Халкоген — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Бот: козметичке измене
.
Ред 1: Ред 1:
{{short description|Група хемијских елемената}}{{рут}}
{{infobox periodic table group/header
| title = Халкогени
| group number= 16
| trivial name= халкогени
| by element = кисеонична група
| CAS = -{VIA}-
| old IUPAC = -{VIB}-
| mark = -{O,S,Se,Te,Po,Lv}-
| left = [[Pnictogen|фиктогени]]
| right = [[Halogen|халогени]]}}
|-
! colspan=2 style="text-align:left;" | ↓ [[Period (periodic table)|Периода]]
|-
| [[Period 2 element|'''2''']]
| {{element cell image|8|Oxygen|O| |Gas|Other nonmetal|Primordial|image=Oxygen_discharge_tube.jpg|imaged caption=An oxygen discharge tube}}
|-
! [[Period 3 element|3]]
| {{element cell image|16|Sulfur|S| |Solid|Other nonmetal|Primordial|image=Sulfur-sample.jpg|imge caption=A sample of sulfur}}
|-
! [[Period 4 element|4]]
| {{element cell image|34|Selenium|Se| |Solid|Other nonmetal|Primordial|image=SeBlackRed.jpg|image caption=2 allotropes of selenium: black and red. 3 others not shown.}}
|-
! [[Period 5 element|5]]
| {{element cell image|52|Tellurium|Te| |Solid|Metalloid|Primordial|image=Tellurium2.jpg|image caption=Tellurium in metallic form}}
|-
! [[Period 6 element|6]]
| {{element cell image|84|Polonium|Po| |Solid|Other metal|From decay|image=<!-- Do NOT use a non-free image here, per WP:NFCC #9 -->|image link=File:Polonium.jpg|image caption=Polonium in metallic form}}
|-
! [[Period 7 element|7]]
| {{element cell image|116|Livermorium|Lv| |Unknown phase|Other metal|Synthetic|legend=Other metal}}
|-
| colspan="2"|
----
''Легенда''
{| style="text-align:center; border:0; margin: 0 auto"
|-
| style="border:{{element color|Primordial}}; background:{{Element color|table mark}};" | [[primordial element]]
|-
| style="border:{{element color|from decay}}; background:{{Element color|table mark}}; padding:0 2px;" | [[radioactive decay|naturally occurring by radioactive decay]]
|-
| style="border:{{element color|Synthetic}}; background:{{Element color|table mark}};" | [[synthetic element]]
|-
| Atomic number color:
|-
| <span style="color:{{element color|Gas}};">red=gas</span>,&nbsp;<span style="color:{{element color|Solid}};">black=solid</span>
|}
{{infobox periodic table group/footer|fullpage=Template:Periodic table (chalcogens)}}

{| align="right"
{| align="right"
| [[Група периодног система елемената|'''Група''']]
| [[Група периодног система елемената|'''Група''']]
Ред 24: Ред 73:
|}
|}


'''16. група хемијских елемената''' је једна од 18 група у [[периодни систем елемената|периодном систему елемената]]. У овој групи се налазе: [[кисеоник]], [[сумпор]], [[селен]], [[телур]], [[полонијум]], и [[ливерморијум]]. У овој групи се налазе три [[неметали|неметала]], два [[металоиди|металоида]] и један [[слаб метал]]. Сви елементи ове групе се јављају у природи сем [[Ливерморијум|Унунхексијума]] који је вештачки добијен. У овој групи сви елементи су у чврстом агрегатном стању. [[Релативна атомска маса|Атомске масе]] ових елемената крећу се између 16 и 293. Ова група носи називе: кисеоникова група хемијских елемената и -{VIА}- група хемијских елемената.

