Алуминијум

Из Википедије, слободне енциклопедије
Алуминијум,  13Al
Al,13.jpg
Општа својства
Име, симбол алуминијум, Al
Алуминијум у периодном систему
Водоник (диатомски неметал)
Хелијум (племенити гас)
Литијум (алкални метал)
Берилијум (земноалкални метал)
Бор (металоид)
Угљеник (полиатомски неметал)
Азот (диатомски неметал)
Кисеоник (диатомски неметал)
Флуор (диатомски неметал)
Неон (племенити гас)
Натријум (алкални метал)
Магнезијум (земноалкални метал)
Алуминијум (постпрелазни метал)
Силицијум (металоид)
Фосфор (полиатомски неметал)
Сумпор (полиатомски неметал)
Хлор (диатомски неметал)
Аргон (племенити гас)
Калијум (алкални метал)
Калцијум (земноалкални метал)
Скандијум (прелазни метал)
Титанијум (прелазни метал)
Ванадијум (прелазни метал)
Хром (прелазни метал)
Манган (прелазни метал)
Гвожђе (прелазни метал)
Кобалт (прелазни метал)
Никл (прелазни метал)
Бакар (прелазни метал)
Цинк (прелазни метал)
Галијум (постпрелазни метал)
Германијум (металоид)
Арсен (металоид)
Селен (полиатомски неметал)
Бром (диатомски неметал)
Криптон (племенити гас)
Рубидијум (алкални метал)
Стронцијум (земноалкални метал)
Итријум (прелазни метал)
Цирконијум (прелазни метал)
Ниобијум (прелазни метал)
Молибден (прелазни метал)
Технецијум (прелазни метал)
Рутенијум (прелазни метал)
Родијум (прелазни метал)
Паладијум (прелазни метал)
Сребро (прелазни метал)
Кадмијум (прелазни метал)
Индијум (постпрелазни метал)
Калај (постпрелазни метал)
Антимон (металоид)
Телур (металоид)
Јод (диатомски неметал)
Ксенон (племенити гас)
Цезијум (алкални метал)
Баријум (земноалкални метал)
Лантан (лантаноид)
Церијум (лантаноид)
Празеодијум (лантаноид)
Неодијум (лантаноид)
Прометијум (лантаноид)
Самаријум (лантаноид)
Еуропијум (лантаноид)
Гадолинијум (лантаноид)
Тербијум (лантаноид)
Диспрозијум (лантаноид)
Холмијум (лантаноид)
Ербијум (лантаноид)
Тулијум (лантаноид)
Итербијум (лантаноид)
Лутецијум (лантаноид)
Хафнијум (прелазни метал)
Тантал (прелазни метал)
Волфрам (прелазни метал)
Ренијум (прелазни метал)
Осмијум (прелазни метал)
Иридијум (прелазни метал)
Платина (прелазни метал)
Злато (прелазни метал)
Жива (прелазни метал)
Талијум (постпрелазни метал)
Олово (постпрелазни метал)
Бизмут (постпрелазни метал)
Полонијум (постпрелазни метал)
Астат (металоид)
Радон (племенити гас)
Францијум (алкални метал)
Радијум (земноалкални метал)
Актинијум (актиноид)
Торијум (актиноид)
Протактинијум (актиноид)
Уранијум (актиноид)
Нептунијум (актиноид)
Плутонијум (актиноид)
Америцијум (актиноид)
Киријум (актиноид)
Берклијум (актиноид)
Калифорнијум (актиноид)
Ајнштајнијум (актиноид)
Фермијум (актиноид)
Мендељевијум (актиноид)
Нобелијум (актиноид)
Лоренцијум (актиноид)
Радерфордијум (прелазни метал)
Дубнијум (прелазни метал)
Сиборгијум (прелазни метал)
Боријум (прелазни метал)
Хасијум (прелазни метал)
Мајтнеријум (непозната хемијска својства)
Дармштатијум (непозната хемијска својства)
Рендгенијум (непозната хемијска својства)
Коперницијум (прелазни метал)
Нихонијум (непозната хемијска својства)
Флеровијум (непозната хемијска својства)
Московијум (непозната хемијска својства)
Ливерморијум (непозната хемијска својства)
Тенесин (непозната хемијска својства)
Оганесон (непозната хемијска својства)
B

