 21-24. Bibcode 1915PA.....23Q..21S. 
  3. ^ Friedman, A.A. (1922). „Über die Krümmung des Raumes“. Zeitschrift für Physik 10 (1): 377-386. Bibcode 1922ZPhy...10..377F. DOI:10.1007/BF01332580.  ((de))
    (English translation in: Friedman, A. (1999). „On the Curvature of Space“. General Relativity and Gravitation 31 (12): 1991-2000. Bibcode 1999GReGr..31.1991F. DOI:10.1023/A:1026751225741. )
  4. ^ Lemaître, G. (1927). „Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques“. Annals of the Scientific Society of Brussels 47A: 41.  ((fr))
    (Translated in: „A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae“. Monthly Notices of the Royal Astronomical Society 91: 483-490. 1931. Bibcode 1931MNRAS..91..483L. )
  5. ^ Lemaître, G. (1931). „The Evolution of the Universe: Discussion“. Nature 128 (3234): 699-701. Bibcode 1931Natur.128..704L. DOI:10.1038/128704a0. 
  6. ^ Hubble, E. (1929). „A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae“. Proceedings of the National Academy of Sciences 15 (3): 168-73. Bibcode 1929PNAS...15..168H. DOI:10.1073/pnas.15.3.168. PMC 522427. PMID 16577160. 
  7. ^ Christianson, E. (1995). Edwin Hubble: Mariner of the Nebulae. Farrar, Straus and Giroux. ISBN 978-0-374-14660-3. 
  8. ^ Peebles, P.J.E.; Ratra, B. (2003). „The Cosmological Constant and Dark Energy“. Reviews of Modern Physics 75 (2): 559-606. arXiv:astro-ph/0207347. Bibcode 2003RvMP...75..559P. DOI:10.1103/RevModPhys.75.559. 
  9. ^ Milne, E.A. (1935). Relativity, Gravitation and World Structure. Oxford University Press. LCCN 35-19093. 
  10. ^ Tolman, R.C. (1934). Relativity, Thermodynamics, and Cosmology. Clarendon Press. ISBN 978-0-486-65383-9. LCCN 34-32023. 
  11. ^ Zwicky, F. (1929). „On the Red Shift of Spectral Lines through Interstellar Space“. Proceedings of the National Academy of Sciences 15 (10): 773-779. Bibcode 1929PNAS...15..773Z. DOI:10.1073/pnas.15.10.773. PMC 522555. PMID 16577237. 
  12. ^ Hoyle, F. (1948). „A New Model for the Expanding Universe“. Monthly Notices of the Royal Astronomical Society 108: 372. Bibcode 1948MNRAS.108..372H. 
  13. ^ Alpher, R.A.; Bethe, H.; Gamow, G. (1948). „The Origin of Chemical Elements“. Physical Review 73 (7): 803. Bibcode 1948PhRv...73..803A. DOI:10.1103/PhysRev.73.803. 
  14. ^ Alpher, R.A.; Herman, R. (1948). „Evolution of the Universe“. Nature 162: 774. Bibcode 1948Natur.162..774A. DOI:10.1038/162774b0. 
  15. ^ Penzias, A.A.; Wilson, R.W. (1965). „A Measurement of Excess Antenna Temperature at 4080 Mc/s“. Astrophysical Journal 142: 419. Bibcode 1965ApJ...142..419P. DOI:10.1086/148307. 
  16. ^ Boggess, N.W.; et al. (1992). „The COBE Mission: Its Design and Performance Two Years after the launch“. Astrophysical Journal 397: 420. Bibcode 1992ApJ...397..420B. DOI:10.1086/171797. 
  17. ^ Spergel, D.N.; et al. (2006). „Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology“. Astrophysical Journal Supplement 170 (2): 377. arXiv:astro-ph/0603449. Bibcode 2007ApJS..170..377S. DOI:10.1086/513700. 
  18. ^ Hawking, S.W.; Ellis, G.F.R. (1973). The Large-Scale Structure of Space-Time. Cambridge University Press. ISBN 978-0-521-20016-5. 
  19. ^ Roos, M. (2008). „Expansion of the Universe – Standard Big Bang Model“. In Engvold, O.; Stabell, R.; Czerny, B. et al.. Astronomy and Astrophysics. Encyclopedia of Life Support Systems. EOLSS publishers. arXiv:0802.2005. „This singularity is termed the Big Bang.“ 
  20. ^ Drees, W.B. (1990). Beyond the big bang: quantum cosmologies and God. Open Court Publishing. стр. 223-224. ISBN 978-0-8126-9118-4. 
  21. ^ Jarosik, N.; et.al. (WMAP Collaboration). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. NASA/GSFC. p. 39, Table 8 Приступљено 4. 12. 2010.. 
  22. ^ Guth, A.H. (1998). The Inflationary Universe: Quest for a New Theory of Cosmic Origins. Vintage Books. ISBN 978-0-09-995950-2. 
  23. ^ Schewe, P. (2005). „An Ocean of Quarks“. Physics News Update (American Institute of Physics) 728 (1). 
  24. ^ Kolb and Turner (1988), chapter 6
  25. ^ Kolb and Turner (1988), chapter 7
  26. ^ Kolb and Turner (1988), chapter 4

Литература[уреди]

Спољашње везе[уреди]

Викиостава
Викимедијина остава има још мултимедијалних датотека везаних за: Велики прасак