The '''chalcogens''' (ore forming) ({{IPAc-en|ˈ|k|æ|l|k|ə|dʒ|ə|n|z}} {{Respell|KAL|kə|jənz}}) are the [[chemical element]]s in [[group (periodic table)|group]] 16 of the [[periodic table]]. This group is also known as the '''oxygen family'''. It consists of the elements [[oxygen]] (O), [[sulfur]] (S), [[selenium]] (Se), [[tellurium]] (Te), and the [[Radioactive decay|radioactive]] element [[polonium]] (Po). The chemically uncharacterized [[synthetic element]] [[livermorium]] (Lv) is predicted to be a chalcogen as well.<ref name="ReferenceB">{{cite book|last=Emsley|first=John|title=Nature's Building Blocks: An A-Z Guide to the Elements|edition=New|year=2011|publisher=Oxford University Press|location=New York, NY|isbn=978-0-19-960563-7|pages=375–383, 412–415, 475–481, 511–520, 529–533, 582}}</ref> Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word {{lang|grc-Latn|khalkόs}} ({{lang|grc|χαλκός}}) principally meaning [[copper]] (the term was also used for [[bronze]]/[[brass]], any metal in the poetic sense, [[ore]] or [[coin]]),<ref name=Chalco->{{Cite book|title=The New Shorter Oxford Dictionary|year=1993|publisher=Oxford University Press|isbn=978-0-19-861134-9|page=[https://archive.org/details/newshorteroxford00lesl/page/368 368]|url=https://archive.org/details/newshorteroxford00lesl/page/368}}</ref> and the Latinized Greek word {{lang|la|genēs}}, meaning ''born'' or ''produced''.<ref>{{cite dictionary |url = http://www.merriam-webster.com/dictionary/chalcogen |title= chalcogen|year = 2013 |access-date=November 25, 2013 |dictionary=Merriam-Webster}}</ref><ref>{{Cite book|author = Bouroushian, M.|url = https://books.google.com/books?id=B8WgWHjN54oC&pg=PA1|title = Electrochemistry of Metal Chalcogenides|year = 2010|isbn = 978-3-642-03967-6|bibcode = 2010emc..book.....B|doi = 10.1007/978-3-642-03967-6|series = Monographs in Electrochemistry }}</ref>

Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six [[valence electron]]s, leaving them two electrons short of a full outer shell. Their most common [[oxidation state]]s are −2, +2, +4, and +6. They have relatively low [[atomic radius|atomic radii]], especially the lighter ones.<ref name="Jackson2002" />

Lighter chalcogens are typically [[Toxicity|nontoxic]] in their elemental form, and are often critical to life, while the heavier chalcogens are typically [[Toxicity|toxic]].<ref name="ReferenceB"/> All of the naturally occurring chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient (among others as a building block of [[selenocysteine]]) but is also commonly toxic.<ref name="The Elements"/> Tellurium often has unpleasant effects (although some organisms can use it), and polonium (especially the [[isotope]] [[polonium-210]]) is always harmful as a result of its radioactivity.

Sulfur has more than 20 [[allotrope]]s, oxygen has nine, selenium has at least eight, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen [[pnictogen|pnictides]] and compounds containing chalcogens and [[carbon group]] elements.

Oxygen is generally obtained by [[air separation|separation]] of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium and livermorium are most available in particle accelerators. The primary use of elemental oxygen is in [[steelmaking]]. Sulfur is mostly converted into [[sulfuric acid]], which is heavily used in the chemical industry.<ref name="The Elements"/> Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.<ref name="ReferenceB"/>

== Особине ==

=== Атомски и физички ===
Chalcogens show similar patterns in [[electron configuration]], especially in the outermost [[electron shell|shells]], where they all have the same number of [[valence electron]]s, resulting in similar trends in chemical behavior:

{| class="wikitable"
|-
![[Atomic number|Z]] !! [[Chemical element|Element]] !! [[Electron shell|No. of electrons/shell]]
|-
| 8 || Oxygen || 2, 6
|-
| 16 || Sulfur || 2, 8, 6
|-
| 34 || Selenium || 2, 8, 18, 6
|-
| 52 || Tellurium || 2, 8, 18, 18, 6
|-
| 84 || Polonium || 2, 8, 18, 32, 18, 6
|-
| 116 || Livermorium || 2, 8, 18, 32, 32, 18, 6 ''(predicted)''<ref name=Haire>{{Cite book |publisher= [[Springer Science+Business Media]] |year = 2006 |location=Dordrecht, The Netherlands |bibcode=2011tcot.book.....M |journal=The Chemistry of the Actinide and Transactinide Elements |doi =10.1007/978-94-007-0211-0 |editor1-last=Morss |editor1-first=Lester R |editor2-last=Edelstein |editor2-first=Norman M |editor3-last=Fuger| editor3-first=Jean |isbn =978-94-007-0210-3 |last1= Morss |first1= Lester R. |last2= Edelstein |first2= Norman M. |last3= Fuger |first3= Jean |title = The Chemistry of the Actinide and Transactinide Elements }}</ref>
|}