Al

Ga
магнезијумалуминијумсилицијум
Атомски број (Z) 13
Група, блок група 13, p-блок
Периода периода 3,
Категорија   слаби метал
Рел. ат. маса (Ar) 26,981538 u[1]
Ел. конфигурација [Ne]3s23p1
електрона по љускама
2, 8, 3
Физичка својства
Боја сребрнобела
Агрегатно стање чврсто[2]
Тачка топљења 933,47 K
(660,32 &°C)
Тачка кључања 2792 K
(2519 °C)"`UNIQ−−ref−00000004−QINU`"
Густина 2700 kg/m3
Моларна запремина 10,00×10−3 m3/mol
Топлота фузије 10,79 kJ/mol
Топлота испаравања 293,4 [3] kJ/mol
Сп. топл. капацитет 900 J/(kg·K)[2]
Атомска својства
Оксидациона стања 3
Особине оксида амфотерни
Електронегативност 1,61 (Полинг)
1,47 (Олред)[4]
Енергије јонизације 1: 577,5 [5] kJ/mol
2: 1816,7 [5] kJ/mol
3: 2744,8 [5] kJ/mol
(остале)
Атомски радијус 125 (118) pm
Ковалентни радијус 118 [7] pm
Остало
Кристална структура постраничноцентрирана кубична (FCC)
Површинскицентрирана тесерална кристална структура за алуминијум
Брзина звука 5100 m/s (933 K)
Топл. водљивост 237 W/(m·K)
Сп. ел. водљивост 37,7×106 S/m
Мосова тврдоћа 2,75
CAS број 7429-90-5
референцеВикиподаци

Алуминијум (лат. aluminium) јесте хемијски елемент са симболом Al и атомским бројем 13. У периодном систему елемената спада у метале III главне групе, познату и као групу бора, раније звана група земних метала. Алуминијум је сребренасто-бели лаки метал. Он је трећи најзаступљенији елемент и најчешћи метал у Земљиној кори. У 2010. години ископано је и прерађено око 41 милиона тона примарног алуминијума.[8] Иако он не спада у племените метале, са водом из ваздуха реагује само површински, изграђујући заштитни пасивизирајући слој на површини метала.

Историја[уреди]

Енглески хемичар Хамфри Дејви

У поређењу са другим металима, алуминијум није познат дуго у историји. Хамфри Дејви је описао овај елемент 1808. godine kao aluminium kada je pokušao da ga izdvoji. Ханс Кристијан Ерстед је успешно издвојио алуминијум 1825. године путем реакције алуминијум хлорида (AlCl3) са калијум амалгамом, при чему је калијум служио као редукционо средство:[9]

Ханс Кристијан Ерстед је први издвојио чисти алуминијум

Фридрих Велер је користио исту методу 1827. године, али је за редукцију користио метални калијум те је тако добио чишћи алуминијум. У то време алуминијум је вредио више од злата. Сен Клер Девил је унапредио Велеров процес 1846. године те га је објавио у књизи 1859. године. Тим побољшаним процесом повећан је принос алуминијума из руде, што је довело да цијена алуминијума за десет година опадне за 90%. Године 1886. Чарлс Мартин Хол и Пол Ерут, независно један од другог, развили су процес за производњу алуминијума путем електролизе, који је данас назван по њима Хол-Ерутов процес. Три године касније, 1889. Карл Јозеф Бајер је развио процес који се по њему зове Бајеров процес којим се и данас у великој мери добија алуминијум у индустријским количинама. У том времену, алуминијум је био у центру пажње науке и јавности уопште, да је по њему назван и један брод израђен 1894. године.

Етимологија[уреди]

Име елемента је изведено из латинске речи alumen што значи стипса. На германском говорном подручју користе се два имена за елемент: aluminium и aluminum. У готово свим језицима света прва варијанта је више заступљена, док се друга варијанта aluminum користи више у САД.[10] IUPAC је 1990. године одлучио да званични назив елемента буде aluminium, али је три године касније прихватио aluminum као могућу варијанту имена.

Заступљеност[уреди]

Алуминијум је уз масени удео од 7,57%, после кисеоника и силицијума, трећи најраспрострањенији елемент на површини Земље, као и најчешћи метал. Често долази са силицијумом и кисеоником у саставу алумосиликата, у чијој кристалној структури заузима тетраедарски облик са кисеоником и силицијумом. Ови силикати су саставни делови гнајса и гранита. Ређе се може наћи алуминијум оксид у облику минерала корунда и његових варијанти попут рубина (црвен) и сафира (различитих боја или безбојан). Боје ових кристала зависе од нечистоћа и примеса других металних оксида. Корунд има највећи удео алуминијума од око 53%. Осим њега, и минерал акдалаит има висок удео алуминијума од око 51%, као и диаојудаоит око 50%. Укупно до 2010. године откривено је 1.156 минерала који садрже алуминијум.[11] Алуминијум се појављује као и минерал криолит Na3AlF6, а његова најважнија руда је боксит Al2O3 ·xH2O. Садржај алуминијум хидроксида (Al(OH)3 и AlO(OH)) у бокситу износи око 60%, а 30% отпада на оксиде гвожђа и силицијум оксида (SiO2).

Највећи депозити боксита налазе у јужној Француској (Бо де Прованс), Гвинеји, Мађарској, Русији, Индији, Јамајки, Аустралији, Бразилу и САД. У Босни и Херцеговини налазе се изузетно велике количине боксита. Процењује се да резерве боксита у БиХ износе око 30 милиона тона.[12] Боксита у Босни највише има у близини Милића, Босанске Крупе, Јајца и Сребренице, те у Херцеговини код Мостара и Љубушког.

Код производње алуминијума разликују се примарни, који се добија из боксита и секундарни који се добија из алуминијумског отпада. Рециклирањем алуминијумског отпада могуће је уштедити и до 95% енергије која је неопходна за производњу примарног алуминијума.

Иако има потпуно неплемените особине, алуминијум врло ријетко се у природи може наћи самородан, углавном у облику зрнастих или масивних минералних агрегата, а у врло ретким случајевима може се развити у облику плочастих кристала величине до једног центриметра.[13] Међународна минералошка организација (ИМА) је због тога признала такав алуминијум у минерале те га је увела у систематику минерала по Струнзу под системским бројем 1.АА.05, а по старијом систематици (8. издање по Струнзу) под бројем И/А.03-05. Самородни алуминијум је до 2010. године пронађен на само 20 налазишта на Земљи: у Азербејџану, Бугарској, Кини (Гуангдонг, Гуизхоу и Тибет), Италији, Русији (источни Сибир и Урал) и Узбекистану. Чак и на Месецу су пронађени трагови самородног алуминијума.[14] Због своје изузетне реткости, самородни алуминијум нема значаја као сировина.

Производња[уреди]

Кретање светске годишње производње примарног алуминијума

Пошто се алуминијум не може издвојити из алуминосиликата због начина и врсте хемијских веза, економски оправдан и индустријски најефикаснији начин производње алуминијума је прерада руде боксита. Смјеша алуминијум оксида и алуминијум хидроксида се ослобађа из руде боксита од страних примеса попут гвоздених оксида и силицијум оксида, деловањем натрон-соде (Бајеров процес) те се пржи у ротирајућим пећима до алуминијум оксида (Al2O3).

Такозвана сува прерада (Девилов процес по француском хемичару Девилу) се данас готово не користи. При том процесу се добро иситњеном, самлевеном, сировом бокситу додају натријум-карбонат (сода) и кокс, те се та смеша калцинира у ротирајућој пећи на температури од око 1200 °C, а при томе настали натријум-алуминат се отапа у натрон-соди (NaOH). Производња чистог алуминијумума се довршава искључиво електролизом алуминијумум оксида у истопљеним солима, што представља такозвани Хал-Хероултов процес. Да би се снизила неопходна температура за топљење алуминијумум оксида, додаје му се криолит, чиме се еутектична тачка снижава на 963 °C.[15]

Добијање[уреди]

Бемит и хидраргилит реагују с натријумском лужином и прелазе у топљиви натријумски алуминат. Хидратизовани гвожђе(III) оксид не реагује с натријуском лужином и заостаје у талогу, као и натријум алумосиликат настао реакцијом силицијум диоксида, натријумске лужине и алуминијум хидроксида.