{|class="wikitable" style="text-align:center"
|-
!Element !! Melting point
(°C)<ref name="Jackson2002" />
! Boiling point
(°C)<ref name="Jackson2002" />
!Density at STP
(g/cm<sup>3</sup>)<ref name="Jackson2002" />
|-
|Oxygen || −219 || −183
|0.00143
|-
|Sulfur || 120 || 445
|2.07
|-
|Selenium || 221 || 685
|4.3
|-
|Tellurium || 450 || 988
|6.24
|-
|Polonium || 254 || 962
|9.2
|-
|Livermorium || 220 (predicted) || 800 (predicted)
|14 (predicted)<ref name=Haire/>
|}

All chalcogens have six [[valence electron]]s. All of the solid, stable chalcogens are soft<ref>{{cite book|editor=Samsonov, G.V.|chapter=Mechanical Properties of the Elements|doi=10.1007/978-1-4684-6066-7_7|isbn=978-1-4684-6066-7|chapter-url=http://ihtik.lib.ru/2011.08_ihtik_nauka-tehnika/2011.08_ihtik_nauka-tehnika_3560.rar|title=Handbook of the physicochemical properties of the elements|pages=387–446|publisher=IFI-Plenum|place=New York, USA|year=1968|url-status=dead|archive-url=https://web.archive.org/web/20150402123344/http://ihtik.lib.ru/2011.08_ihtik_nauka-tehnika/2011.08_ihtik_nauka-tehnika_3560.rar|archive-date=April 2, 2015|df=mdy-all}}</ref> and do not [[thermal conductivity|conduct heat]] well.<ref name="Jackson2002" /> [[Electronegativity]] decreases towards the chalcogens with higher atomic numbers. Density, melting and boiling points, and [[atomic radius|atomic]] and [[ionic radius|ionic radii]]<ref name="rsc">{{cite web |url=http://www.rsc.org/chemsoc/visualelements/pages/data/intro_groupvi_data.html |title=Visual Elements: Group 16 |publisher=Rsc.org |access-date=November 25, 2013}}</ref> tend to increase towards the chalcogens with higher atomic numbers.<ref name="Jackson2002">{{cite book |last=Jackson |first=Mark |title=Periodic Table Advanced |publisher=Bar Charts Inc. |isbn=978-1-57222-542-8 |year=2002}}</ref>

=== Изотопи ===
[[File:Phase diagram of sulfur (1975).png|thumb|250п|Phase diagram of sulfur showing the relative stabilities of several allotropes<ref>{{cite journal |title=Phase Diagrams of the Elements|author=Young, David A. |date=September 11, 1975|publisher=Lawrence Livermore Laboratory |osti = 4010212}}</ref>]]
[[File:Chalkogene.jpg|thumb|left|250п|The four stable chalcogens at [[Standard conditions for temperature and pressure|STP]]]]
[[File:Phase diagram of solid oxygen.svg|thumb|250п|[[Phase diagram]] for [[solid oxygen]]]]

Out of the six known chalcogens, one (oxygen) has an atomic number equal to a nuclear [[Magic number (physics)|magic number]], which means that their [[atomic nuclei]] tend to have increased stability towards radioactive decay.<ref name="The Disappearing Spoon"/> Oxygen has three stable isotopes, and 14 unstable ones. Sulfur has four stable isotopes, 20 radioactive ones, and one [[nuclear isomer|isomer]]. Selenium has six [[observationally stable]] or nearly stable isotopes, 26 radioactive isotopes, and 9 isomers. Tellurium has eight stable or nearly stable isotopes, 31 unstable ones, and 17 isomers. Polonium has 42 isotopes, none of which are stable.<ref>{{cite web|last = Sonzogniurl|first = Alejandro |url=http://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=84&n=130|title = Double Beta Decay for Selenium-82 |access-date=November 25, 2013 |publisher = Brookhaven National Laboratory}}</ref> It has an additional 28 isomers.<ref name="ReferenceB"/> In addition to the stable isotopes, some radioactive chalcogen isotopes occur in nature, either because they are decay products, such as [[polonium-210|<sup>210</sup>Po]], because they are [[primordial nuclide|primordial]], such as <sup>82</sup>Se, because of [[cosmic ray]] [[spallation]], or via [[nuclear fission]] of uranium. Livermorium isotopes <sup>290</sup>Lv through <sup>293</sup>Lv have been discovered; the most stable livermorium isotope is <sup>293</sup>Lv, which has a half-life of 0.061 seconds.<ref name = "ReferenceB"/><ref>{{cite journal|year = 1973|title = Double Beta Decay of Selenium-82|doi = 10.2113/gsecongeo.68.2.252|journal = Economic Geology|volume = 68|issue = 2|page = 252|last1 = Srinivasan|first1 = B.|last2 = Alexander|first2 = E. C.|last3 = Beaty|first3 = R. D.|last4 = Sinclair|first4 = D. E.|last5 = Manuel|first5 = O. K.}}</ref>