Настали алуминатни раствор се одваја од талога филтрацијом. Из врућег филтрата додатком кристалића алуминијум хидроксида (Al(OH)3), као језгра за кристализацију и разређивањем водом, хлађењем се искристализира тешко растворни алуминијум хидроксид. Жарењем алуминијум хидроксида у ротацијским пећима на температурама изнад 1200°C настаје чиста глиница, која се тек онда шаље да се из ње произведе алуминијум.

Полазна руда за добијање алуминијума је боксит, од којег се прочишћавањем добије алуминијумев оксид (глиница) (Al2O3). Metalни алуминијум се добија електролизом; најважнији процеси примењују Хал-Херултову ћелију, у којој је се као електролит користи растопљени криолит Na3AlF6 који снижава тачку топљења на око 950ºC. Јачина електричне струје при процесу је око 150.000 A, а напон је око 5 V.

Реакција на катоди:

Al3+ + 3 e → Al

Реакција на аноди:

2 O2− → O2 + 4 e

Ако су катоде израђене од угља (што је најчешће случај), оне при процесу лагано изгарају те реагују са кисеоником и флуором из криолита, стога настају и одређене количине гасова CO и CO2, те гасовита једињења са флуором (1 kg po 1 t Al) који придоносе ефекту стаклене баште. Добијени алуминијум се држи на високим температурама неколико сати да би из њега испариле примесе силицијума, титанијума, бакра и цинка, док се највећа чистоћа добија електричном рафинацијом (99.999%). Развијају се и друге електролитне методе (обрада боксита с хлором и електролиза растопљеног хлорида). Чисти алуминијум је мекан и кован, а чврстоћа му се може повећати механичком обрадом.

  • Отпорност алуминијума према спољашњим утицајима може се знатно повећати поступком анодне оксидације познатим под називом елоксирање (елоксал поступак). Предмет који се елоксира је анода при електролизи сумпорне киселине. Кисеоник који се излучује на аноди појачава постојећи оксидни слој на алуминијуму. Поступак се најчешће спроводи у сврху побољшања антикорозијских и декоративних својстава оксидне превлаке. У поре тако добивеног слоја може ући боја која алуминијуму даје леп изглед.

Загревањем на ваздуху алуминијум изгара у алуминијум оксид (Al2O3).

4 Al(s) + 3 O2(g) --> 2 Al2O3(s)

Огромна количина ослобођене енергије указује на велику стабилност везе између алуминијума и кисеоника. Због тога се алуминијум користи за редукцију мање стабилних оксида.

Smeшa гвожђе(III) оксида и алуминијума у праху назива термит. Алуминијум у тој смеши редукује гвожђе из оксида, а ослобођена топлота је довољна да се отопи настало гвожђе. Тај се поступак због тога користи за заваривање гвоздених шина.

Fe2O3(s) + 2 Al(s) --> 2 Fe(s) + Al2O3(s)

Особине[уреди]

Физичке[уреди]

Алуминијум је релативно меки и жилав метал. Отпорност извлачења чистог алуминијумума износи око 49 MPa, док код његових легура износи од 300 до 700 MPa. Његов модул еластичности износи, у зависности од легуре, око 70.000 MPa. Лако се извлачи те се ваљањем може прерадити у веома танке фолије. Такозване алуминијумске гњечене легуре се могу добро обрађивати, савијати, пресовати и ковати чак и на нижим температурама. Напетости настале хладном обрадом алуминијумума могу се уклонити процесом меког загревања (до 250 °C). На овим температурама може се обликовати и дуралуминијумум. Легуре алуминијумума са 3% магнезијума или силицијума се добро изливају (алуминијумумски притисни гус) те се даље могу машински обрађивати. На температурама од око 1,2 K, чисти алуминијумум показује суперпроводничке особине. Тачка топљења алуминијумума износи 660,4 °C, а тачка кључања је 2470 °C. Са густоћом од 2,7 g/cm3, алуминијум испољава особине лаких метала.

Хемијске[уреди]

Оксидациони број алуминијума је +3. Чист алуминијумум на ваздуху се полако оксидује, прекривајући се слојем оксида Al2O3, који од корозије штити метал који се налази испод површине. Раствара се у неоксидирајућим киселинама, при чему настаје хидратизовани Al3+ јон. Алуминијумум се лако раствара у јаким базама (нпр., натријум-хидроксид - NaOH или калијум хидроксид - KOH), истискујући водоник и прелазећи у 2Na[Al(OH)4]

Концентрисана азотна киселина пасивизира алуминијум.

Изотопи[уреди]

Алуминијумум има много познатих изотопа, чији се масени бројеви крећу између 21 и 42. Међутим, једини стабилни изотоп је 27Al. Изотоп 26Al је радиоактиван, али се може наћи у природи. Време полураспада изотопа 26Al износи око 716.000 година,[16] али се у природи јавља само у траговима. Ствара се из аргона у Земљиној атмосфери путем спалације узроковане протонима из космичких зрака. Изотопи алуминијумума су наши практичну примену у бројним областима као што су одређивање старости океанских седимената, манганових накупина, глечерског леда, кварца у стенама и метеорита. Однос између 26Al и изотопа 10Be се користи за изучавање улоге транспорта, одлагања, ерозије и настајања седимената у временским периодима од 100.000 до милион година.[17]

Космогени 26Al је први пут примењен у проучавању месеца и метеорита. Фрагменти метеороида, након што су се одвојили од свог матичног објекта, били су изложени интензивном деловању космичких зрака током свог путовања кроз свемир, што је узроковало стално настајање 26Al. Након што фрагменти падну на Земљу, деловањем атмосфере значајно се смањује производња 26Al, а мерењем његовог времена полураспада могуће је израчунати животни век метеорита. Истраживањем метеорита на тај начин дошло се до податка да је изотоп 26Al био релативно доста распрострањен у време настанка Сунчевог система. Многи научници сматрају да је енергија отпуштена распадом 26Al одговорна за топљење и диференцијацију неких астероида након њиховог настанка пре 4,55 милијарде година.[18]

Примена[уреди]

Као грађевински материјал[уреди]

Типични део израђен од алуминијумумског гуса (део усисивача)
Алуминијумско кућиште (цилиндрични дио у средини) једног асинхроног електромотора.

Због своје мале густоће, алуминијум се често употребљава у околностима где је неопходно смањити тежину, например код транспортних машина да би се смањила њихова тежина а самим тиме и потрошња горива. То се нарочито односи на свемирске летилице и авионе. Осим њих, значај алуминијумума је порастао и у индустрији аутомобила. У прошлости, аутомобилска индустрија је мало користила алуминијум, јер су с њим били повезани проблеми његове високе цене, слабог заваривања делова од алуминијума као и проблематичне отпорности на замор материјала и особине деформације. Већ 1930-тих година неке америчке компаније су користиле алуминијум да би смањиле тежину војних амфибијумских возила. При градњи мањих и средњих јахти, много се ценила отпорност алуминијума према корозији у сланој морској води, јер се он штитио од корозије стварајући танки заштитни слој оксида на површини.[19] Године 2010. око 35% светске производње алуминијуму је трошила индустрија транспортних средстава.[8]

У легурама са магнезијумом, силицијумом и другим металима, алуминијуму се може повећати чврстоћа, која се може поредити са челиком. Због тога, употреба алуминијумума ради смањења тежине се углавном примењује у апликацијама где цена материјала не игра велику улогу. Нарочито је употреба алуминијума и његове легуре дуралуминијума (легура алуминијума са бакром и молибденом) раширена у индустрији авиона и свемирских летилица. Већи део структуре данашњих комерцијалних авиона састоји се из алуминијумских лимова различитих чврстоћа и легура, међусобно спојених. Код новијих модела авиона (Boeing 787, Airbus A350) алуминијум је замењен још лакшим вештачким материјалима начињеним од карбонских влакана.

На светском тржишту, цена сировог алуминијумума се кретала око 1.770 УС долара по тони. (стање: април 2014.)[20]

Легуре[уреди]

Типични италијански уређај за припремање espresso кафе

У истопљеном течном стању, алуминијум се може легирати са бакром, магнезијумом, манганом, силицијумом, гвожђем, титанијумом, берилијумом, литијумом, хромом, цинком, цирконијумом и молибденом. Тиме се могу добити пожељне особине алуминијума и уклонити или умањити нежељене. Код већине легура, највећи проблем лежи у стварању заштитног слоја оксида (пасивизацији), због чега су готови предмети начињени од тих легура угрожени ширењем корозије. Готово све високочврсте легуре имају тај проблем.