Among the lighter chalcogens (oxygen and sulfur), the most neutron-poor isotopes undergo [[proton emission]], the moderately neutron-poor isotopes undergo [[electron capture]] or [[beta plus decay|β<sup>+</sup> decay]], the moderately neutron-rich isotopes undergo [[beta decay|β<sup>−</sup> decay]], and the most neutron rich isotopes undergo [[neutron emission]]. The middle chalcogens (selenium and tellurium) have similar decay tendencies as the lighter chalcogens, but their isotopes do not undergo proton emission and some of the most neutron-deficient isotopes of tellurium undergo [[alpha decay]]. Polonium's isotopes tend to decay with alpha or beta decay.<ref>{{cite web |url=http://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=47&n=63 |title=Nudat 2 |publisher=Nndc.bnl.gov |access-date=November 25, 2013}}</ref> Isotopes with [[nuclear spin]]s are more common among the chalcogens selenium and tellurium than they are with sulfur.<ref name="synth"/>

=== Алотропи ===

Oxygen's most common [[allotrope]] is diatomic oxygen, or O<sub>2</sub>, a reactive paramagnetic molecule that is ubiquitous to [[aerobic organism]]s and has a blue color in its [[liquid oxygen|liquid state]]. Another allotrope is O<sub>3</sub>, or [[ozone]], which is three oxygen atoms bonded together in a bent formation. There is also an allotrope called [[tetraoxygen]], or O<sub>4</sub>,<ref>{{cite journal|title = The ε Phase of Solid Oxygen: Evidence of an O4 Molecule Lattice|year = 1999|bibcode = 1999PhRvL..83.4093G|last1 = Gorelli|first1 = Federico A.|last2 = Ulivi|first2 = Lorenzo|last3 = Santoro|first3 = Mario|last4 = Bini|first4 = Roberto|volume = 83|page = 4093|journal = Physical Review Letters|doi = 10.1103/PhysRevLett.83.4093|issue = 20}}</ref> and six allotropes of [[solid oxygen]] including "red oxygen", which has the formula O<sub>8</sub>.<ref>{{cite journal|title = Observation of an O8 molecular lattice in the ε phase of solid oxygen|doi=10.1038/nature05174|journal =Nature|volume =443|issue =7108|pages =201–4|pmid =16971946|year = 2006|last1 = Lundegaard|first1 = Lars F.|last2 = Weck|first2 = Gunnar|last3 = McMahon|first3 = Malcolm I.|last4 = Desgreniers|first4 = Serge|last5 = Loubeyre|first5 = Paul|bibcode = 2006Natur.443..201L|s2cid=4384225}}</ref>


== Референце ==
'''16. група хемијских елемената''' је једна од 18 група у [[периодни систем елемената|периодном систему елемената]]. У овој групи се налазе:
{{Reflist|refs=
<ref name="The Elements">{{cite book|last = Gray|first = Theodore|title = The Elements|year = 2011|publisher = Black Bay and Leventhal publishers}}</ref>
<ref name="The Disappearing Spoon">{{cite book|last = Kean|first = Sam|title = The Disappearing Spoon|year = 2011|publisher = Back Bay Books|isbn=978-0-316-05163-7}}</ref>
<ref name="synth">{{cite book|author = Zakai, Uzma I. |url = https://books.google.com/books?id=k-LjiXfTXnYC |title = Design, Synthesis, and Evaluation of Chalcogen Interactions|year= 2007|isbn=978-0-549-34696-8 |access-date=November 25, 2013}}</ref>
}}


== Литература ==
* [[кисеоник]]
{{refbegin|}}
* [[сумпор]]
* {{cite book|ref=Greenwood
* [[селен]]
|last1=Greenwood |first1=Norman N.
* [[телур]]
|author-link1=Norman Greenwood
* [[полонијум]]
|last2=Earnshaw |first2=Alan
* [[ливерморијум]]
|year=1997
|title=Chemistry of the Elements
|edition=2nd
|publisher=[[Butterworth-Heinemann]]
|isbn=0080379419
}}
* {{cite book|ref=Steudel|title=Elemental sulfur and sulfur-rich compounds I (Topics in current chemistry)|editor=Steudel, R. |year=2004|publisher=Springer|isbn=3-540-40191-1|url=https://books.google.com/books?id=9PaU9qnETfEC}}
{{refend}}


== Спољашње везе ==
У овој групи се налазе три [[неметали|неметала]], два [[металоиди|металоида]] и један [[слаб метал]]. Сви елементи ове групе се јављају у природи сем [[Ливерморијум|Унунхексијума]] који је вештачки добијен. У овој групи сви елементи су у чврстом агрегатном стању. [[Релативна атомска маса|Атомске масе]] ових елемената крећу се између 16 и 293.
*{{Commons category-inline|Periodic table group 16}}


{{Навигација периодни систем}}
'''Ова група носи називе:
{{Authority control}}
* кисеоникова група хемијских елемената и
* VIА група хемијских елемената'''


[[Категорија:Групе хемијских елемената]]
[[Категорија:Групе хемијских елемената]]

Верзија на датум 3. октобар 2021. у 20:30

Халкогени
Водоник Хелијум
Литијум Берилијум Бор Угљеник Азот Кисеоник Флуор Неон
Натријум Магнезијум Алуминијум Силицијум Фосфор Сумпор Хлор Аргон
Калијум Калцијум Скандијум Титанијум Ванадијум Хром Манган Гвожђе Кобалт Никл Бакар Цинк Галијум Германијум Арсен Селен Бром Криптон
Рубидијум Стронцијум Итријум Цирконијум Ниобијум Молибден Технецијум Рутенијум Родијум Паладијум Сребро Кадмијум Индијум Калај Антимон Телур Јод Ксенон
Цезијум Баријум Лантан Церијум Празеодијум Неодијум Прометијум Самаријум Европијум Гадолинијум Тербијум Диспрозијум Холмијум Ербијум Тулијум Итербијум Лутецијум Хафнијум Тантал Волфрам Ренијум Осмијум Иридијум Платина Злато Жива Талијум Олово Бизмут Полонијум Астат Радон
Францијум Радијум Актинијум Торијум Протактинијум Уранијум Нептунијум Плутонијум Америцијум Киријум Берклијум Калифорнијум Ајнштајнијум Фермијум Мендељевијум Нобелијум Лоренцијум Радерфордијум Дубнијум Сиборгијум Боријум Хасијум Мајтнеријум Дармштатијум Рендгенијум Коперницијум Нихонијум Флеровијум Московијум Ливерморијум Тенесин Оганесон
Број групе по IUPAC 16
Име елемента кисеонична група
Тривијално име халкогени
CAS број групе
(САД, патерн А-Б-А)
VIA
стари IUPAC број
(Европа, патерн А-Б)
VIB

↓ Периода
2
Слика: Oxygen
Oxygen (O)
8 Other nonmetal
3
Слика: Sulfur
Sulfur (S)
16 Other nonmetal
4
Слика: 2 allotropes of selenium: black and red. 3 others not shown.
Selenium (Se)
34 Other nonmetal
5
Слика: Tellurium in metallic form
Tellurium (Te)
52 Metalloid
6 Polonium (Po)
84 Other metal
7 Livermorium (Lv)
116 Other metal

Легенда

primordial element
naturally occurring by radioactive decay
synthetic element
Atomic number color:
red=gasblack=solid
Група 16
Периода
2 8
O
3 16
S
4 34
Se
5 52
Te
6 84
Po
7 116
Lv

16. група хемијских елемената је једна од 18 група у периодном систему елемената. У овој групи се налазе: кисеоник, сумпор, селен, телур, полонијум, и ливерморијум. У овој групи се налазе три неметала, два металоида и један слаб метал. Сви елементи ове групе се јављају у природи сем Унунхексијума који је вештачки добијен. У овој групи сви елементи су у чврстом агрегатном стању. Атомске масе ових елемената крећу се између 16 и 293. Ова група носи називе: кисеоникова група хемијских елемената и VIА група хемијских елемената.