Велике количине легираног алуминијума се користе у индустрији пријевозних средстава. Легуре могу побољшати ливна или ковна својства алуминијума. Управо у изради ваздухоплова алуминијум је, због своје мале густоће и отпорности према корозији, тражен материјал, а захваљујући развоју нових технологија заваривања, то постаје и у аутомобилској индустрији те производњи вагона и локомотива нових генерација. Легуре алуминијума налазе велику примену и у аудио-индустрији (звучничке мембране) или као основа за израду компакт дискова (CD плоча, CD ROM-а итд.).

Алуминијум с многим металима ствара легуре, што је уз већ наведена својства, разлог његове велике употребе. Будући да је чист алуминијум мекан, готово половина произведеног метала се прерађује даље у легуре. Производи се велик број легура које обично укључују бакар, манган, силицијум, цинк и магнезијум.

  • Алуминијум и манган 1,2 % Mn. Не губи боју и употребљава се за прозоре и кухињске фолије.
  • Алуминијум и бор има већу електричну проводљивост, а употребљава се за електричне каблове.
  • Силумин – Si 10 %.
  • Магналијум – Mg 10 - 30 %. Отпоран на морску воду, па се користи у бродоградњи.
  • Дуралуминијум – Cu 2,5 – 5,5%, Mg 0,5 – 2%, Mn 0,5 – 1,2%, Si 0,2 – 1%. Врло тврда легура (трипут тврђа од обичног челика, а лакша од њега), отпорна на ударце, па се користи у грађевинарству, за израду превозних средстава, за оплату авиона и оквире тркаћих бициклова.

Познатије легуре:

Електротехника[уреди]

Алуминијумум је добар електрични проводник. По једном граму масе, боље проводи електричну струју од бакра, али заузима већу запремину од њега, те је по квадратном центиметру попречног пресека проводника бакар бољи проводник. Док је бакар мање реактиван и може се лакше обрађивати од алуминијума, проводници од алуминијумума се користе само у случајевима где је неопходно смањити тежину проводника.

Алуминијум се нарочито користи као електрични проводник за струју у електричној мрежи, када се ради о великим и дебелим проводницима као што су струјне шине и каблови за уземљење. У овом погледу алуминијумум се показао јефтинијим од бакра.

Код контаката од алуминијума је проблематично, јер се због притиска унутар контакта долази до пластичне деформације (пузања) материјала. Осим тога, током времена се пасивизира стајањем на ваздуху. Након дужег складиштења или интензивнијег додира са водом, тај пасивни слој оксида се задебља, онемогућавајући рад контаката. Током 1960-тих алуминијумски контакти су се користили у електричним прекидачима у грађевинским објектима, што је понекад доводило да због неодговарајућих спојева дође до кратких спојева или чак пожара.

Једињења[уреди]

Најважнија једињења алуминијума су амфотерни алуминијум-оксид, и алуминијум (III) хидроксид. Литијум-алуминијумхидрид (LiAlH4) често се користи у органској хемији. Велики индустријски значај имају алуминосиликати, а посебно МАО (метални алуминосиликат). Глина и иловача које се користе у продукцији керамике сложене су мјешавине алуминијумума и K[AlSi3O8] или алуминијумума и Na[AlSi3O8]. Алуминијумum(III) хидроксид користи се за пречишћавање воде за пиће, мада се у новије време његова употреба избегава због доказане повезаности Al3+ јона с настанком Алзхеимерове болести.[21]

Биолошки значај[уреди]

Упркос велике распрострањености у природи, алуминијумум нема познату улогу у биологији. Није присутан у знатним концентрацијама у биолошким системима. Алуминијумум сулфат има отровност код мишева ЛД50 од 6207 mg/kg, што отприлике одговара дози од 500 грама за особу од 80 kg.[22] И поред изузетно мале акутне отровности, ефекти алуминијумума на здравље су у сталном фокусу јавности због његовог масовног кориштења и дистрибуције у животној средини и привреди.