The chalcogens (ore forming) (/ˈkælkəənz/ kal--jənz) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. It consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po). The chemically uncharacterized synthetic element livermorium (Lv) is predicted to be a chalcogen as well.[1] Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper (the term was also used for bronze/brass, any metal in the poetic sense, ore or coin),[2] and the Latinized Greek word genēs, meaning born or produced.[3][4]

Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common oxidation states are −2, +2, +4, and +6. They have relatively low atomic radii, especially the lighter ones.[5]

Lighter chalcogens are typically nontoxic in their elemental form, and are often critical to life, while the heavier chalcogens are typically toxic.[1] All of the naturally occurring chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient (among others as a building block of selenocysteine) but is also commonly toxic.[6] Tellurium often has unpleasant effects (although some organisms can use it), and polonium (especially the isotope polonium-210) is always harmful as a result of its radioactivity.

Sulfur has more than 20 allotropes, oxygen has nine, selenium has at least eight, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen pnictides and compounds containing chalcogens and carbon group elements.

Oxygen is generally obtained by separation of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium and livermorium are most available in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into sulfuric acid, which is heavily used in the chemical industry.[6] Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.[1]

Особине

Атомски и физички

Chalcogens show similar patterns in electron configuration, especially in the outermost shells, where they all have the same number of valence electrons, resulting in similar trends in chemical behavior:

Z Element No. of electrons/shell
8 Oxygen 2, 6
16 Sulfur 2, 8, 6
34 Selenium 2, 8, 18, 6
52 Tellurium 2, 8, 18, 18, 6
84 Polonium 2, 8, 18, 32, 18, 6
116 Livermorium 2, 8, 18, 32, 32, 18, 6 (predicted)[7]
Element Melting point

(°C)[5]

Boiling point

(°C)[5]

Density at STP

(g/cm3)[5]

Oxygen −219 −183 0.00143
Sulfur 120 445 2.07
Selenium 221 685 4.3
Tellurium 450 988 6.24
Polonium 254 962 9.2
Livermorium 220 (predicted) 800 (predicted) 14 (predicted)[7]

All chalcogens have six valence electrons. All of the solid, stable chalcogens are soft[8] and do not conduct heat well.[5] Electronegativity decreases towards the chalcogens with higher atomic numbers. Density, melting and boiling points, and atomic and ionic radii[9] tend to increase towards the chalcogens with higher atomic numbers.[5]

Изотопи

Phase diagram of sulfur showing the relative stabilities of several allotropes[10]
The four stable chalcogens at STP
Phase diagram for solid oxygen

Out of the six known chalcogens, one (oxygen) has an atomic number equal to a nuclear magic number, which means that their atomic nuclei tend to have increased stability towards radioactive decay.[11] Oxygen has three stable isotopes, and 14 unstable ones. Sulfur has four stable isotopes, 20 radioactive ones, and one isomer. Selenium has six observationally stable or nearly stable isotopes, 26 radioactive isotopes, and 9 isomers. Tellurium has eight stable or nearly stable isotopes, 31 unstable ones, and 17 isomers. Polonium has 42 isotopes, none of which are stable.[12] It has an additional 28 isomers.[1] In addition to the stable isotopes, some radioactive chalcogen isotopes occur in nature, either because they are decay products, such as 210Po, because they are primordial, such as 82Se, because of cosmic ray spallation, or via nuclear fission of uranium. Livermorium isotopes 290Lv through 293Lv have been discovered; the most stable livermorium isotope is 293Lv, which has a half-life of 0.061 seconds.[1][13]

Among the lighter chalcogens (oxygen and sulfur), the most neutron-poor isotopes undergo proton emission, the moderately neutron-poor isotopes undergo electron capture or β+ decay, the moderately neutron-rich isotopes undergo β decay, and the most neutron rich isotopes undergo neutron emission. The middle chalcogens (selenium and tellurium) have similar decay tendencies as the lighter chalcogens, but their isotopes do not undergo proton emission and some of the most neutron-deficient isotopes of tellurium undergo alpha decay. Polonium's isotopes tend to decay with alpha or beta decay.[14] Isotopes with nuclear spins are more common among the chalcogens selenium and tellurium than they are with sulfur.[15]

Алотропи

Oxygen's most common allotrope is diatomic oxygen, or O2, a reactive paramagnetic molecule that is ubiquitous to aerobic organisms and has a blue color in its liquid state. Another allotrope is O3, or ozone, which is three oxygen atoms bonded together in a bent formation. There is also an allotrope called tetraoxygen, or O4,[16] and six allotropes of solid oxygen including "red oxygen", which has the formula O8.[17]

Референце

  1. ^ а б в г д Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New изд.). New York, NY: Oxford University Press. стр. 375—383, 412—415, 475—481, 511—520, 529—533, 582. ISBN 978-0-19-960563-7. 
  2. ^ The New Shorter Oxford Dictionary. Oxford University Press. 1993. стр. 368. ISBN 978-0-19-861134-9. 
  3. ^ „chalcogen”. Merriam-Webster. 2013. Приступљено 25. 11. 2013. 
  4. ^ Bouroushian, M. (2010). Electrochemistry of Metal Chalcogenides. Monographs in Electrochemistry. Bibcode:2010emc..book.....B. ISBN 978-3-642-03967-6. doi:10.1007/978-3-642-03967-6. 
  5. ^ а б в г д ђ Jackson, Mark (2002). Periodic Table Advanced. Bar Charts Inc. ISBN 978-1-57222-542-8. 
  6. ^ а б Gray, Theodore (2011). The Elements. Black Bay and Leventhal publishers. 
  7. ^ а б Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (2006). Morss, Lester R; Edelstein, Norman M; Fuger, Jean, ур. The Chemistry of the Actinide and Transactinide Elements. The Chemistry of the Actinide and Transactinide Elements. Dordrecht, The Netherlands: Springer Science+Business Media. Bibcode:2011tcot.book.....M. ISBN 978-94-007-0210-3. doi:10.1007/978-94-007-0211-0. 
  8. ^ Samsonov, G.V., ур. (1968). „Mechanical Properties of the Elements”. Handbook of the physicochemical properties of the elements. New York, USA: IFI-Plenum. стр. 387—446. ISBN 978-1-4684-6066-7. doi:10.1007/978-1-4684-6066-7_7. Архивирано из оригинала 2. 4. 2015. г. 
  9. ^ „Visual Elements: Group 16”. Rsc.org. Приступљено 25. 11. 2013. 
  10. ^ Young, David A. (11. 9. 1975). „Phase Diagrams of the Elements”. Lawrence Livermore Laboratory. OSTI 4010212. 
  11. ^ Kean, Sam (2011). The Disappearing Spoon. Back Bay Books. ISBN 978-0-316-05163-7. 
  12. ^ Sonzogniurl, Alejandro. „Double Beta Decay for Selenium-82”. Brookhaven National Laboratory. Приступљено 25. 11. 2013. 
  13. ^ Srinivasan, B.; Alexander, E. C.; Beaty, R. D.; Sinclair, D. E.; Manuel, O. K. (1973). „Double Beta Decay of Selenium-82”. Economic Geology. 68 (2): 252. doi:10.2113/gsecongeo.68.2.252. 
  14. ^ „Nudat 2”. Nndc.bnl.gov. Приступљено 25. 11. 2013. 
  15. ^ Zakai, Uzma I. (2007). Design, Synthesis, and Evaluation of Chalcogen Interactions. ISBN 978-0-549-34696-8. Приступљено 25. 11. 2013. 
  16. ^ Gorelli, Federico A.; Ulivi, Lorenzo; Santoro, Mario; Bini, Roberto (1999). „The ε Phase of Solid Oxygen: Evidence of an O4 Molecule Lattice”. Physical Review Letters. 83 (20): 4093. Bibcode:1999PhRvL..83.4093G. doi:10.1103/PhysRevLett.83.4093. 
  17. ^ Lundegaard, Lars F.; Weck, Gunnar; McMahon, Malcolm I.; Desgreniers, Serge; Loubeyre, Paul (2006). „Observation of an O8 molecular lattice in the ε phase of solid oxygen”. Nature. 443 (7108): 201—4. Bibcode:2006Natur.443..201L. PMID 16971946. S2CID 4384225. doi:10.1038/nature05174. 

Литература

Спољашње везе

  • Медији везани за чланак Халкоген на Викимедијиној остави