Врло мали број особа је алергичан на алуминијумум и код њих се након контакта или оралног узимања алуминијумума и производа од алуминијумума јавља дерматитис, промене у метаболизму, повраћање и други симптоми. Код узимања врло великих количина алуминијумума, може доћи до неутротоксичности, а повезан је и са променама у функционирању крвно-мождане баријере.[23]

Види још[уреди]

Референце[уреди]

  1. IUPAC, Standard Atomic Weights Revised v2
  2. 2,0 2,1 Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3
  3. 3,0 3,1 Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. u: Journal of Chemical & Engineering Data. 56, 2011, str. 328–337 doi:10.1021/je1011086
  4. David R. Lide: CRC Handbook of Chemistry and Physics, CRC Press LLC, 1998, ISBN 0-8493-0479-2
  5. 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 Allen W. Apblett (2005): Aluminum: Inorganic Chemistry u Encyclopedia of Inorganic Chemistry, R. Bruce King (ur.), 2. izd., Wiley, str.132, ISBN 978-0-470-86078-6
  6. Ionization Energies of Gaseous Atoms (kJ/mol); također i: C.E. Moore, National Standard Reference Data Series, National Bureau of Standards, No. 34, Washington, DC, 1970; W.C. Martin, L. Hagan, J. Reader, and J. Sugar, J. Phys. Chem. Ref. Data, 3, 771-9 (1974)
  7. Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer, Donald G. Truhlar: Consistent van der Waals Radii for the Whole Main Group. u: The Journal of Physical Chemistry A. 113, 2009, str. 5806–5812 doi:10.1021/jp8111556
  8. 8,0 8,1 world-aluminium.org: The Global Aluminium Industry 40 years from 1972 (PDF; 308 kB), pristupljeno 17. novembra 2013.
  9. Norman N. Greenwood, Alan Earnshaw: Chemie der Elemente. Wiley-VCH, Weinheim 1988, ISBN 3-527-26169-9
  10. Norman N. Greenwood, Alan Earnshaw: Chemistry of the Elements (2. izd.), Butterworth–Heinemann (1997), str. 217, ISBN 0-08-037941-9
  11. Mineral Species containing Aluminum (Al) na Webmineral (engl.)
  12. Prof. Dr. Udo Boin, Dr. Andreas Schwarz, (2001): Kratka studija: rudarstvo i hemijska industrija u Bosni i Hercegovini, str 3.
  13. Aluminium. u: John W. Anthony et al..: Handbook of Mineralogy. Mineralogical Society of America, 2010 (engl., PDF, 56,9 kB)
  14. Aluminium na mindat.org (engl.)
  15. Eutektikum Aluminiumoxid/Kryolith
  16. T. L. NorrisA. J. GancarzD. J. RokopK. W. Thomas (1983): Half-life of 26Al, Journal of Geophysical Research: Solid Earth, Vol. 88, izd. S01, str. B331–B333 doi:10.1029/JB088iS01p0B331
  17. Dickin, A. P. (2005). „In situ Cosmogenic Isotopes”. Radiogenic Isotope Geology. Cambridge University Press. ISBN 978-0-521-53017-0. 
  18. Dodd, R. T. (1986). Thunderstones and Shooting Stars. Harvard University Press. стр. 89—90. ISBN 0-674-89137-6. 
  19. Gesamtverband der Aluminiumindustrie e. V. „Meerwasserbeständigkeit von Aluminiumknetlegierungen” (PDF). 
  20. Primary Aluminium. na Londonskoj berzi metala
  21. Virginie Rondeau, Daniel Commenges, Hélène Jacqmin-Gadda, Jean-François Dartigues (2000): Relation between Aluminum Concentrations in Drinking Water and Alzheimer's Disease: An 8-year Follow-up Study, Am. J. Epidemiol, 152 (1): 59-66
  22. Frank, W. B. (2009). "Aluminum" u: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a01_459.pub2
  23. Banks, W.A.; Kastin, AJ (1989). Aluminum-induced neurotoxicity: alterations in membrane function at the blood–brain barrier, Neurosci Biobehav Rev 13 (1): 47–53. doi:10.1016/S0149-7634(89)80051-X

Литература[уреди]

  • Mimi Sheller, Aluminum Dream: The Making of Light Modernity. Cambridge, MA: Massachusetts Institute of Technology Press, 2014.

Спољашње везе[уреди]